

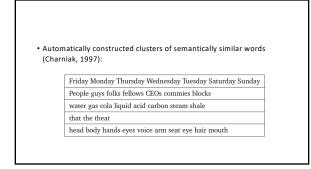
Vector Semantics

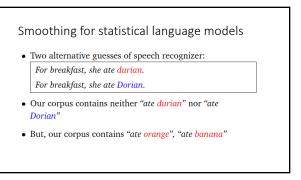
- Sparse representation
 Pointwise Mutual Information (PMI)
- · Dense representation Singular Value Decomposition (SVD) Neural Language Model (Word2Vec)

Why vector models of meaning? computing the similarity between words "fast" is similar to "rapid" "tall" is similar to "height"

Question answering: Q: "How tall is Mt. Everest?" Candidate A: "The official height of Mount Everest is 29029 feet"

3

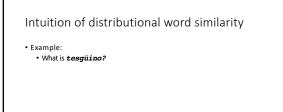


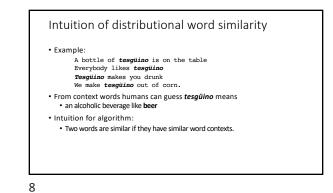


- Distributional models of meaning
 - = vector-space models of meaning
- = vector semantics
- Intuitions: Zellig Harris (1954):
- "oculist and eye-doctor ... occur in almost the same
- environments"
- "If A and B have almost identical environments we say that they are synonyms."

Firth (1957):

• "You shall know a word by the company it keeps!"





Four kinds of vector models

Sparse vector representations

1. Mutual-information weighted word co-occurrence matrices

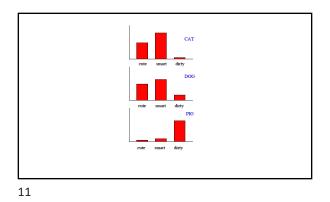
Dense vector representations:

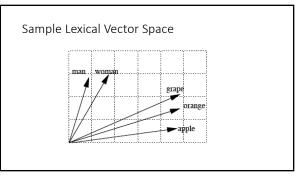
- 2. Singular value decomposition (and Latent Semantic Analysis)
- 3. Neural-network-inspired models (skip-grams, CBOW)
- 4. Brown clusters

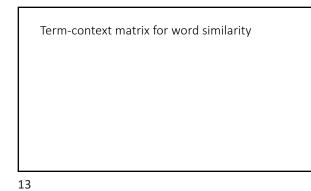
9

- Model the meaning of a word by "embedding" in a vector space
- The meaning of a word is a vector of numbers
 Vector models are also called "embeddings"

10

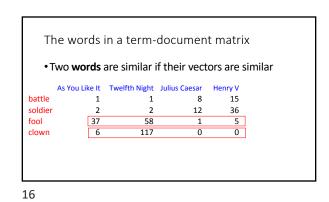


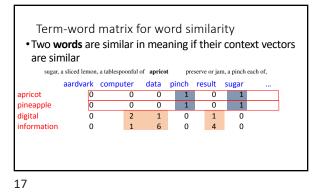


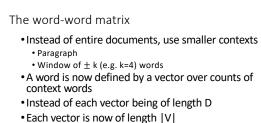


•	Each cell: c	ount of terr	n (or word)) <i>t</i> in do	cument <i>d</i> : tf _{t,d}
		ment is a cou			
	As You Like It	Twelfth Night	Julius Caesar	Henry V	
battle	1	1	8	15	
		2	12	36	
soldier	2				
soldier fool	37	58	1	5	

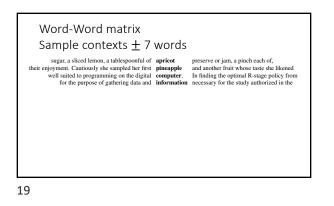
The words in a term-document matrix • Each word is a count vector in \mathbb{N}^{D} : a row below As You Like It Twelfth Night Julius Caesar Henry V battle soldier 0 fool 0 clown



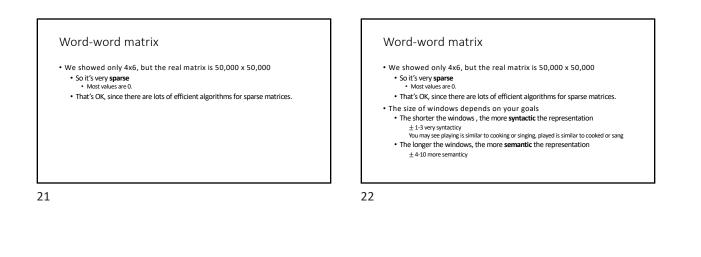




• The word-word matrix is |V|x|V|



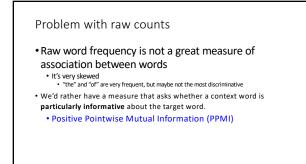
	aaruvark	computer	data	pinch	result	sugar	
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	



