2/5/20

Two views of linguistic structure:
1. Constituency (phrase structure)

* Phrase structure organizes words into nested constituents.
* Fed raises interest rates

CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang

S
Two views of linguistic structure: Two views of linguistic structure: ‘/>\
1. Constituency (phrase structure) 1. Constituency (phrase structure) RPN
* Phrase structure organizes words into nested constituents. * Phrase structure organizes words into nested constituents. ,meu mlﬂ
* How do we know what is a constituent? (Not that linguists don’t
s argue about some cases.)
« Distribution: a constituent behaves as a unit that can appear in different
NP VP places:
* John talked [to the children] [about drugs].
I‘\I V/\Np * John talked [about drugs] [to the children].
* *John talked drugs to the children about
Fld ,a,-LES V/\N * Substitution/expansion/pronoun:

‘ * I sat [on the box/right on top of the box/there].

interest rates

/_//L\ \p/S\\p
wE % | Headed phrase structure N
s Vi S NV g
o
| T~ « Context-free grammar -
o Negi1 W
T * VP — .. VB* .. interest rates
N e viz 5
o ¢ NP — .. NN* ..
M Sworach wams NPS8) W
e A « ADIP = .. J* ...
NoNE- 75 W
AT S « ADVP > .. RB* ..
-1 to V‘B NP
resume W Froioc
*S—> ..NPVP..
o Agp W Shiow
P
[R e)
| | PN * Plus minor phrase types:
more inflential NONEvie IR - QP (ckuant‘ifier phrase in NP; some people), CONJP (multi word constructions: as well
mnlmq AN as), INTJ (interjections: aha), etc.

http://www.ccs.neu.edu/home/luwang

2/5/20

Two views of linguistic structure:
2. Dependency structure

* Dependency structure shows which words depend on (modify or are
arguments of) which other words.

The boy put the tortoise on the rug

Two views of linguistic structure:
2. Dependency structure

* Dependency structure shows which words depend on (modify or are
arguments of) which other words.

put
o~
boy tortoise on
h ol rug
1
e the P

The boy put the tortoise on the rug ;
the

7 8
Phrase Chunking Phrase Chunking as Sequence Labeling
. zg;gearllczf)n—recurswe noun phrases (NPs) and verb phrases (VPs) in a « Tag individual words with one of 3 tags
. . * B (Begin) word starts new target phrase
* [NPI] [VP ate] [NPthe spaghetti] [PP with] [NP meatballs]. € > §
* [NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to ! (inside) word I_S part of target phrase but not the first word
1 INP only 1.8 billion] [PP in] [NP September] . * O (Other) word is not part of target phrase
« Sample for NP chunking
* He reckons the current account deficit will narrow to only 1.8
billion in September.
Begin Inside Other
9 10
Evaluating Chunking Current Chunking Results
Per token accuracy does not evaluate finding correct full chunks.
Instead use: * Best system for NP chunking: F1=96%
Precision = Number of correct chunks found « Typical results for finding range of chunk types (CONLL 2000 shared
TS Ion =l number of chunks found task: NP, VP, PP, ADV, SBAR, ADJP) is F1=92-94%
Number of correct chunks found
Recall =
Total number of actual chunks
F measure: F= 1 _ 2PR
ALy, PR
P R
11 12

Syntactic Parsing

S
et

* Produce the correct syntactic parse tree for a sentence.

NP
oo vRE T

Annotated data:

N

e S
P P
TRt
et ‘ Prép NP Dt Iy A

P
| / / P.ef\ NP
| \
ate the spaghetti with chopsticks

I ate thespaghetti with .\.anmns

2/

I

!

13

(s

(NP-SBJ (DT The) (NN move))
(VP (VBD followed)

(NP (DT 2) (NN round))
(PP (IN of)
(e

(NP (1 similar) (NNS increases))
(PP (IN by)

(NP (1) other) (NNS lenders))
(PP (IN against)

()
(s-a0V

(NP-5BJ (-NONE- *))
(VP (VBG reflecting)

e

(PP-LOC (IN i

(NP (DT 2) (VBG continuing) (NN decline])

(NP (DT that) (NN market)))))
()]

14

The Penn Treebank

(NP (NNP Arizona) (1 real) (NN estate] (NNS loans))))))

The rise of annotated data

Two problems to solve for parsing:
1. Repeated work...
s “Cats scratch people with cats with claws”
« Starting off, building a treebank seems a lot slower and less useful - £ - N w —
than building a grammar N " o A v
cats v NP 1 NP N v [o srah L
scratch N with NP P people with NP 2 "
* But a treebank gives us many things people Noor W NP W roh
 Reusability of the labor cas wih N o vy - aas
* Many parsers, POS taggers, etc. S claws ::W:
* Valuable resource for linguistics NP w N s
« Broad coverage N w - N Vb w
* Frequencies and distributional information cats b 0 B w» sV Ne Ne
* A way to evaluate systems v Ne R wk N scraich NP N
sratch N with N claws N P claws
people cats peorte i N'
15 16

Two problems to solve for parsing:
1. Repeated work...

