CS 4120: Natural Language Processing

Instructor: Prof. Lu Wang

Northeastern University

Webpage: www.ccs.neu.edu/home/luwang

Logistics

- Next Tuesday: in addition to regular course content, TA will use half an hour to discuss the common problems seen in assignment 1.
 - Output format is incorrect, or no output at all
 - Code not runnable

• Grades, comments, and rubrics will be released by today. Feel free to reach out to TA during office hour if you have any question wrt grading.

Neural language models

- Skip-grams
- Continuous Bag of Words (CBOW)
- Math details can be found at https://cs224d.stanford.edu/lecture notes/notes1.pdf (not required for this course)

Prediction-based models: An alternative way to get dense vectors

- Skip-gram (Mikolov et al. 2013a), CBOW (Mikolov et al. 2013b)
- Idea: Learn embeddings as part of the process of word prediction
- Implementation: Train a neural network to predict neighboring words
- Advantages:
 - Fast, easy to train (much faster than SVD)
 - Available online in the word2vec package
 - Including sets of pretrained embeddings!

Word2vec

- Popular embedding method
- Very fast to train
- Code available on the web

• Idea: **predict** rather than **count**

Word2vec

- Given a sentence:
- ... lemon, a tablespoon of apricot jam a pinch ...
- Instead of counting how often each word w occurs near "apricot"
- Train a classifier on a binary prediction task:
 - Is w likely to show up near "apricot"?
- We don't actually care about this task
 - But we'll take the learned weights (will be discussed later) as the word embeddings

Brilliant insight: Use running text as implicitly supervised training data!

- A word near apricot
 - Acts as gold 'correct answer' to the question
 - "Is word w likely to show up near apricot?"
- No need for hand-labeled supervision
 - The idea comes from neural language modeling
 - Bengio et al. (2003)
 - Collobert et al. (2011)

Word2Vec: Skip-Gram Task

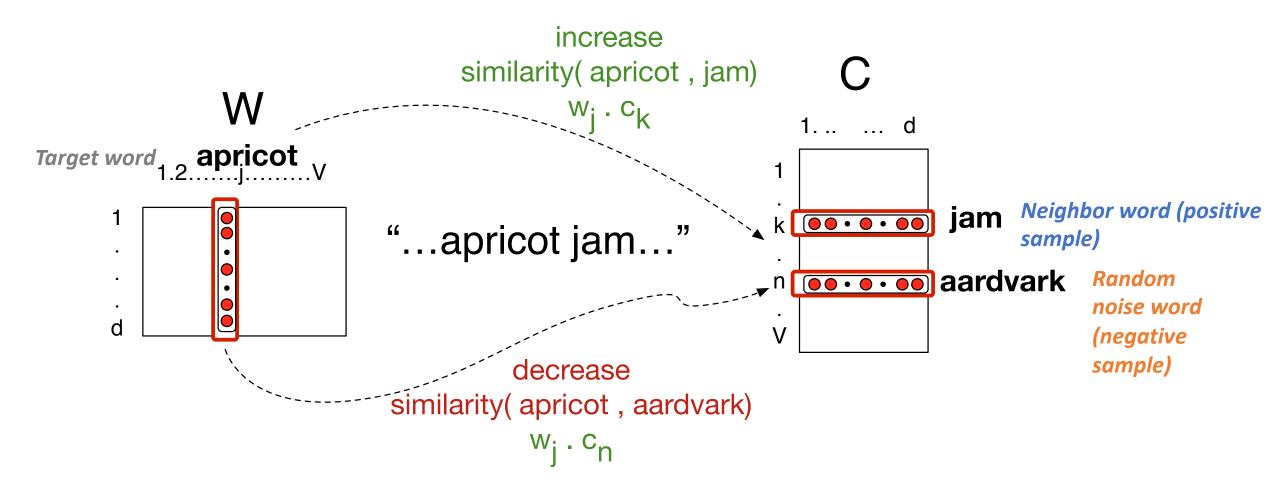
- Now we have positive samples.
- Where do the "negative samples" come from?