	Positive Pointwise Mutual Information (PPMI)
23	

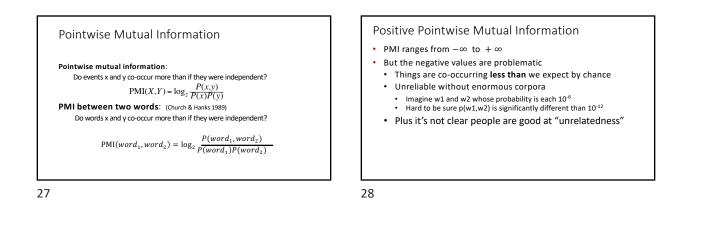
• Raw word frequency is not a great measure of association between words

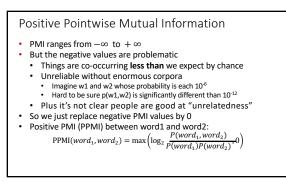
It's very skewed
 "the" and "of" are very frequent, but maybe not the most discriminative

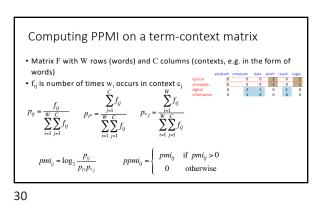


Pointwise Mutual Information Pointwise mutual information: Do events x and y co-occur more than if they were independent? $PMI(X,Y) = \log_2 \frac{P(x,y)}{P(x)P(y)}$

26



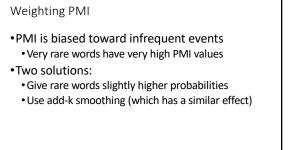




				Cou	nt(w,	ontex	t)	
f_{ii}			comput	er d	ata	pinch	result	sugar
$p_{ij} = \frac{J_{ij}}{W C}$	apricot			0	0	1	0	1
	pineap	ple		0	0	1	0	1
$\sum \sum J_{ij}$	digital			2	1	0	1	0
<i>i</i> =1 <i>j</i> =1	inform	ation		1	6	0	4	0
p(w=information,c=data) = p(w=information) = 11/19	., .	= .32	p(w _i	$\sum_{j=1}^{\infty} f$	ij	$p(c_j)$	$=\frac{\sum_{i=1}^{n} f_{ij}}{N}$	
p(c=data) = 7/19 = .37		(w,con				р	(w)	
cor	nputer	data	pinch	result	suga	r		
apricot	0.00	0.00	0.05	0.00	0.0	5	0.11	
pineapple	0.00	0.00	0.05	0.00	0.0	5	0.11	
digital	0.11	0.05	0.00	0.05	0.0	D	0.21	
information	0.05	0.32	0.00	0.21	0.0	D	0.58	
p(context)	0.16	0.37	0.11	0.26	0.1	1		

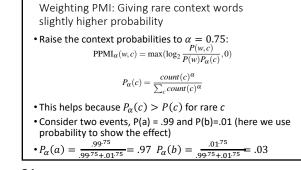
p(w,context) p(w) pinch 0.05 computer data result sugar $pmi_{ij} = \log_2 \frac{p_{ij}}{p_{i^*} p_{*j}}$ apricot 0.00 0.00 0.00 0.05 0.11 pineapple digital 0.00 0.00 0.05 0.00 0.05 0.11 0.11 0.05 0.00 0.05 0.00 0.21 information 0.05 0.32 0.00 0.21 0.00 p(context) 0.16 0.37 0.11 0.26 0.11 • pmi(information,data) = log₂ (.32 / (.37*.58)) = .57 PPMI(w,context) result data pinch sugar computer 2.25 2.25 apricot pineapple 2.25 2.25 digital 1.66 0.00 0.00 information 0.00 0.57 0.47