“Cats scratch people with cats with claws”

17

18

Two problems to solve for parsing:
2. Choosing the correct parse

* How do we work out the correct attachment:
* She saw the man with a telescope

understanding

* Words are good predictors of attachment, even absent full

* Moscow sent more than 100,000 soldiers into Afghanistan ...

* Sydney Water breached an agreement with NSW Health ...

« Our statistical parsers will try to exploit such statistics.

2/5/20

2/5/20

Statistical parsing applications

Statistical parsers are now robust and widely used in larger NLP applications:

* High precision question answering [Pasca and Harabagiu SIGIR 2001]

* Improving biological named entity finding [Finkel et al. INLPBA 2004]
* Syntactically based sentence compression [Lin and Wilbur 2007]

« Extracting opinions about products [Bloom et al. NAACL 2007]

* Improved interaction in computer games [Gorniak and Roy 2005]

* Helping linguists find data [Resnik et al. BLS 2005]

* Source sentence analysis for machine translation [xu et al. 2009]
« Relation extraction systems [Fundel et al. Bioinformatics 2006]

(Probabilistic) Context-Free Grammars

- CFG
« PCFG

19

20

Phrase structure grammars
= context-free grammars (CFGs)

*G=(T,N,S,R)
* Tis a set of terminal symbols
* Nis a set of nonterminal symbols
* Sis the start symbol (S € N)
* Ris a set of rules/productions of the form X — y
* XENandyE(NUT)*

A phrase structure grammar

S— NP VP N — people
VP -V NP ish
VP —V NP PP N = fis
NP —> NP NP N — tanks
NP — NP PP N — rods
NP —>N
NP e V — people
PP —>P NP vV fish

V — tanks
people fish tanks P - with

people fish with rods

21

22

Phrase structure grammars
= context-free grammars (CFGs)

*G=(T,N,S,R)
* Tis a set of terminal symbols
* Nis a set of nonterminal symbols
* Sis the start symbol (S € N)
* Ris a set of rules/productions of the form X —y
* XENandyE(NUT)*

* A grammar G generates a language L.

Sentence Generation

 Sentences are generated by recursively rewriting the start symbol
using the productions until only terminals symbols remain.

T
yP
Verb P
book Det Nominal
the Nominal
Nqun PTEP P
flight through Proper-Noun

Houston

23

24

2/5/20

Phrase structure grammars in NLP
*G=(T,C,N,S, L R)

A phrase structure grammar

* Tis a set of terminal symbols S—>NPVP N — people
« Cis a set of preterminal symbols VP — VNP N — fish
 Nis a set of nonterminal symbols VP — VNP PP
« Sis the start symbol (S € N) NP — NP NP N — tanks
« Lis the lexicon, a set of items of the form X — x NP — NP PP N — rods
* X€Candx€T NP —N
* Ris the grammar, a set of items of the form X — y NP —s e V — people
" XENandyE(NUO)") o PP —> P NP V — fish
* By usual convention, S is the start symbol, but in statistical NLP, V = tank
we usually have an extra node at the top (ROOT, TOP) people fish tanks — tanks
* We usually write e for an empty sequence, rather than nothing people fish with rods P — with
25 26
Probabilistic — or stochastic — context-free
A PCFG
grammars (PCFGs)
S— NP VP 1.0 N — people 0.5
*G=(LN,5RP) VP =V NP 06 N — fish 02
* Tis a set of terminal symbols
* N is a set of nonterminal symbols VP — VNP PP 0.4 N — tanks 0.2
* Sis the start symbol (S € N) NP — NP NP 0.1 N — rods 0.1
* Ris aset of rules/productions of the form X — y NP — NP PP 0.2 V — people 0.1
* P is a probability function)
PR [01] NP — N 0.7 V — fish 0.6
*VXEN, YPX—p)=1 PP — P NP 1.0 V — tanks 0.3
e P — with 1.0
* A grammar G generates a language model L.
27 28
The probability of trees and strings t: S1.0 t: 510
ili i NP/\VP NP 7 VPo 6
« P(t) - The probability of a tree tis the product of the 0.7 0.4 |
probabilities of the rules used to generate it. | N v NP .
- . . No- V. NP - PP 0.5 0.6 0.2
* P(s) - The probability of the string s is the sum of the 0.5 0.6 0.7 1.0 | |
probabilities of the trees which have that string as their | | | YN people fish Nbos BPpo
yield people fish Ng» Pig NPy7 |
; | No2 P10 NPo7
P(s) = 2t P(s, t) where tis a parse of s tanks with No.1 \
=2 P() | tanks with Ng1
rods |
rods
29 30