Word2Vec: Skip-Gram Task

- Word2vec provides a variety of options. Let's do
 - "skip-gram with negative sampling" (SGNS)

Skip-gram algorithm

- 1. Treat the target word and a neighboring context word as positive examples.
- 2. Randomly sample other words in the lexicon to get negative samples
- 3. Use logistic regression (will discuss formulation later) to train a classifier to distinguish those two cases
- 4. Use the weights as the embeddings



Training sentence:

```
... lemon, a tablespoon of apricot jam a pinch ... c1 c2 target c3 c4
```

Assume context words are those in +/- 2 word window

Skip-gram Goal

- Given a tuple (t,c) = target, context
 - (apricot, jam) -> +
 - (apricot, aardvark) -> -
- Return probability that c is a real context word (or not):
 - P(+|t,c)-> positive
 - P(-|t,c) = 1-P(+|t,c) -> negative

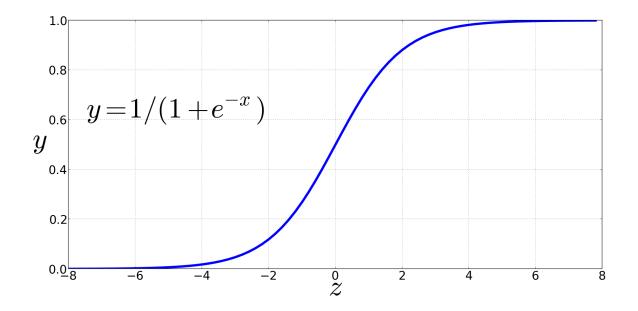
How to compute p(+|t,c)?

- Intuition:
 - Words are likely to appear near similar words
 - Model similarity with dot-product!
 - Similarity(t,c) \propto t · c
- Problem:
 - Dot product is not a probability!
 - (Neither is cosine)

Turning dot product into a probability

• The sigmoid lies between 0 and 1:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



Turning dot product into a probability

$$P(+|t,c) = \frac{1}{1+e^{-t\cdot c}}$$

$$P(-|t,c) = 1 - P(+|t,c)$$

$$= \frac{e^{-t \cdot c}}{1 + e^{-t \cdot c}}$$

For all the context words:

Assume all context words are independent

$$P(+|t,c_{1:k}) = \prod_{i=1}^{k} \frac{1}{1+e^{-t \cdot c_i}}$$

$$\log P(+|t,c_{1:k}) = \sum_{i=1}^{k} \log \frac{1}{1+e^{-t \cdot c_i}}$$

Training sentence:

```
... lemon, a tablespoon of apricot jam a pinch ... c1 c2 t c3 c4
```

- Training data: input/output pairs centering on apricot
- Assume a +/- 2 word window

• Training sentence:

```
... lemon, a tablespoon of apricot jam a pinch ... c1 c2 t c3 c4
```

```
positive examples +
t c

apricot tablespoon
apricot of
apricot preserves
apricot or
```

- Training data: input/output pairs centering on apricot
- Assume a +/- 2 word window

Training sentence:

```
... lemon, a tablespoon of apricot jam a pinch ... c1 c2 t c3 c4
```


- •For each positive example, we'll create *k* negative examples.
- •Any random word that isn't *t*

Training sentence:

```
... lemon, a tablespoon of apricot jam a pinch ... c1 c2 t c3 c4
```

positive examples +		r	negative examples - $k=2$				
t	c	t	c	t	c		
apricot	tablespoon	apricot	aardvark	apricot	twelve		
apricot	of	apricot	puddle	apricot	hello		
apricot	preserves	apricot	where	apricot	dear		
apricot	or	apricot	coaxial	apricot	forever		

Choosing noise words (we've seen this!)

