CS 6120/CS 4120: Natural Language Processing

Instructor: Prof. Lu Wang
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang

http://www.ccs.neu.edu/home/luwang

Outline

=) « Maximum Entropy
 Feedforward Neural Networks
e Recurrent Neural Networks

Maximum Entropy (MaxEnt)

* Or logistic regression

Features

* In these slides and most MaxEnt work: features (or feature
functions) fare elementary pieces of evidence that link
aspects of what we observe d with a category c that we want
to predict

* A feature is a function with a bounded real value: /: C x D —
R

Example Task: Named Entity Type

LOCATION LOCATION
in Arcadia in Québec taking Zantac saw Sue

Example features

* fi(c, d) = [c=LOCATION A w,; = “in” A isCapitalized(w)]
* f>(c, d) = [c = LOCATION A hasAccentedLatinChar(w)]
* fi(c, d) = [c = DRUG A ends(w, “c”)]

LOCATION LOCATION
in Arcadia in Québec taking Zantac saw Sue
* Models will assign to each feature a weight:

* A positive weight votes that this configuration is likely correct
* A negative weight votes that this configuration is likely incorrect

Example features

* fi(c, d) =[c=LOCATION A w_ = “in" A isCapitalized(w)] -> weight 1.8
* /r(c, d) =[c = LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
* fi(c, d)=[c =DRUG A ends(w, “¢”)] -> weight 0.3

* Weights will be learned by training on a labeled dataset

More about feature functions:

an indicator function — a yes/no boolean matching function — of properties
of the input and a particular class

fic, d)=[D(d) Ac=c]

Feature-Based Models

* The decision about a data point is based only on the features active
at that point.

Data Data Data
BUSINESS: Stocks ... to restructure DT] NN ...
hit a yearly low ... bank:MONEY debt. The previous fall ...
Label: BUSINESS Label: MONEY Label: NN
Features Features Features
{..., stocks, hit, a, {..., w =restructure, {w=fall, 7.,=))
yearly, low, ...} wy=debt, L=12, ...} w._=previous}
Text Classification Word Sense POS Tagging

Disambiguation

Feature-Based Linear Classifiers

e Linear classifiers at classification time:

 Linear function from feature sets {f;} to classes {c}.
« Assign a weight A, to each feature /.

« We consider each class for sample d

« For a pair (¢,d), features vote with their weights:

* vote(c) = ;Z,fi(c,d)

in Québec in Québec in Québec

* Choose the class ¢ which maximizes 2Af{c.d)

* Maximum Entropy:
* Make a probabilistic model from the linear combination X Af(c,d)

P(cld,A) =

Makes votes positive

expz)»l.fi(c,d) -

2 CXp E)Liﬁ(c'ad) D

Normalizes votes

Feature-Based Linear Classifiers

* fi(c, d) =[c=LOCATION A w_ = “in" A isCapitalized(w)] -> weight 1.8
* /r(c, d) =[c = LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
* fi(c, d)=[c =DRUG A ends(w, “¢”)] -> weight 0.3

fi(c, d)=[c = LOCATION A w_; = “in" A isCapitalized(w)] -> weight 1.8
f>(c, d) = [c = LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
f5(c, d)=[c=DRUG A ends(w, “¢”)] -> weight 0.3

* Maximum Entropy:
* Make a probabilistic model from the linear combination X Af(c,d)

CXPp E)‘-,-f,-(cad) <—1 Makes votes positive
2 CXP E)H-fi (c',d) ~—Normalizes votes

P(c|d,7) =

fi(c, d)=[c = LOCATION A w_; = “in" A isCapitalized(w)] -> weight 1.8
f>(c, d) = [c = LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
f5(c, d)=[c=DRUG A ends(w, “¢”)] -> weight 0.3

* Maximum Entropy:
* Make a probabilistic model from the linear combination X Af/(c,d)

CXPp E)\’iﬁ(cad) <—1 Makes votes positive
P(c|d,A) = ‘ .
2 exp E)»,.fi (c',d) ~—Normalizes votes
. P(|In Québec) — e].Se—O.G/(e].Se—O.G + eO.3 + eo) — 0586
o P(|In QUébeC) — eO.3 /(61.86—0.6 + 60.3 + eo) — 0238
. P(|In QUébeC) — eO /(61.86—0.6 + eO.3 + eo) — O] 76

* The weights are the parameters of the probability
model, combined via a “soft max” function

Feature-Based Linear Classifiers

* Given this model form, we will choose parameters {4} that maximize
the conditional likelihood of the data according to this model.

* Parameter learning is omitted and not required for this course, but is
often discussed in a machine learning class.
* E.g. gradient descent for parameter learning

Outline

* Maximum Entropy
mm) » Feedforward Neural Networks
e Recurrent Neural Networks

Neural Network Learning

* Learning approach based on modeling adaptation in biological neural
systemes.

