CS 6120/CS 4120: Natural Language Processing

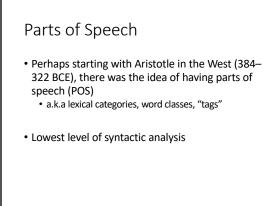
Instructor: Prof. Lu Wang Northeastern University Webpage: www.ccs.neu.edu/home/luwang

1

Outline

- What is part-of-speech (POS) and POS tagging?
- Hidden Markov Model (HMM) for POS tagging
- Learning an HMM
- Prediction with an learned HMM (inference)

2



3

English Parts of Speech (POS) Tagsets

- Original Brown corpus used a large set of 87 POS tags.
- Most common in NLP today is the Penn Treebank set of 45 tags.
 - Tagset used in the slides.
 - Reduced from the Brown set for use in the context of a parsed corpus (i.e. Penn Treebank).

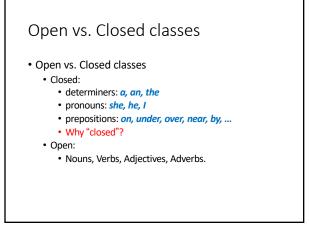
4

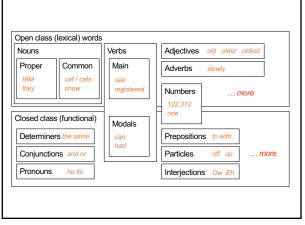
English Parts of Speech • Noun (person, place or thing) • Singular (NN): dog, fork · Plural (NNS): dogs, forks • Proper (NNP, NNPS): John, Springfields • Personal pronoun (PRP): I, you, he, she, it · Wh-pronoun (WP): who, what • Verb (actions and processes) · Base, infinitive (VB): eat • Past tense (VBD): ate • Gerund (VBG): eating · Past participle (VBN): eaten • Non 3rd person singular present tense (VBP): eat • 3rd person singular present tense: (VBZ): eats

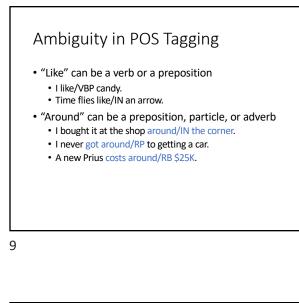
• Modal (MD): should, can • To (TO): to (to eat)

English Parts of Speech (cont.) Adjective (modify nouns) Basic (JJ): red, tall

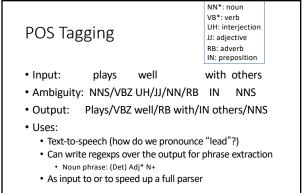
- - · Comparative (JJR): redder, taller Superlative (JJS): reddest, tallest
- · Adverb (modify verbs)
 - Basic (RB): quickly Comparative (RBR): quicker
- Superlative (RBS): guickest
- Preposition (IN): on, in, by, to, with
- Determiner:
- Basic (DT) a, an, the
 WH-determiner (WDT): which, that
- Coordinating Conjunction (CC): and, but, or, • Particle (RP): off (took off), up (put up)

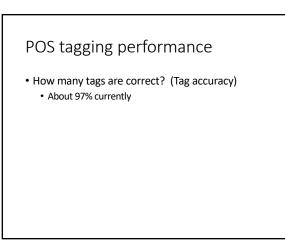






• The POS tagging problem is to determine the POS tag for a particular instance of a word.





POS tagging performance How many tags are correct? (Tag accuracy) About 97% currently • But baseline is already 90% · Baseline is performance of stupidest possible method Take an annotated corpus (or a dictionary), tag every word with

- its most frequent tag
- · Tag unknown words as nouns
- · Partly easy because
 - Many words are unambiguous
 - · You get points for them (the, a, etc.) and for punctuation marks!

13

How difficult is POS tagging?