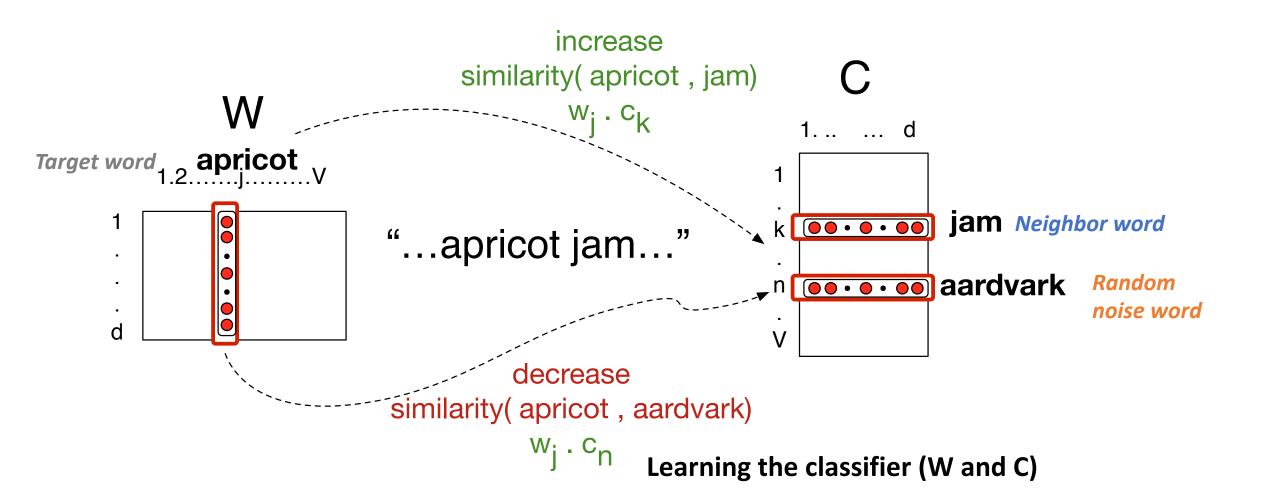
- Could pick w according to their unigram frequency P(w)
- More common to chosen then according to $p_{\alpha}(w)$

$$P_{\alpha}(w) = \frac{count(w)^{\alpha}}{\sum_{w} count(w)^{\alpha}}$$

- α = 0.75 works well because it gives rare words slightly higher probability
- To show this, imagine two events p(a)=.99 and p(b)=.01:

$$P_{\alpha}(a) = \frac{.99^{.75}}{.99^{.75} + .01^{.75}} = .97$$

 $P_{\alpha}(b) = \frac{.01^{.75}}{.99^{.75} + .01^{.75}} = .03$



Iterative process on training data. Then adjust the

word weights to make the positive pairs more

likely and the negative pairs less likely.

Setup

- Let's represent words as vectors of some length (say 300), randomly initialized.
- So we start with 300 * V random parameters
- Over the entire training set, we'd like to adjust those word vectors such that we
 - Maximize the similarity of the target word, context word pairs (t,c) drawn from the positive data
 - Minimize the similarity of the (t,c) pairs drawn from the negative data

Formally

We want to maximize the following objective

$$\sum_{(t,c)\in +} log P(+|t,c) + \sum_{(t,c)\in -} log P(-|t,c)$$

- Maximize the + label for the pairs from the positive training data, and the
 - label for the pairs sampled from the negative data.

Focusing on one target word t:

$$L(\theta) = \log P(+|t,c) + \sum_{i=1}^{k} \log P(-|t,n_i)$$

$$= \log \sigma(c \cdot t) + \sum_{i=1}^{k} \log \sigma(-n_i \cdot t)$$

$$= \log \frac{1}{1 + e^{-c \cdot t}} + \sum_{i=1}^{k} \log \frac{1}{1 + e^{n_i \cdot t}}$$

Focusing on one target word t:

$$L(\theta) = \log P(+|t,c) + \sum_{i=1}^{k} \log P(-|t,n_i)$$

$$= \log \sigma(c \cdot t) + \sum_{i=1}^{k} \log \sigma(-n_i \cdot t)$$

$$= \log \frac{1}{1 + e^{-c \cdot t}} + \sum_{i=1}^{k} \log \frac{1}{1 + e^{n_i \cdot t}}$$

Logistic regression

Train using gradient descent (not required)

- Idea: gradually changing W and C
- Finally learns two separate embedding matrices W and C
- Can use W and throw away C, or merge them

Summary: How to learn skip-gram embeddings

- Start with V random 300-dimensional vectors as initial embeddings
- Use logistic regression, the second most basic classifier used in machine learning after naïve bayes
 - Take a corpus and take pairs of words that co-occur as positive examples
 - Take pairs of words that don't co-occur as negative examples
 - Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier performance
 - Throw away the classifier code and keep the embeddings.