* Perceptron: Initial algorithm for learning simple neural networks
(single layer) developed in the 1950’s.

* Backpropagation: More complex algorithm for learning multi-layer
neural networks developed in the 1980’s. (not required for this class)

e REICIAL NEWREGIN

Topics: connection weights, bias, activation function

* Neuron pre-activation (or input activation):

a(x)=b+ > wiz; =b+w'x

» Neuron (output) activation
h(x) = gla(x)) = g(b+) ,; wix;)

* W are the connection weights
« b is the neuron bias

. g() Is called the activation function

R AL INEWREIN

Topics: connection weights, bias, activation function

range determined

by g(-) |
bias b only

changes the
position of
the niff

(from Pascal Vincent's slides)

ACTIVATION FUNCTION

Topics: linear activation function

* Performs no input
squashing

* Not very interesting...

ACTIVATION FUNCTION

Topics: sigmoid activation function

» Squashes the neuron’s

pre-activation between
0 and |

* Always positive
* Bounded
* Strictly increasing

g(a) = sigm(a) = 1+ex11)(_a)

S ATION FUNGHNGHIN

Topics: hyperbolic tangent (“tanh™) activation function

* Squashes the neuron’s

3.0

pre-activation between I S S e

* Can be positive or ﬁ:ﬁﬁZIIII..E..................
negative
* Bounded e N U N N A N

« Strictly increasing

3 i exp(a) 5 exp(Ga) R exdp (2a)Eal
g(a’) = ta’nh(a’) ~ exp(a)+exp(—a) exp(2a)+1

ACTIVATION FUNCTION

Topics: rectified linear activation function

* Bounded below by O
(always non-negative)

* Not upper bounded

» Strictly increasing

* Tends to give neurons
with sparse activities

g(a) = reclin(a) = max(0, a)

class Neuron(object):

#oeus

def forward(inputs):
""" assume inputs and weights are 1-D numpy arrays and bias is a number

cell body sum = np.sum(inputs * self.weights) + self.bias
1.0 / (1.0 + math.exp(-cell body sum)) # sigmoid activation function

firing rate =
return firing rate

Linear Separator

* Since one-layer neuron (aka perceptron) uses linear threshold
function, it is searching for a linear separator that
discriminates the classes.

03 A

ERTFICIAL NEWIR@IN

Topics: capacity of single neuron

» Can solve linearly separable problems

OR (171, 5172) A AND (f)f_l/ .’,132) AND (Zl?l . E)

/
A 7 O | o) o ,
/ ™ P
/ = ,
ol,” 0 o of o 7 A
/
—
0 | 0 T

e @A L INE RGN

Topics: capacity of single neuron

» Can't solve non linearly separable problem:s...

XOR (xlny) XOR (:1:1,:1:2)
T A
! A O ‘:l A
o 7 ~ \
= ‘ g \
0 o) A % 0 o LA
> < ——
0 / I 0 |
1 AND (.13_1, .’172)

* ... unless the input is transformed In a better representation

NEURAL NETWORK

Topics: single hidden layer neural network
* Hidden layer pre-activation:
a(x) = b + Wlx
(ate)s =6 + 3, W)
* Hidden layer activation:

h(x) = g(a(x))

 Output layer activation:

f(x)_O(b<2>+w<2>Th<1>x @ i @

output activation function

NEURAL NETWORK

Topics: softmax activation function

* For multi-class classification:
» we need multiple outputs (| output per class)
» we would like to estimate the conditional probability p(y = ClX)

* We use the softmax activation function at the output:

exp(ai) exp(ac) i
()(a) = softmax(a) = [Zc exp(ac) *°° Zc exp(ac)]

» strictly positive

» sums to one

* Predicted class is the one with highest estimated probability

NEURAL NETWORK

Topics: multilayer neural network
* Could have L hidden layers:

» layer pre-activation for k>0 (h®(x) = x)

a®) (x) = b®) 4 WE Rk (x)

» hidden layer activation (k from 1 to L):
h() (x) = g(a™ (x))

» output layer activation (k=L+1):
h(!+1)(x) = o(al"*! (x)) = f(x)

forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

X = np.random.randn(3, 1) # random input vector of three numbers (3x1)

hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)

A CTTY OF NEURAL NETVVSISIS

Topics: single hidden layer neural network

X; X;

(from Pascal Vincent's slides)

ORK
TR

L NE
sl
ACITY
CAP

ork
| netw
eura

hidden layer n
|

s single

ics: s

Top

iy T [
!MMHMIHI""II"III
Hllf,l’l'f’lllmﬂlllll'l'lll'lll

(]

's slides)
cal Vincent's

Pas

o

A CITY OF NEURAL NETVV IS

Topics: single hidden layer neural network

(from Pascal Vincent's slides)

A CITY OF NEURAL NETVV@IES

Topics: universal approximation

» Universal approximation theorem (Hornik, 1991):

» “a single hidden layer neural network with a linear output unit can approximate
any continuous function arbitrarily well, given enough hidden units”

» The result applies for sigmoid, tanh and many other hidden
layer activation functions

* This Is a good result, but it doesn't mean there is a learning
algorithm that can find the necessary parameter values!