- Word types: roughly speaking, unique words
- About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
- But they tend to be very common words. E.g., that
 - I know that he is honest = IN (preposition)
 - Yes, *that* play was nice = DT (determiner)
 - You can't go *that* far = RB (adverb)

Sources of information

· What are the main sources of information for POS tagging? "Bill saw that man yesterday

 Contextual: Knowledge of neighboring words · Bill saw that man yesterday

VB NN • Local: Knowledge of word probabilities man is rarely used as a verb....

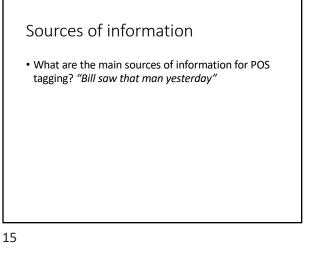
Sometimes these preferences are in conflict:

• The latter proves the most useful, but the former also

DT NN NN

• 40% of the word tokens are ambiguous

14



16

The trash can is in the garage

NNP NN

helps

• VB VB(D) IN

More and Better Features \rightarrow Feature-based tagger

· Can do surprisingly well just looking at a word by itself:

- Word the: the \rightarrow DT
- Lowercased word Importantly: importantly \rightarrow RB
- Prefixes unfathomable: un- \rightarrow JJ
- Suffixes Importantly: $-ly \rightarrow RB$
- Capitalization Meridian: CAP \rightarrow NNP
- Word shapes 35-year: d-x \rightarrow JJ

- Learning-Based: Trained on human annotated corpora like the Penn Treebank.
 - Statistical models: Hidden Markov Model (HMM) this lecture!, Maximum Entropy Markov Model (MEMM), Conditional Random Field (CRF)
 - Rule learning: Transformation Based Learning (TBL)
 - Neural networks: Recurrent networks like Long Short Term Memory (LSTMs)
- Generally, learning-based approaches have been found to be more effective overall, taking into account the total amount of human expertise and effort involved.

Outline

- What is part-of-speech (POS) and POS tagging?
- ➡ Hidden Markov Model (HMM) for POS tagging
 - Learning an HMM
 - Prediction with an learned HMM (inference)

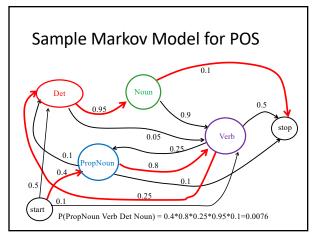
19

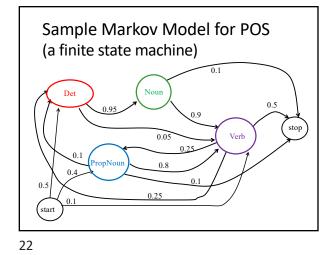
20

Markov Model / Markov Chain

- A finite state machine with probabilistic state transitions.
- Makes Markov assumption that next state only depends on the current state and independent of previous history.