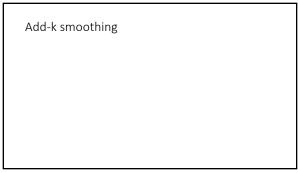
32



33

31

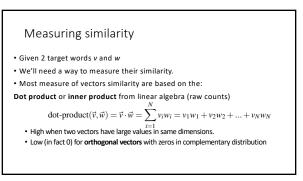


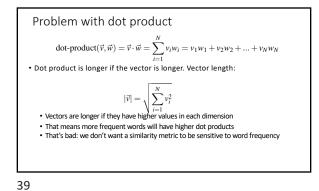


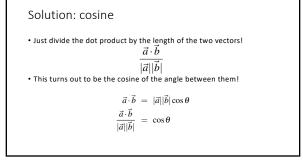
		Add	I-2 Smo	othed	Count		
	comput	er d	lata	pinch	result	sugar	
apricot		2	2	3	2	3	
pineapple		2	2	3	2	3	
digital		4	3	2	3	2	
informatio	n	3	8	2	6	2	
	p	(w,cor	itext)	[add-2]		P	(w)
CC	omputer	data	pinc	h res	ult su	gar	
apricot	0.03	0.03	0.0	5 0.	03 0.	05	0.20
pineapple	0.03	0.03	0.0	5 0.	03 0.	05	0.20
digital	0.07	0.05	0.0	3 0.	05 0.	03	0.24
information	0.05	0.14	0.0	30.	10 0.	03	0.36

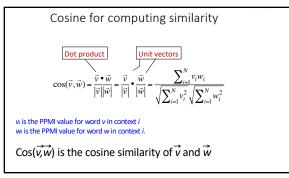
36

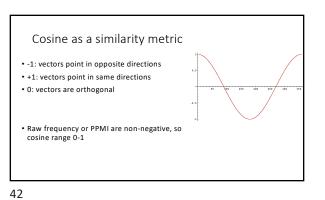
PPMI	versus add-2 smoothed PPN						
	Р	PMI(w,c	ontext)				
	computer	data	pinch	result	sugar		
apricot	-	-	2.25	-	2.25		
pineapple	-	-	2.25	-	2.25		
digital	1.66	0.00	-	0.00	-		
information	0.00	0.57	-	0.47	-		
		PPMI(w,	context]			
	computer	data	pinch	result	sugar		
apricot	0.00	0.00	0.56	0.00	0.56		
pineapple	0.00	0.00	0.56	0.00	0.56		
digital	0.62	0.00	0.00	0.00	0.00		
information	0.00	0.58	0.00	0.37	0.00		



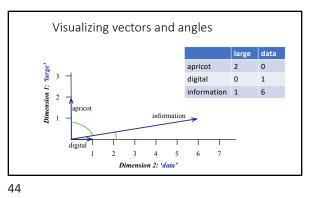


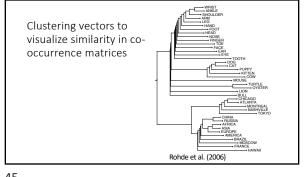


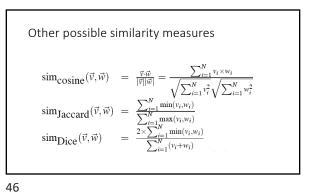


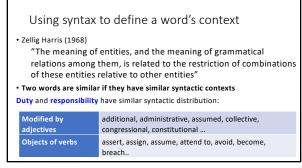


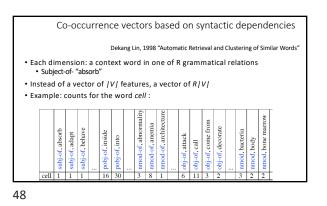


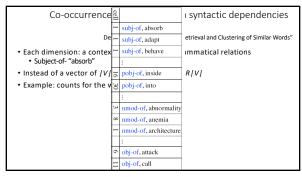


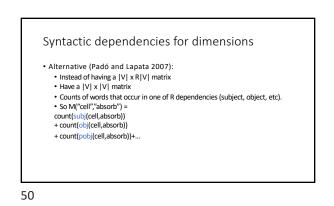


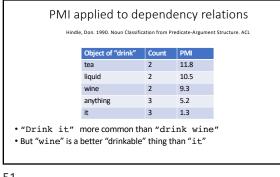




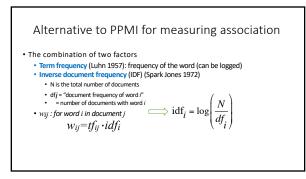




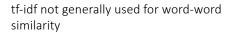




51



52



- But is by far the most common weighting when we are considering the relationship of words to documents
- More often used in information retrieval (e.g. detecting documents relevant to users' interests)

- Intrinsic Evaluation:
 Correlation between algorithm and human word similarity ratings
- Wordsim353: 353 noun pairs rated 0-10. sim(plane,car)=5.77
 Taking TOEFL multiple-choice vocabulary tests

 Levied is closest in meaning to:
- <u>Levied</u> is closest in meaning to: imposed, believed, requested, correlated

Summary and next step

- Distributional (vector) models of meaning
 - Sparse (PPMI-weighted word-word co-occurrence matrices)
 Dense:
 - Word-word SVD (50-2000 dimensions)
 - Neural language models: Skip-grams and CBOW (100-1000 dimensions)