(Dense) Word embeddings you can download!

- Word2vec (Mikolov et al.) https://code.google.com/archive/p/word2vec/
- Fasttext http://www.fasttext.cc/
- Glove (Pennington, Socher, Manning) http://nlp.stanford.edu/projects/glove/

Evaluating embeddings

- Compare to human scores on word similarity-type tasks:
 - WordSim-353 (Finkelstein et al., 2002)
 - Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012)
- TOEFL dataset:
 - Levied is closest in meaning to:
 - imposed, believed, requested, correlated

Properties of embeddings

• Nearest words to some embeddings (Mikolov et al. 2013)

target:	Redmond	Havel	ninjutsu	graffiti	capitulate
	Redmond Wash.	Vaclav Havel	ninja	spray paint	capitulation
	Redmond Washington	president Vaclav Havel	martial arts	grafitti	capitulated
	Microsoft	Velvet Revolution	swordsmanship	taggers	capitulating

Properties of embeddings

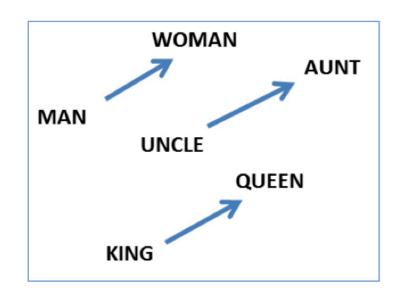
Similarity depends on window size C

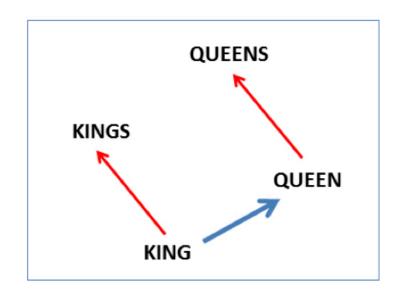
- C = ±2 The nearest words to *Hogwarts*:
 - Sunnydale
 - Evernight
- $C = \pm 5$ The nearest words to *Hogwarts:*
 - Dumbledore
 - Malfoy
 - halfblood

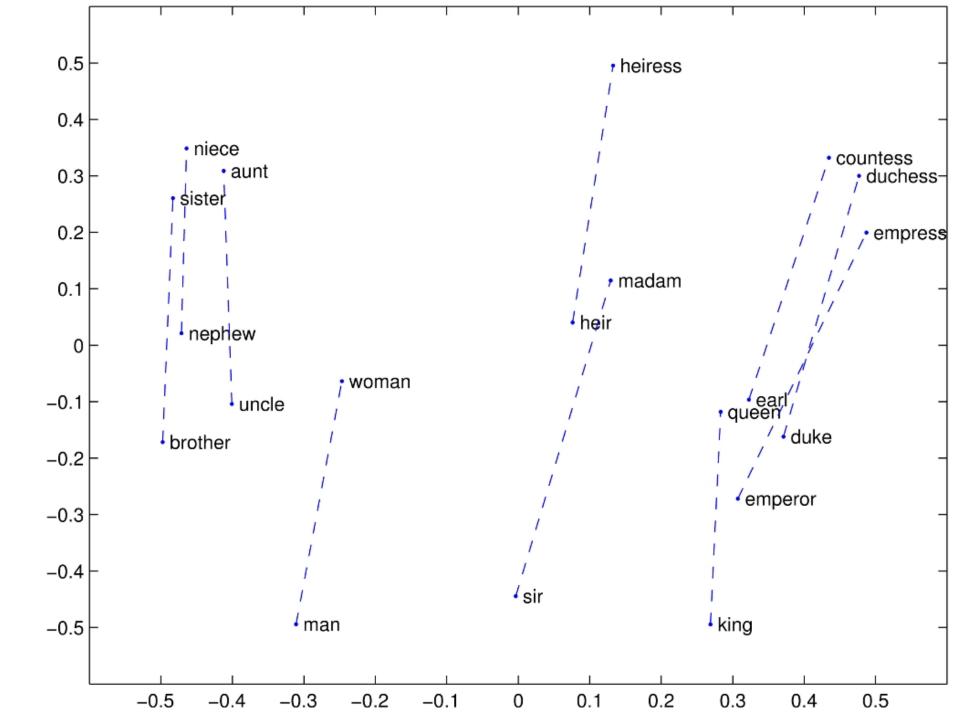
Analogy: Embeddings capture relational meaning!