2/5/20

.S

Tree and String Probabilities

= people fish tanks with rods
«P(t;) =1.0x0.7x0.4 X0.5X%0.6x0.7 Verbattach

X 1.0 X 0.2 X 1.0 X 0.7 X 0.1
= 0.0008232

P(t) =1.0X0.7%X 0.6 X0.5%0.6X 0.2 Noun attach

X 0.7 X1.0X0.2x10x0.7x%0.1
=0.00024696 il Sio

*P(s) = P(t;) + P(t) N‘P“— Wou n‘m /\h,\
=0.0008232 + 0.00024696 Nos Voo Neos o o e
=0.00107016 pu\w,e N iw A

] oz Fro

tanks with No; |

Chomsky Normal Form

* All rules are of the formX —>YZorX > w
*X,,ZeNandw€eT

« A transformation to this form doesn’t change the generative capacity
of a CFG

* That is, it recognizes the same language
* But maybe with different trees

* Empties and unaries are removed recursively
* n-ary rules are divided by introducing new nonterminals (n > 2)

tanks with

31 32
A phrase structure grammar Chomsky Normal Form steps
S—>NPVP
S— NP VP N — people s>V N — people
VP — V NP N — fish VP — VNP N — fish
VP — VNP PP N — tanks VPV N —> tanks
d VP —V NP PP
NP — NP NP N — rods VP>V PP N — rods
NP — NP PP V — people NP —> NP NP V — people
NP >N V — fish NP — NP V — fish
NP —e V — tanks NP PP V — tanks
) NP — PP
PP — P NP P — with NP >N P — with
PP — P NP
PP P
33 34
Chomsky Normal Form steps Chomsky Normal Form steps
S NPVP S NPVP
VP VNP N —> people VP>V NP N — people
S>VNP . S VNP N — fish
\:p);v N — fish VPV N —> tanks
kS VP — VNP PP N d
VP>V NP PP N — tan PR — rods
S—>VNPPP N — rods VP>V PP V — people
VP>V PP S>VPP S — people
S vep V — people NP - NP NP V — fish
NP —> NP NP V—)ﬁSh NP —> NP S fish
NP — NP NP — NP PP
NP > NP PP V — tanks NP> PP V — tanks
NP —> PP . NP >N S — tanks
NP >N P — with PP —>P NP P — with
PP >PNP PP P
PP >P

35

36

2/5/20

Chomsky Normal Form steps

s> NPVP
VP > VNP

S VNP

VP > VNP PP
S—> VNP PP
VP >V PP

s VPP

NP — NP NP
NP — NP
NP — NP PP
NP — PP
NP N
PP P NP
PP P

N - people
N - fish

N > tanks

N > rods

V > people
S > people
VP — people
V - fish

S - fish

VP fish

V —> tanks

S —> tanks
VP > tanks
P > with

Chomsky Normal Form steps

S NPVP
VP - VNP

S VNP

VP > VNP PP
S VNP PP
VP> VPP

S VPP

NP —> NP NP
NP —> NP PP
NP - P NP
PP P NP

NP — people
NP — fish
NP — tanks
NP — rods
V > people
S > people
VP — people
v - fish
S~ fish

VP — fish

V —> tanks

S —> tanks
VP > tanks
P > with

PP —> with

37

38

Chomsky Normal Form steps

S NPVP
VP > VNP

S VNP
VP>V @VP_V
@VP_V — NP PP
so>vVes.V
@S_V —> NP PP
VP > VPP

s> VPP

NP —> NP NP
NP > NP PP
NP > P NP
PP > P NP

NP —> people
NP > fish
NP — tanks
NP — rods
V > people
S > people
VP - people
V - fish

S > fish

VP > fish
V > tanks
S > tanks
VP — tanks
P > with
PP — with

Chomsky Normal Form

* You should think of this as a transformation for efficient parsing

* Binarization is crucial for cubic time CFG parsing

* The rest isn’t necessary; it just makes the algorithms cleaner and a bit

quicker

39

40

An example: before binarization...