21

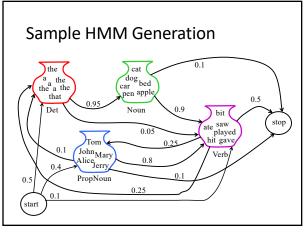


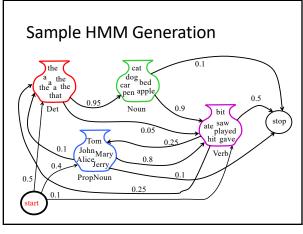


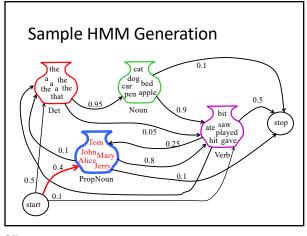
Hidden Markov Model

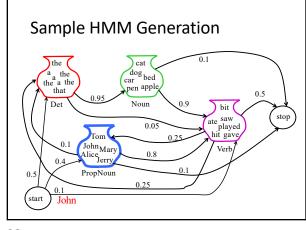
Hidden Markov Model

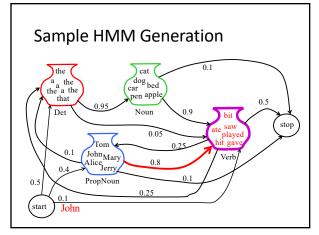
- Probabilistic generative model for sequences.
- Assume an underlying set of *hidden* (unobserved) states in which the model can be (e.g. part-ofspeech).
- Assume probabilistic transitions between states over time (e.g. transition from POS to another POS as sequence is generated).
- Assume a *probabilistic* generation of tokens from states (e.g. words generated for each POS).

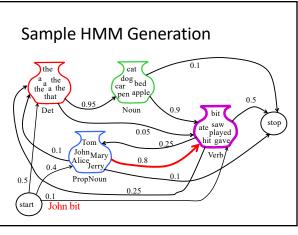


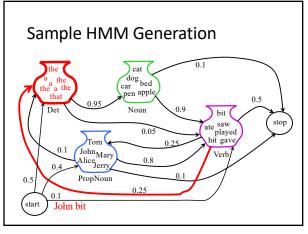


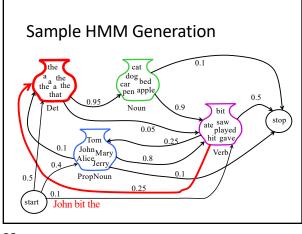




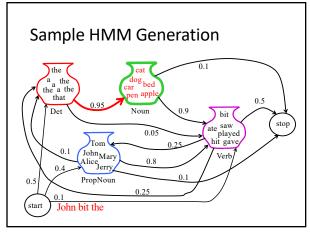




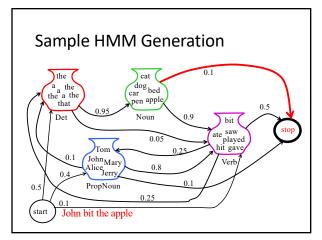


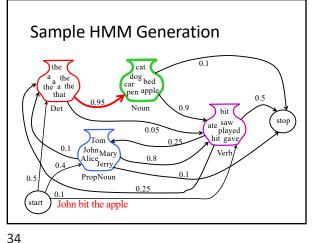


32



33

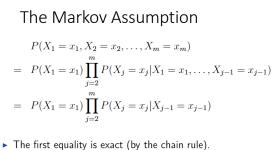




Formally, Markov Sequences

- \blacktriangleright Consider a sequence of random variables X_1, X_2, \ldots, X_m where m is the length of the sequence
- Each variable X_i can take any value in $\{1, 2, \ldots, k\}$
- How do we model the joint distribution

$$P(X_1 = x_1, X_2 = x_2, \dots, X_m = x_m)$$



The second equality follows from the Markov assumption: for all j = 2...m.

 $P(X_j = x_j | X_1 = x_1, \dots, X_{j-1} = x_{j-1}) = P(X_j = x_j | X_{j-1} = x_{j-1})$

37

Homogeneous Markov Chains

• In a homogeneous Markov chain, we make an additional assumption, that for $j=2\ldots m$,

$$P(X_j = x_j | X_{j-1} = x_{j-1}) = q(x_j | x_{j-1})$$

where q(x'|x) is some function

Idea behind this assumption: the transition probabilities do not depend on the position in the Markov chain (do not depend on the index j)

38

Homogeneous Markov Chains

In a homogeneous Markov chain, we make an additional assumption, that for j = 2...m,

$$P(X_j = x_j | X_{j-1} = x_{j-1}) = q(x_j | x_{j-1})$$

where q(x'|x) is some function

► Idea behind this assumption: the transition probabilities do not depend on the position in the Markov chain (do not depend on the index j)

"the Markov Chains follows the Markov assumption"