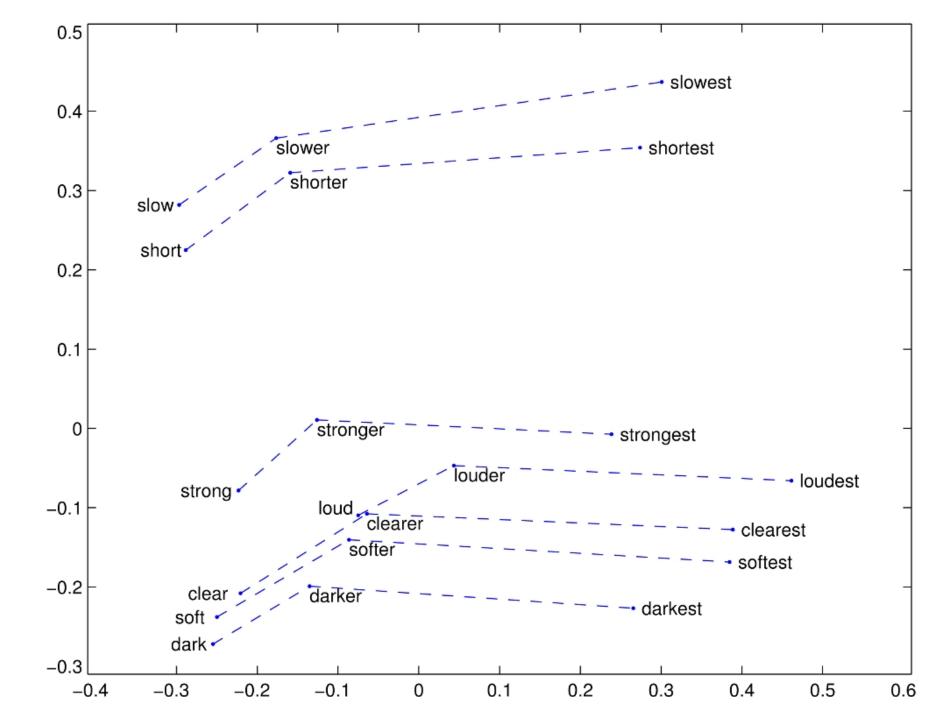
```
vector('king') - vector('man') + vector('woman') ≈ vector('queen')
```

vector('Paris') - vector('France') + vector('Italy') ≈ vector('Rome')





