CS 6120/CS 4120: Natural Language Processing

Instructor: Prof. Lu Wang Northeastern University Webpage: <u>www.ccs.neu.edu/home/luwang</u>

1

Outline

- 🔿 Maximum Entropy
 - Feedforward Neural Networks
 - Recurrent Neural Networks

2

6

Example features

f_i(c, d) ≡ [c = LOCATION ∧ w:1 = "in" ∧ isCapitalized(w)] -> weight 1.8
 f_i(c, d) ≡ [c = LOCATION ∧ hasAccentedLatinChar(w)] -> weight -0.6
 f_i(c, d) ≡ [c = DRUG ∧ ends(w, "c")] -> weight 0.3

· Weights will be learned by training on a labeled dataset

More about feature functions:	
an indicator function – a yes/no boolean m of the input and a particular class	atching function – of properties
$f_i(c, d) \equiv [\Phi(d) \land c = c_j]$	[Value is 0 or 1]

7

9

EXAMPLE : sigmoid activation function • Squashes the neuron's pre-activation between 0 and 1 • Always positive • Bounded • Strictly increasing $g(a) = sigm(a) = \frac{1}{1+exp(-a)}$

Topics: hyperbolic tanger	t ("tanh") activation function
Squashes the neuron's pre-activation between -1 and 1	
 Can be positive or negative 	
Bounded	-13
 Strictly increasing 	
$g(a) = \tan$	$h(a) = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)} = \frac{\exp(2a) - 1}{\exp(2a) + 1}$

ARTIFICIAL NEURON **Topics:** capacity of single neuron • Can't solve non linearly separable problems.. $\underbrace{\begin{array}{c} & & \\$

 Model Learning
 • Backpropagation (BP) algorithm (not required for this course)
 • Maximum Entropy

 • Further reading on BP:
 • Maximum Entropy

 • https://towardsdatascience.com/understanding-backpropagation-algorithm-//tob/aa2/1951
 • Recurrent Neural Networks

 • https://mattmazur.com/2015/03/17/a-step-by-step-backpropagationexample/
 • Recurrent Neural Networks

 45
 46