39

Probabilistic Models for Sequence Pairs – words and POS tags

- We have two sequences of random variables: X_1, X_2, \ldots, X_m and S_1, S_2, \ldots, S_m
- Intuitively, each X_i corresponds to an "observation" and each S_i corresponds to an underlying "state" that generated the observation. Assume that each S_i is in $\{1, 2, \ldots k\}$, and each X_i is in $\{1, 2, \ldots o\}$
- How do we model the joint distribution

$$P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$$

Markov Models
• Our model is then as follows:

$$p(x_1, x_2, \dots x_m; \underline{\theta}) = q(x_1) \prod_{j=2}^m q(x_j | x_{j-1})$$
• Parameters in the model:
• $q(x)$ for $x = \{1, 2, \dots, k\}$
Constraints: $q(x) \ge 0$ and $\sum_{x=1}^k q(x) = 1$
• $q(x'|x)$ for $x = \{1, 2, \dots, k\}$ and $x' = \{1, 2, \dots, k\}$
Constraints: $q(x'|x) \ge 0$ and $\sum_{x'=1}^k q(x'|x) = 1$

40

Probabilistic Models for Sequence Pairs – words and POS tags

• We have two sequences of random variables: X_1, X_2, \ldots, X_m and S_1, S_2, \ldots, S_m

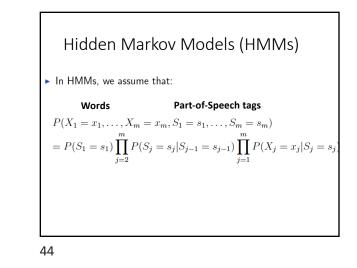
Words Part-of-Speech tags

- Intuitively, each X_i corresponds to an "observation" and each S_i corresponds to an underlying "state" that generated the observation. Assume that each S_i is in $\{1, 2, \ldots k\}$, and each X_i is in $\{1, 2, \ldots o\}$
- How do we model the joint distribution

$$P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$$

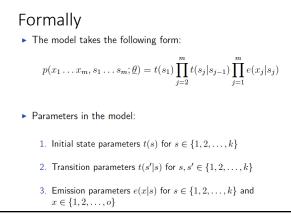
Firstly, why would we want to model the joint distribution?

$$P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$$
Words Part-of-Speech tags



Independence Assumptions in HMMs • By the chain rule, the following equality is exact: $P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$ $= P(S_1 = s_1, \dots, S_m = s_m) \times$ $P(X_1 = x_1, \dots, X_m = x_m | S_1 = s_1, \dots, S_m = s_m)$ • Assumption 1: the state sequence forms a Markov chain e.g. Part-of-Speech tags $P(S_1 = s_1, \dots, S_m = s_m) = P(S_1 = s_1) \prod_{m=1}^{m} P(S_j = s_j | S_{j-1} = s_{j-1})$

45



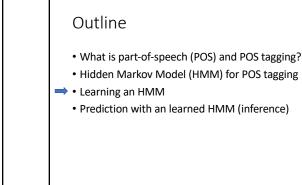
• By the chain rule, the following equality is exact:

$$P(X_1 = x_1, \dots, X_m = x_m | S_1 = s_1, \dots, S_m = s_m)$$

$$= \prod_{j=1}^m P(X_j = x_j | S_1 = s_1, \dots, S_m = s_m, X_1 = x_1, \dots X_{j-1} = x_j)_1$$
• Assumption 2: each observation depends only on the underlying state
$$P(X_j = x_j | S_1 = s_1, \dots, S_m = s_m, X_1 = x_1, \dots X_{j-1} = x_j)_1$$

$$= P(X_j = x_j | S_j = s_j)$$

46



HMM

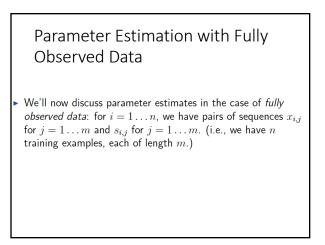
- Parameter estimation
 - Learning the probabilities from training data
 - P(verb|noun)?, P(apples|noun)?
- Inference: Viterbi algorithm (dynamic programming)
 - Given a new sentence, what are the POS tags for the words?

