CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University

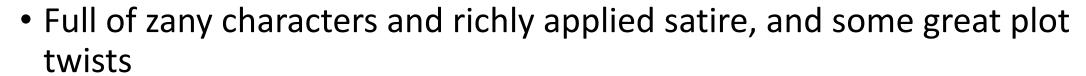
Webpage: www.ccs.neu.edu/home/luwang

Outline

- Text Categorization/Classification
- Naïve Bayes
- Evaluation

Positive or negative movie review?

unbelievably disappointing



· this is the greatest screwball comedy ever filmed

It was pathetic. The worst part about it was the boxing scenes.

Male or female author?

- By 1925 present-day Vietnam was divided into three parts under French colonial rule. The southern region embracing Saigon and the Mekong delta was the colony of Cochin-China; the central area with its imperial capital at Hue was the protectorate of Annam...
- 2. Clara never failed to be astonished by the extraordinary felicity of her own name. She found it hard to trust herself to the mercy of fate, which had managed over the years to convert her greatest shame into one of her greatest assets...

Text Classification

- Assigning subject categories, topics, or genres
- Spam detection
- Authorship identification
- Age/gender identification
- Language Identification
- Sentiment analysis

• ...

Text Classification: definition

- •Input:
 - a document d
 - a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$

• Output: a predicted class $c \in C$

Classification Methods: Hand-coded rules

- Rules based on combinations of words or other features
 - spam: black-list-address OR ("dollars" AND "have been selected")
- Accuracy can be high
 - If rules carefully refined by expert
- But building and maintaining these rules is expensive

Classification Methods: Supervised Machine Learning

• Input:

- a document d
- a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$
- A training set of m hand-labeled documents $(d_1, y_1), \dots, (d_m, y_m), y_i$ is in C

• Output:

• a learned classifier $y:d \rightarrow c$

Classification Methods: Supervised Machine Learning

- Any kind of classifier
 - Naïve Bayes
 - Logistic regression
 - Support-vector machines
 - k-Nearest Neighbors
 - Neural networks

• ...

Outline

- Text Categorization/Classification
- Naïve Bayes
 - Evaluation

Naïve Bayes Classifier

Naïve Bayes Intuition

- Simple ("naïve") classification method based on Bayes rule
- Relies on very simple representation of document
 - Bag of words

The Bag of Words Representation

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

the to and seen yet would whimsical times sweet satirical adventure genre fairy humor have great

The bag of words representation

1		

seen	2
sweet	1
whimsical	1
recommend	1
happy	1
• • •	• • •

Bayes' Rule Applied to Documents and Classes

For a document d and a class C

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

Naïve Bayes Classifier (I)

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(c \mid d)$$

MAP is "maximum a posteriori" = most likely class

$$= \underset{c \in C}{\operatorname{argmax}} \frac{P(d \mid c)P(c)}{P(d)}$$

Bayes Rule

$$= \underset{c \in C}{\operatorname{argmax}} P(d \mid c) P(c)$$

Dropping the denominator

Naïve Bayes Classifier (I)

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(c \mid d)$$

MAP is "maximum a posteriori" = most likely class

$$= \underset{c \in C}{\operatorname{argmax}} \frac{P(d \mid c)P(c)}{P(d)}$$

Bayes Rule

$$= \underset{c \in C}{\operatorname{argmax}} P(d \mid c) P(c)$$

Dropping the denominator

Why we can do this?

Naïve Bayes Classifier (II)

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(d \mid c) P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$

Document d represented as features x1..xn

Naïve Bayes Classifier (IV)

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$

 $O(|X|^n \bullet |C|)$ parameters

|X| represents the maximum number of possible values for x_i

$$P(x_1, x_2, ..., x_n | c)$$

- Bag of Words assumption: Assume position doesn't matter
- Conditional Independence: Assume the feature probabilities $P(x_i|c_i)$ are independent given the class c.

$$P(x_1,...,x_n | c) = P(x_1 | c) \cdot P(x_2 | c) \cdot P(x_3 | c) \cdot ... \cdot P(x_n | c)$$

Multinomial Naïve Bayes Classifier

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$

$$c_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{x \in X} P(x \mid c)$$

Applying Multinomial Naive Bayes Classifiers to Text Classification

positions ← all word positions in test document

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} \mid c_{j})$$

Learning for Naïve Bayes Model

Sec. 13.3

Learning the Naïve Bayes Model

- First attempt: maximum likelihood estimates
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{doccount(C = c_j)}{N_{doc}}$$

$$\hat{P}(w_i \mid c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$

Parameter estimation

$$\hat{P}(w_i \mid c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$

 $\hat{P}(w_i | c_j) = \frac{count(w_i, c_j)}{\sum count(w, c_j)}$ fraction of times word w_i appears among all words in documents of class c_j