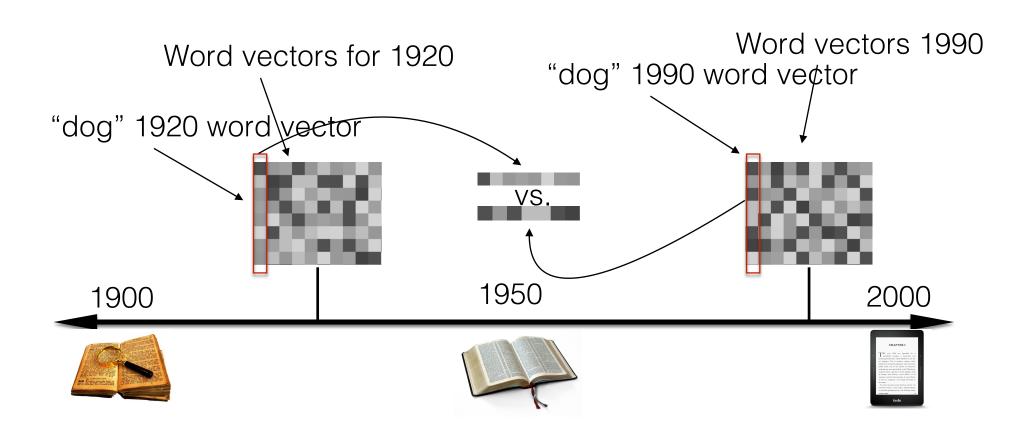




Embeddings can help study word history!

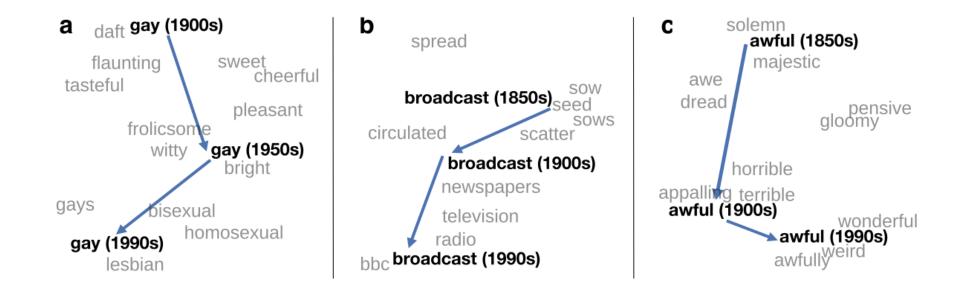
 Train embeddings on old books to study changes in word meaning!!

Diachronic word embeddings for studying language change!



Visualizing changes

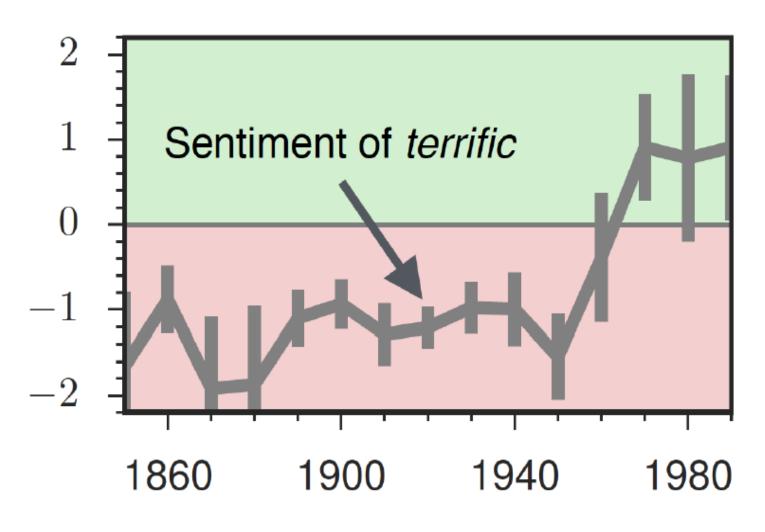
Project 300 dimensions down into 2



~30 million books, 1850-1990, Google Books data

The evolution of sentiment words

Negative words change faster than positive words



Embeddings and bias

Embeddings reflect cultural bias

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer programmer as woman is to homemaker? debiasing word embeddings." In *Advances in Neural Information Processing Systems*, pp. 4349-4357. 2016.

- Ask "Paris : France :: Tokyo : x"
 - x = Japan
- Ask "father: doctor:: mother: x"
 - x = nurse
- Ask "man: computer programmer:: woman: x"
 - x = homemaker

Embeddings reflect cultural bias

Caliskan, Aylin, Joanna J. Bruson and Arvind Narayanan. 2017. Semantics derived automatically from language corpora contain human-like biases. Science 356:6334, 183-186.