49

HMM

- Parameter estimation
- Inference: Viterbi algorithm (dynamic programming)

50



51

- Assume we have fully observed data: for $i = 1 \dots n$, we have pairs of sequences $x_{i,j}$ for $j = 1 \dots m$ and $s_{i,j}$ for $j = 1 \dots m$
- Define count $(i, s \rightarrow s')$ to be the number of times state s' follows state s in the i'th training example. More formally:

$$\mathsf{count}(i, s \to s') = \sum_{j=1}^{m-1} [[s_{i,j} = s \land s_{i,j+1} = s']]$$

(We define $[[\pi]]$ to be 1 if π is true, 0 otherwise.)

► The maximum-likelihood estimates of transition probabilities are then $\sum_{i=1}^{n} count(i, s \rightarrow s')$

$$t(s'|s) = \frac{\sum_{i=1}^{n} \operatorname{count}(i, s \to s)}{\sum_{i=1}^{n} \sum_{s'} \operatorname{count}(i, s \to s')}$$

Parameter Estimation: Transition Parameters • P(verb|noun)?

52

Parameter Estimation: Emission Parameters

• P(apples|noun)?

- Assume we have fully observed data: for $i = 1 \dots n$, we have pairs of sequences $x_{i,j}$ for $j = 1 \dots m$ and $s_{i,j}$ for $j = 1 \dots m$
- Define $count(i, s \rightsquigarrow x)$ to be the number of times state s is paired with emission x. More formally:

$$\mathsf{count}(i,s \rightsquigarrow x) = \sum_{j=1}^m [[s_{i,j} = s \land x_{i,j} = x]]$$

► The maximum-likelihood estimates of emission probabilities are then

• What is part-of-speech (POS) and POS tagging?

• Hidden Markov Model (HMM) for POS tagging

Prediction with an learned HMM (inference)

$$e(x|s) = \frac{\sum_{i=1}^{n} \operatorname{count}(i, s \rightsquigarrow x)}{\sum_{i=1}^{n} \sum_{x} \operatorname{count}(i, s \rightsquigarrow x)}$$

55

Outline

Learning an HMM

Parameter Estimation: Initial State Parameters

- ▶ Assume we have fully observed data: for i = 1 ... n, we have pairs of sequences $x_{i,j}$ for j = 1 ... m and $s_{i,j}$ for j = 1 ... m
- \blacktriangleright Define ${\rm count}(i,s)$ to be 1 if state s is the initial state in the sequence, and 0 otherwise:

$$\mathsf{count}(i,s) = [[s_{i,1} = s]]$$

 The maximum-likelihood estimates of initial state probabilities are:

$$t(s) = \frac{\sum_{i=1}^{n} \operatorname{count}(i, s)}{n}$$

56

HMM

- Parameter estimation
- Inference: Viterbi algorithm (dynamic programming)

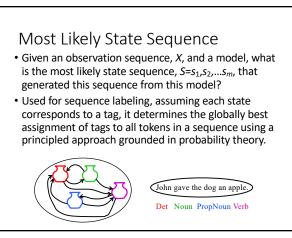
57

The Viterbi Algorithm

 \blacktriangleright Goal: for a given input sequence $x_1,\ldots,x_m,$ find

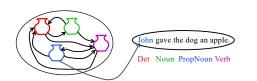
 $\arg\max_{s_1,\ldots,s_m} p(x_1\ldots x_m, s_1\ldots s_m; \underline{\theta})$

 \blacktriangleright This is the most likely state sequence $s_1 \dots s_m$ for the given input sequence $x_1 \dots x_m$



Most Likely State Sequence

- Given an observation sequence, *X*, and a model, what is the most likely state sequence, *S*=*s*₁,*s*₂,...*s*_m, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.