Problem with Maximum Likelihood

 What if we have seen no training documents with the word fantastic and classified in the topic positive (thumbs-up)?

$$\hat{P}(\text{"fantastic" | positive}) = \frac{count(\text{"fantastic", positive})}{\sum_{w \in V} count(w, \text{positive})} = 0$$

 Zero probabilities cannot be conditioned away, no matter the other evidence!

$$c_{MAP} = \operatorname{argmax}_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$

Laplace (add-1) smoothing for Naïve Bayes

$$\hat{P}(w_i \mid c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} (count(w, c) + 1)}$$

$$= \frac{count(w_i, c) + 1}{\left(\sum_{w \in V} count(w, c)\right) + |V|}$$

Multinomial Naïve Bayes: Learning

- From training corpus, extract Vocabulary
- Calculate $P(c_i)$ terms
 - For each c_j in C do $docs_j \leftarrow$ all docs with class $=c_j$

$$P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$$

- Calculate $P(w_k \mid c_i)$ terms
 - $Text_j \leftarrow single doc containing all <math>docs_j$
 - For each word w_k in *Vocabulary* $n_k \leftarrow \#$ of occurrences of w_k in $Text_j$

$$P(w_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \mid Vocabulary \mid}$$

Multinomial Naïve Bayes: Learning

- From training corpus, extract Vocabulary
- Calculate $P(c_i)$ terms
 - For each c_j in C do $docs_j \leftarrow$ all docs with class $=c_j$

$$P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$$

- Calculate $P(w_k \mid c_i)$ terms
 - $Text_j \leftarrow single doc containing all <math>docs_j$
 - For each word w_k in *Vocabulary* $n_k \leftarrow \#$ of occurrences of w_k in $Text_j$

$$P(w_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \mid Vocabulary \mid}$$

A more general form: add- α smoothing!

Naïve Bayes and Language Modeling

- Naïve bayes classifiers can use any sort of feature
 - URL, email address, dictionaries, network features
- But if, as in the previous slides
 - We use **only** word features
 - we use all of the words in the text (not a subset)
- Then
 - Naïve bayes has an important similarity to language modeling.

Each class = a unigram language model

- Assigning each word: P(word | c)
- Assigning each sentence: $P(sentence | c) = \Pi P(word | c)$

Class pos

0.1 I

0.1 love

0.01 this

0.05 fun

0.1 film

P(sentence | pos) = 0.0000005

. . .

Naïve Bayes as a Language Model

Which class assigns the higher probability to s?

Model pos

0.1 I

0.1 love

0.01 this

0.05 fun

0.1 film

Model neg

0.2 I

0.001 love

0.01 this

0.005 fun

0.1 film

0.1

0.2

0.001

0.05 0.1

fun

0.005

film

0.1

P(s|pos) > P(s|neg)

0.01

An Example

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(w \mid c) = \frac{count(w,c) + 1}{count(c) + |V|}$$

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

Priors:
$$P(c) = \frac{3}{4}$$

 $P(j) = \frac{1}{4}$

Choosing a class:

P(c|d5)
$$\propto 3/4 * (3/7)^3 * 1/14 * 1/14$$

 ≈ 0.0003

Conditional Probabilities:

P(Chinese|c) =
$$(5+1) / (8+6) = 6/14 = 3/7$$

P(Tokyo|c) = $(0+1) / (8+6) = 1/14$
P(Japan|c) = $(0+1) / (8+6) = 1/14$
P(Chinese|j) = $(1+1) / (3+6) = 2/9$
P(Tokyo|j) = $(1+1) / (3+6) = 2/9$

P(Japan | j) = (1+1) / (3+6) = 2/9

$$P(j|d5) \propto 1/4 * (2/9)^3 * 2/9 * 2/9 \approx 0.0001$$

Summary: Naive Bayes is Not So Naive

- Very Fast, low storage requirements
- Robust to Irrelevant Features
 Irrelevant Features cancel each other without affecting results
- Very good in domains with many equally important features
- Optimal if the independence assumptions hold:
 - If assumed independence is correct, then it is the Bayes Optimal Classifier for problem
- A good dependable baseline for text classification

Outline

- Text Categorization/Classification
- Naïve Bayes
- → Evaluation

Evaluation

The 2-by-2 contingency table (or confusion matrix)

	correct	not correct
selected	tp (true positive)	fp (false positive)
not selected	fn (false negative)	tn (true negative)

For example,

- Which set of documents are related to the topic of NLP?
- Which set of documents are written by Shakespeare?