- Implicit Association test (Greenwald et al 1998):
 - How associated are concepts (flowers, insects) & attributes (pleasantness, unpleasantness)?
 - Studied by measuring timing latencies for categorization.
- Psychological findings on US participants:
 - African-American names are associated with unpleasant words (more than European-American names)
 - Male names associated more with math, female names with arts
 - Old people's names with unpleasant words, young people with pleasant words.

Embeddings reflect cultural bias

Caliskan, Aylin, Joanna J. Bruson and Arvind Narayanan. 2017. Semantics derived automatically from language corpora contain human-like biases. Science 356:6334, 183-186.

- Implicit Association test (Greenwald et al 1998):
 - How associated are concepts (flowers, insects) & attributes (pleasantness, unpleasantness)?
 - Studied by measuring timing latencies for categorization.
- Psychological findings on US participants:
 - African-American names are associated with unpleasant words (more than European-American names)
 - Male names associated more with math, female names with arts
 - Old people's names with unpleasant words, young people with pleasant words.
- Caliskan et al. replication with embeddings:
 - African-American names (*Leroy, Shaniqua*) had a higher GloVe (another word embeddings learning method) cosine similarity with unpleasant words (*abuse, stink, ugly*)
 - European American names (*Brad, Greg, Courtney*) had a higher cosine with pleasant words (*love, peace, miracle*)
- Embeddings reflect and replicate all sorts of pernicious biases.

Embeddings as a window onto history

- The cosine similarity of embeddings for decade X for occupations or adjectives (e.g. teacher or smart) to male vs female names
 - Find its correlation with the actual percentage of women teachers in decade X

History of biased framings of women

- Embeddings for competence adjectives are biased toward men
 - Smart, wise, brilliant, intelligent, resourceful, thoughtful, logical, etc.
- This bias is slowly decreasing

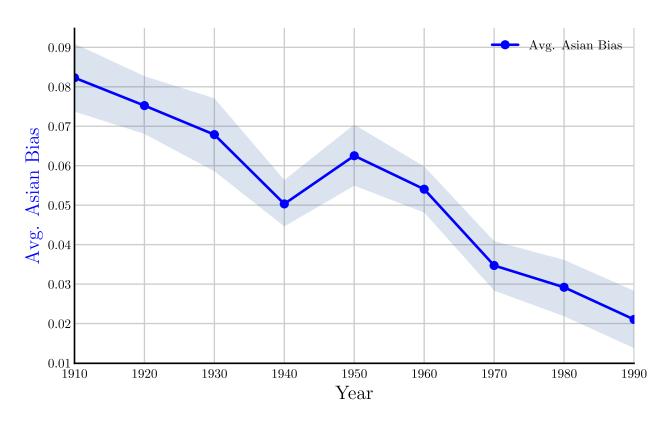
Embeddings reflect ethnic stereotypes over time

- Princeton trilogy experiments
- Attitudes toward ethnic groups (1933, 1951, 1969) scores for adjectives
 - industrious, superstitious, nationalistic, etc
- Cosine of Chinese name embeddings with those adjective embeddings correlates with human ratings.

Change in linguistic framing 1910-1990

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. *Proceedings of the National Academy of Sciences*, 115(16), E3635–E3644

Change in association of Chinese names with adjectives framed as "othering" (barbaric, monstrous, bizarre)



Changes in framing: adjectives associated with Chinese

1910	1950	1990
Irresponsible	Disorganized	Inhibited
Envious	Outrageous	Passive
Barbaric	Pompous	Dissolute
Aggressive	Unstable	Haughty
Transparent	Effeminate	Complacent
Monstrous	Unprincipled	Forceful
Hateful	Venomous	Fixed
Cruel	Disobedient	Active
Greedy	Predatory	Sensitive
Bizarre	Boisterous	Hearty

Directions

- Debiasing algorithms for embeddings
 - Bolukbasi, Tolga, Chang, Kai-Wei, Zou, James Y., Saligrama, Venkatesh, and Kalai, Adam T. (2016). Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In *Advances in Neural Information Processing Systems*, pp. 4349–4357.
- Use embeddings as a historical tool to study bias