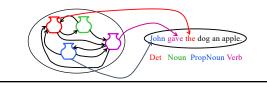
61

Most Likely State Sequence Given an observation sequence, X, and a model, what is the most likely state sequence, S=s1,s2,...sm, that generated this sequence from this model? Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.

62

Most Likely State Sequence

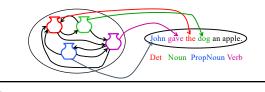
- Given an observation sequence, *X*, and a model, what is the most likely state sequence, *S*=*s*₁,*s*₂,...*s*_m, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.



63

Most Likely State Sequence

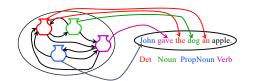
- Given an observation sequence, *X*, and a model, what is the most likely state sequence, *S*=*s*₁,*s*₂,...*s*_m, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.

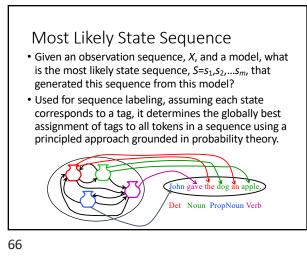


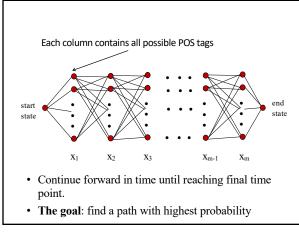
64

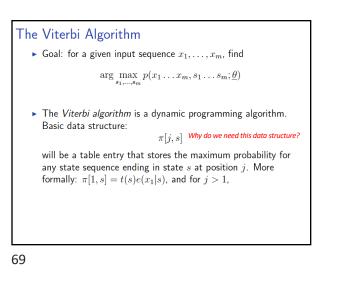
Most Likely State Sequence

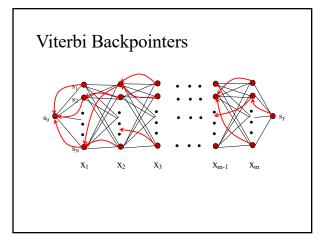
- Given an observation sequence, *X*, and a model, what is the most likely state sequence, *S*=*s*₁,*s*₂,...*s_m*, that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.

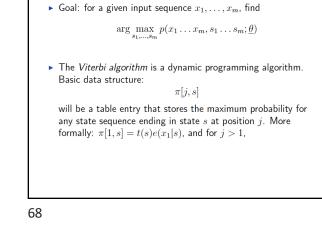




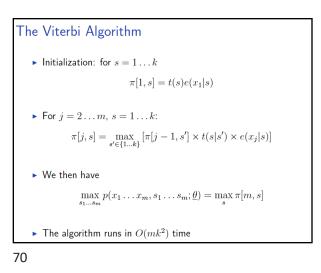


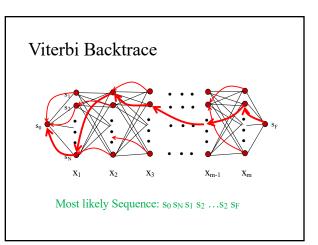


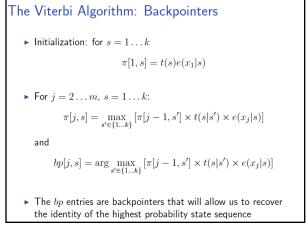




The Viterbi Algorithm







Highest probability for any sequence of states is max π[m, s] To recover identity of highest-probability sequence: s_m = arg max π[m, s] and for j = m...2, s_{j-1} = bp[j, s_j] The sequence of states s₁...s_m is then arg max g max s₁...s_m p(x₁...x_m, s₁...s_m; <u>θ</u>)

74

Homework Reading J&M Ch5.1-5.5, Ch6.1-6.5 For 3rd Edition: https://web.stanford.edu/~jurafsky/slp3/8.pdf HMM notes http://www.cs.columbia.edu/~mcollins/hmms-spring2013.pdf

• Start thinking about course project and find a team.