ROOT
s
NP VP
N v NP PP
T
P NP
I
N N
/

|
people fish tanks with rods

Before and After binarization on VP

ROOT

/S\

NP Ve
i v NP PP
—
P NP
N]
N
/)

people fish tanks with rods

ROOT

S

N

NP Ve
/@,v
| i N‘P /PP\
N P NP
|
N
|
people fish tanks with rods

41

42

2/5/20

Parsing

* Given a string of terminals (e.g. sentences) and a CFG, determine if
the string can be generated by the CFG.
« Also return a parse tree for the string
« Also return all possible parse trees for the string

* Top-Down Parsing: Start searching space of derivations for the start symbol.

* Bottom-up Parsing: Start search space of reverse derivations from the
terminal symbols in the string.

* Must search space of derivations for one that derives the given string.

Parsing Example

book that flight ‘

S

[

VP

Veé\l’
"N

book Det Nominal

that Noun

flight

43 44
Top Down Parsing Top Down Parsing
N S
N
NP VP NP VP
PrnInoun Pronoun
book
45 46
Top Down Parsing Top Down Parsing
N S
NP VP NP VP
ProperNoun ProperNoun
book
47 43

2/5/20

Top Down Parsing

Det

S

NP VP

Nominal

Top Down Parsing

S

NP VP

A}mina]
X

book

49

50

Top Down Parsing

S

Aux NP VP

Top Down Parsing

Aux NP VP

book

51

52

Top Down Parsing

Top Down Parsing

53

54

2/5/20

Top Down Parsing

VP

Verb

Top Down Parsing

S

[
VP
\

Verb

book book that
55 56
Top Down Parsing Top Down Parsing
N S
| |
vp VP
Veé\l’ Ve‘rb NP
book
57 58
Top Down Parsing Top Down Parsing
N S
| |
vp VP
Verb NP Verb NP

book Pronoun

book Pronoun

that

59

60

10

2/5/20

Top Down Parsing

S

[

VP

Verb NP

book ProperNoun

Top Down Parsing

S

[
VP
Ve‘rh NP

book ProperNoun

that

61

62

Top Down Parsing

S

[

VP

Vc‘eé\ P

book Det Nominal

Top Down Parsing

S

[

VP

Verb NP

book Det Nominal

that

63

64

Top Down Parsing

S

[

VP

Verb NP

book Det Nominal

that Noun

Top Down Parsing

S

[

VP

Verb NP

book Det Nominal

that Noun

|

flight

65

66

11

2/5/20

Bottom Up Parsing

Bottom Up Parsing

Noun
book flight book that flight
67 68
Bottom Up Parsing Bottom Up Parsing
Nominal
Nominal Nominal Noun
Noun Noun
balk flight bolk that flight
69 70
Bottom Up Parsing Bottom Up Parsing
Nominal Nominal
Nominal Nominal PP
Noun Noun
bm‘)k flight bo(‘)k that flight

71

72

12

2/5/20

Bottom Up Parsing

Bottom Up Parsing

Nominal Nominal

Nominal P Nominal PP
NP
Noun Det Noun Det Nominal
bm!k that flight book ﬂ'm flight
73 74
Bottom Up Parsing Bottom Up Parsing

Nominal Nominal

Nominal P Nominal P!
NP ' NP
Noun per Nominal Noun per Nominal
bmlk ﬂ!lat Noun bo(lk tl’lat N(]’u“
m;lm flight
75 76
Bottom Up Parsing Bottom Up Parsing

Nominal Nominal

Nominal P /g\ Nominal PP /g\
NP VP NP VP
Noun Dét Nominal Noun Dmninal *
bmlk that NJ“.. book tl’nat Noun
flight flight

77

78

13

2/5/20

Bottom Up Parsing

|

book

Nominal
Nominal P!
NP
Noun Dmninal

!