3 hidden neurons 6 hidden neurons 20 hidden neurons

How to train a neural network? (Not covered
in this course, only for reference)

Topics: multilayer neural network

* Could have L hidden layers:

» layer input activation for k>0 (h(©®(x) = x)
a(k)(x) — bk W(k)h(k—l)(x)

» hidden layer activation (k from 1 to L):
h*) (x) = g(al® (x))

» output layer activation (k=L+1):
h(+D(x) = o(alt+D) (x)) = £(x)

Empirical Risk Minimization

Topics: empirical risk minimization, regularization
* Empirical risk minimization

» framework to design learning algorithms

|
arg min - > U(f(x™;0),51) + AQ(6)
t

» I(f(x®);0),y®) is a loss function
»)(0) is a regularizer (penalizes certain values of @)
* Learning Is cast as optimization

» ideally, we'd optimize classification error, but it's not smooth

» loss function is a surrogate for what we truly should optimize (e.g. upper bound)

LOSEHECINIGHE O]\

Topics: loss function for classification

« Neural network estimates f(x). = p(y = ¢|x)

» we could maximize the probabilities of y(t) given x®) in the training set

* To frame as minimization, we minimize the
negative log-likelihood natural log (In)

i

I(£(X),y) = = 3, 1(y—e) log'F(x) = —Iog £(x),

» we take the log to simplify for numerical stability and math simplicity

» sometimes referred to as cross-entropy

Total error on training set

100 150 200 250 300 350 400

Number of epochs

[figure from Greg Mori’s slides]

REGULARIZATION

Topics: L2 regularization

Q(6) = T, X, 5, (W) = S WO

Empirical Risk Minimization

Topics: empirical risk minimization, regularization
* Empirical risk minimization

» framework to design learning algorithms

|
arg min - > U(f(x™;0),51) + AQ(6)
t

» I(f(x®);0),y®) is a loss function
»)(0) is a regularizer (penalizes certain values of @)
* Learning Is cast as optimization

» ideally, we'd optimize classification error, but it's not smooth

» loss function is a surrogate for what we truly should optimize (e.g. upper bound)

A =0.001 A =0.01

[http://cs231n.github.io/neural-networks-1/]

| NI A 7

Topics: initialization
* For biases

» nitialize all to O

* For weights

» Can't intialize weights to O with tanh activation
- we can show that all gradients would then be O (saddle point)

» Can't intialize all weights to the same value

- we can show that all hidden units in a layer will always behave the same

- need to break symmetry

|[ON

size of h(®)(x)

» Recipe: sample Wf,l;) from U [—b,b] where b = V6

\/Hk+Hk—1

- the idea is to sample around O but break symmetry

- other values of b could work well (not an exact science) (see Glorot & Bengio, 2010)

Model Learning

* Backpropagation (BP) algorithm (not required for this course)

* Further reading on BP:

* https://towardsdatascience.com/understanding-backpropagation-algorithm-
/bb3aa2f95fd

* https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-
example/

https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Outline

* Maximum Entropy
 Feedforward Neural Networks
m=) « Recurrent Neural Networks

Long Distance Dependencies

* |t is very difficult to train NNs to retain information over many time steps

* This makes it very difficult to handle long-distance dependencies, such as
subject-verb agreement.

e E.g. Jane walked into the room. John walked in too. It was late in the day. Jane
saidhito ?

) h O)
L.T ! !
A A

T
6 6

» A

l
b o

Recurrent Neural Networks

Feed-forward NN Recurrent NN
h:g(VX—I—C> ht :g(VXt—I—Uht_1+C)

T &=

1

Long-Short Term Memory Networks (LSTMs)

A
4 N\ N\)
> —— > —»>
A | bl A
\I J_> J >\|)_}
2 o &

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

Seguence to Sequence

* Encoder/Decoder framework maps one sequence to a "deep vector"
then another LSTM maps this vector to an output sequence.

Encoder Decoder

\ \
! | ! \

—O—0 O

This is my cat C’est mon chat

Summary of LSTM Application Architectures

one to many many to one many to many many to many
Pt ! O)
f Pt Pt Pt 1
Image Captioning Video Activity Recog Video Captioning POS Tagging

Text Classification Machine Translation

Successful Applications of LSTMs

* Speech recognition: Language and acoustic modeling

* Sequence labeling

* POS Tagging
* NER
* Phrase Chunking

* Neural syntactic and semantic parsing
* Image captioning

* Sequence to Sequence
 Machine Translation (Sustkever, Vinyals, & Le, 2014)
* Summarization
* Video Captioning (input sequence of CNN frame outputs)

