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CS 6120/CS 4120: Natural Language Processing

Instructor: Prof. Lu Wang
Northeastern University

Webpage: www.ccs.neu.edu/home/luwang
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Outline

• Maximum Entropy
• Feedforward Neural Networks
• Recurrent Neural Networks
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Maximum Entropy (MaxEnt)

• Or logistic regression
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Features

• In these slides and most MaxEnt work: features (or feature 
functions) f are elementary pieces of evidence that link 
aspects of what we observe d with a category c that we want 
to predict
• A feature is a function with a bounded real value: f: C ´ D → 
ℝ
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Example Task: Named Entity Type

LOCATION
in Québec

PERSON
saw Sue

DRUG
taking Zantac

LOCATION
in Arcadia
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Example features

• f1(c, d) º [c = LOCATION Ù w-1 = “in” Ù isCapitalized(w)]
• f2(c, d) º [c = LOCATION Ù hasAccentedLatinChar(w)]
• f3(c, d) º [c = DRUG Ù ends(w, “c”)]

• Models will assign to each feature a weight:
• A positive weight votes that this configuration is likely correct
• A negative weight votes that this configuration is likely incorrect

LOCATION
in Québec

PERSON
saw Sue

DRUG
taking Zantac

LOCATION
in Arcadia
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http://www.ccs.neu.edu/home/luwang
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Example features

• f1(c, d) º [c = LOCATION Ù w-1 = “in” Ù isCapitalized(w)] -> weight 1.8
• f2(c, d) º [c = LOCATION Ù hasAccentedLatinChar(w)] -> weight  -0.6
• f3(c, d) º [c = DRUG Ù ends(w, “c”)] -> weight  0.3

• Weights will be learned by training on a labeled dataset
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More about feature functions:
an indicator function – a yes/no boolean matching function – of properties 
of the input and a particular class

fi(c, d) º [Φ(d) Ù c = cj] [Value is 0 or 1]
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Feature-Based Models
• The decision about a data point is based only on the features active 

at that point.

BUSINESS: Stocks 
hit a yearly low …

Data

Features
{…, stocks, hit, a, 
yearly, low, …}

Label: BUSINESS

Text Classification

… to restructure 
bank:MONEY debt.

Data

Features
{…, w-1=restructure, 
w+1=debt, L=12, …}

Label: MONEY

Word Sense 
Disambiguation

DT      JJ       NN …
The previous fall …

Data

Features
{w=fall, t-1=JJ 
w-1=previous}

Label: NN

POS Tagging

9

Feature-Based Linear Classifiers

• Linear classifiers at classification time:
• Linear function from feature sets {fi} to classes {c}.
• Assign a weight li to each feature fi.
• We consider each class for sample d
• For a pair (c,d), features vote with their weights: 

• vote(c) = Slifi(c,d)

• Choose the class c which maximizes Slifi(c,d)

LOCATION
in Québec

DRUG
in Québec

PERSON
in Québec

i

i
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• Maximum Entropy:
• Make a probabilistic model from the linear combination Slifi(c,d)

∑ ∑
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ii dcf ),(exp λ Makes votes positive

Normalizes votes
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Feature-Based Linear Classifiers

• f1(c, d) º [c = LOCATION Ù w-1 = “in” Ù isCapitalized(w)] -> weight 1.8
• f2(c, d) º [c = LOCATION Ù hasAccentedLatinChar(w)] -> weight  -0.6
• f3(c, d) º [c = DRUG Ù ends(w, “c”)] -> weight  0.3
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• Maximum Entropy:
• Make a probabilistic model from the linear combination Slifi(c,d)
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Normalizes votes

f1(c, d) º [c = LOCATION Ù w-1 = “in” Ù isCapitalized(w)] -> weight 1.8
f2(c, d) º [c = LOCATION Ù hasAccentedLatinChar(w)] -> weight  -0.6
f3(c, d) º [c = DRUG Ù ends(w, “c”)] -> weight  0.3
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• Maximum Entropy:
• Make a probabilistic model from the linear combination Slifi(c,d)

• P(LOCATION|in Québec) = e1.8e–0.6/(e1.8e–0.6 + e0.3 + e0) = 0.586
• P(DRUG|in Québec) = e0.3 /(e1.8e–0.6 + e0.3 + e0) = 0.238
• P(PERSON|in Québec) = e0 /(e1.8e–0.6 + e0.3 + e0) = 0.176

• The weights are the parameters of the probability 
model, combined via a “soft max” function

∑ ∑
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Normalizes votes

f1(c, d) º [c = LOCATION Ù w-1 = “in” Ù isCapitalized(w)] -> weight 1.8
f2(c, d) º [c = LOCATION Ù hasAccentedLatinChar(w)] -> weight  -0.6
f3(c, d) º [c = DRUG Ù ends(w, “c”)] -> weight  0.3
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Feature-Based Linear Classifiers

• Given this model form, we will choose parameters {li} that maximize 
the conditional likelihood of the data according to this model.
• Parameter learning is omitted and not required for this course, but is 

often discussed in a machine learning class. 
• E.g. gradient descent for parameter learning
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Outline

• Maximum Entropy
• Feedforward Neural Networks
• Recurrent Neural Networks
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Neural Network Learning

• Learning approach based on modeling adaptation in biological neural 
systems.
• Perceptron: Initial algorithm for learning simple neural networks 

(single layer) developed in the 1950’s.
• Backpropagation: More complex algorithm for learning multi-layer 

neural networks developed in the 1980’s. (not required for this class)
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Linear Separator
• Since one-layer neuron (aka perceptron) uses linear threshold 

function, it is searching for a linear separator that 
discriminates the classes.

o3

o2

??
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How to train a neural network? (Not covered 
in this course, only for reference)

37

Empirical Risk Minimization
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[figure from Greg Mori’s slides]
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Empirical Risk Minimization
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[http://cs231n.github.io/neural-networks-1/]
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Model Learning

• Backpropagation (BP) algorithm (not required for this course)
• Further reading on BP:
• https://towardsdatascience.com/understanding-backpropagation-algorithm-

7bb3aa2f95fd
• https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-

example/
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Outline

• Maximum Entropy
• Feedforward Neural Networks
• Recurrent Neural Networks
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Long Distance Dependencies
• It is very difficult to train NNs to retain information over many time steps
• This makes it very difficult to handle long-distance dependencies, such as 

subject-verb agreement.
• E.g. Jane walked into the room. John walked in too. It was late in the day. Jane 

said hi to _?_
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Recurrent Neural Networks
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https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
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Long-Short Term Memory Networks (LSTMs)
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Sequence to Sequence
• Encoder/Decoder framework maps one sequence to a "deep vector" 

then another LSTM maps this vector to an output sequence.

This is my cat C’est mon chat

Encoder Decoder
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Summary of LSTM Application Architectures

Image Captioning Video Activity Recog
Text Classification

Video Captioning
Machine Translation

POS Tagging
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Successful Applications of LSTMs
• Speech recognition: Language and acoustic modeling
• Sequence labeling
• POS Tagging 
• NER
• Phrase Chunking 

• Neural syntactic and semantic parsing
• Image captioning
• Sequence to Sequence
• Machine Translation (Sustkever, Vinyals, & Le, 2014)
• Summarization
• Video Captioning (input sequence of CNN frame outputs)
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