that Noun

Bottom Up Parsing

NP

e
Verb Det Nominal

|

book that Noun
flight flight
79 80
Bottom Up Parsing Bottom Up Parsing
S
7 !
“P NP ‘]P NP
Verb Dt Nominal Verb D Nominal
bal)k that No’un bo«Lk tl’lat No’u,.
ﬂiglht flight
81 82
Bottom Up Parsing Bottom Up Parsing
S VP
f PN
\il’ X V]P PP
i NP NP
Verb Dmninal Verb Dét Nominal
bol)k that No’un bo(l)k tl‘lat Noun
flight

flight

83

84

14

2/5/20

Bottom Up Parsing

Bottom Up Parsing

vp
P PR vp
\] X e NP
Verb Dét Nominal Verb ¥ Dminal
bol)k tl'mt No’un bo(l)k ﬂ'mt Noun
flight flight
85 86
Bottom Up Parsing Bottom Up Parsing
s
vp VIP
[\ NP [\ NP
Verb Dt Nominal Verb b Nominal
lml)k tl‘lat No’un bo«Lk tl’lat No’u,.
m;lm flight
87 88

Top Down vs. Bottom Up

* Top down never explores options that will not lead to a full parse, but
can explore many options that never connect to the actual sentence.

* Bottom up never explores options that do not connect to the actual
sentence but can explore options that can never lead to a full parse.

* Relative amounts of wasted search depend on how much the
grammar branches in each direction.

Two problems to solve for parsing:
1. Repeated work

“Cats scratch people with cats with claws”

89

90

15

2/5/20

Dynamic Programming Parsing

« To avoid extensive repeated work, must cache intermediate results,
i.e. completed phrases.

* Caching (memorizing) is critical to obtaining a polynomial time
parsing (recognition) algorithm for CFGs.

(Probabilistic) CKY Parsing

91 92
Constituency Parsing Constituency Parsing
Input: a PCFG, and a sentence PCFG Output: a parsing tree PCFG
Rule Prob 8; Rule Prob 6;
S—> NPVP 6o s S— NP VP 6o
NP—>NPNP 6: /\vP NP—>NPNP O:
N — fish 642 NP /\NP N — fish 2%
N-—>people Ba N/\N ! l N->people B
V > fish [| | | | V > fish 0w
fish people fish tanks fish people fish tanks
93 94
Cocke-Kasami-Younger (CKY)) - NP > people 035
:) Reusing local decisions Vopeople 0.1
Constituency Parsing N->people 05
VP — fish 0.06
s V> fish 06
N — fish 0.2
vp
S—>NPVP 0.9
NP NP S—>VP 0.1
VP — VNP 0.5
N/\N J N\ NP>NPNP 0.1
I I I , NP — NP PP 0.2
fish people fish tanks fish people fish tanks PPoPNP o

people

fish

95

96

16

2/5/20

NP — people 0.35

Reusing local decisions Vopeople 01
N — people 0.5
VP — fish 0.06
V — fish 0.6
N — fish 0.2
S— NP VP 0.9
S—>VP 0.1
VP — VNP 0.5

NP—>NPNP 0.1
NP—>NPPP 02
PP — P NP 10

people fish

NP — people 0.35

Reusing local decisions Vopeople 0.1
N — people 0.5
VP — fish 0.06
V — fish 0.6
N — fish 0.2
S— NPVP 0.9
S—> VP 0.1
VP — VNP 0.5

NP—>NPNP 0.1
NP—>NPPP 0.2
PP —PNP 10

people fish

97

98

The CKY algorithm (1960/1965)
... extended to unaries

function CKY(words, grammar) returns [most_probable_parse,prob]
score = new double[#(words)+1] [#(words)+1] [#(nonterms)]
back = new Pair[#(words)+1] [#(words)+1] [#nonterms]]
for i=0; i<#(words); i++
for A in nonterms
if A -> words[i] in grammar
score[1[i+1]1[A] = P(A -> words[i])
//handle unaries
boolean added = true
while added
added - false
for A, B in nonterms
if score[i][i+1][B] > 0 && A->B in grammar
prob = P(A->B)*score[i][i+1][B]
if prob > score[i][i+1][A]
score[1][i+1][A]
back[i1[1+11[A] = B
added = true

The CKY algorithm (1960/1965)
... extended to unaries

for span = 2 to #(words)
for begin = 0 to #(words)- span
end = begin + span
for split = begin+l to end-1
for A,B,C in nonterms
prob=score[begin] [sp1it] [B]*score[sp1it] [end] [C]*P(A->BC)
if prob > score[begin] [end][A]
score[begin]end] [A] = prob .
back[begin] [end] [A] = new Triple(split,B,0)
//handle unaries
boolean added = true
while added
added - false
for A, B in nonterms
prob = P(A->B)*score[begin] [end] [B];
if prob > score[begin] [end] [A]
score[begin] [end] [A] = prob
back[begin] [end] [A] = B
added - true
return buildTree(score, back)

99

100

17