The 2-by-2 contingency table

	correct	not correct
selected	tp	fp
not selected	fn	tn

Precision and recall

Precision: % of selected items that are correct, tp/(tp+fp)

Recall: % of correct items that are selected, tp/(tp+fn)

	correct	not correct
selected	tp	fp
not selected	fn	tn

A combined measure: F-measure or F-score

 A combined measure that assesses the P/R tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$

- People usually use balanced F1 measure
 - i.e., $\alpha = \frac{1}{2}$, $F = \frac{2PR}{(P+R)}$

Text Classification Evaluation

More Than Two Classes: Sets of binary classifiers

- Dealing with any-of or multivalue classification
 - A document can belong to 0, 1, or >1 classes.
- For each class c∈C
 - Build a classifier γ_c to distinguish c from all other classes c' $\in C$
- Given test doc d,
 - Evaluate it for membership in each class using each γ_c
 - d belongs to any class for which y_c returns true

More Than Two Classes: Sets of binary classifiers

- One-of or multinomial classification
 - Classes are mutually exclusive: each document in exactly one class
- For each class c∈C
 - Build a classifier γ_c to distinguish c from all other classes $c' \in C$
- Given test doc d,
 - Evaluate it for membership in each class using each γ_c
 - d belongs to the one class with maximum score

Confusion matrix c

- For each pair of classes $\langle c_1, c_2 \rangle$ how many documents from c_1 were incorrectly assigned to c_2 ?
 - c_{3.2}: 90 wheat documents incorrectly assigned to poultry

Docs in test set	Assigned UK	Assigned poultry	Assigned wheat	Assigned coffee	Assigned interest	Assigned trade
True UK	95	1	13	0	1	0
True poultry	0	1	0	0	0	0
True wheat	10	90	0	1	0	0
True coffee	0	0	0	34	3	7
True interest	0	1	2	13	26	5
True trade	0	0	2	14	5	10

Per class evaluation measures

Recall:

Fraction of docs in class *i* classified correctly:

$$\frac{c_{ii}}{\sum_{j} c_{ij}}$$

Precision:

Fraction of docs assigned class *i* that are actually about class *i*:

$$\frac{c_{ii}}{\sum_{j} c_{ji}}$$

Accuracy: (1 - error rate)

Fraction of docs classified correctly:

$$\frac{\sum_{i} c_{ii}}{\sum_{j} \sum_{i} c_{ij}}$$

Sec. 15.2.4

Micro- vs. Macro-Averaging

- If we have more than one class, how do we combine multiple performance measures into one quantity?
- Macroaveraging: Compute performance for each class, then average.
- Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

Sec. 15.2.4

Micro- vs. Macro-Averaging: Example

Class 1

	Truth:	Truth:
	yes	no
Classifier: yes	10	10
Classifier: no	10	970

Class 2

	Truth: yes	Truth:
Classifier: yes	90	10
Classifier: no	10	890

Micro Ave. Table

	Truth: yes	Truth: no
Classifier: yes	100	20
Classifier: no	20	1860

Micro- vs. Macro-Averaging: Example

Class 1

Classifier: yes	Truth: yes 10	Truth: no 10
Classifier: no	10	970

Class 2

	Truth:	Truth:
	yes	no
Classifier: yes	90	10
Classifier: no	10	890

Micro Ave. Table

	Truth:	Truth:
	yes	no
Classifier: yes	100	20
Classifier: no	20	1860

- Macroaveraged precision: (0.5 + 0.9)/2 = 0.7
- Microaveraged precision: 100/120 = .83

Development Test Sets and Cross-validation

Training set

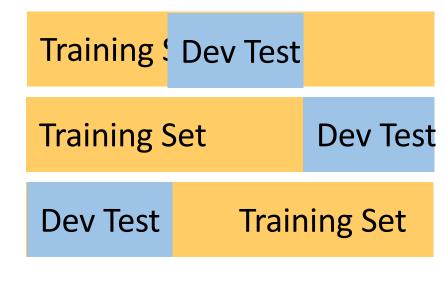
Development/tuning/held-out Set

Test Set

Metric: P/R/F1 or Accuracy

Cross-validation over multiple splits

- Handle sampling errors from different datasets
- Pool results over each split
- Compute pooled dev set performance



Test Set