CS 6120/CS 4120: Natural Language Processing

Instructor: Prof. Lu Wang

Northeastern University

Webpage: www.ccs.neu.edu/home/luwang

Outline

- Maximum Entropy
 - Feedforward Neural Networks
 - Recurrent Neural Networks

Maximum Entropy (MaxEnt)

• Or logistic regression

Features

- In these slides and most MaxEnt work: *features* (or feature functions) f are elementary pieces of evidence that link aspects of what we observe d with a category c that we want to predict
- A feature is a function with a **bounded** real value: $f: C \times D \rightarrow \mathbb{R}$

Example Task: Named Entity Type

LOCATION in Arcadia LOCATION in Québec

DRUG PERSON taking Zantac saw Sue

Example features

```
• f_1(c, d) \equiv [c = \text{LOCATION} \land w_{-1} = \text{"in"} \land \text{isCapitalized}(w)]
```

- $f_2(c, d) \equiv [c = \text{LOCATION} \land \text{hasAccentedLatinChar}(w)]$
- $f_3(c, d) \equiv [c = DRUG \land ends(w, "c")]$

LOCATION in Arcadia in Québec

LOCATION

DRUG PERSON taking Zantac saw Sue

- Models will assign to each feature a weight:
 - A positive weight votes that this configuration is likely correct
 - A negative weight votes that this configuration is likely incorrect

Example features

- $f_1(c, d) = [c = \text{LOCATION} \land w_{-1} = \text{"in"} \land \text{isCapitalized}(w)] \rightarrow \text{weight } 1.8$
- $f_2(c, d) = [c = LOCATION \land hasAccentedLatinChar(w)] -> weight -0.6$
- $f_3(c, d) \equiv [c = DRUG \land ends(w, "c")] \rightarrow weight 0.3$
- Weights will be learned by training on a labeled dataset

More about feature functions:

an indicator function – a yes/no boolean matching function – of properties of the input and a particular class

$$f_i(c, d) \equiv [\Phi(d) \land c = c_j]$$
 [Value is 0 or 1]

Feature-Based Models

 The decision about a data point is based only on the features active at that point.

```
Data
BUSINESS: Stocks
hit a yearly low ...
```

```
Label: BUSINESS

Features
{..., stocks, hit, a, yearly, low, ...}
```

Text Classification

```
Data
```

... to restructure bank: MONEY debt.

```
Label: MONEY
Features
{..., w_{-1}=restructure, w_{+1}=debt, L=12, ...}
```

Word Sense Disambiguation

```
Data
DT JJ NN ...
The previous fall ...
```

```
Label: NN
Features
\{w=\text{fall}, t_{-1}=JJ \\ w_{-1}=\text{previous}\}
```

POS Tagging

Feature-Based Linear Classifiers

- Linear classifiers at classification time:
 - Linear function from feature sets $\{f_i\}$ to classes $\{c\}$.
 - Assign a weight λ_i to each feature f_i .
 - We consider each class for sample *d*
 - For a pair (c,d), features vote with their weights:

• vote(c) =
$$\sum_{i} \lambda_{i} f_{i}(c,d)$$

PERSON in Québec

LOCATION in Québec

DRUG in Québec

• Choose the class c which maximizes $\sum_{i} \lambda_{i} f_{i}(c,d)$

- Maximum Entropy:
 - Make a probabilistic model from the linear combination $\sum \lambda_i f_i(c,d)$

$$P(c \mid d, \lambda) = \frac{\exp \sum_{i} \lambda_{i} f_{i}(c, d)}{\sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c', d)} \leftarrow \frac{\text{Makes votes positive}}{\text{Normalizes votes}}$$

Feature-Based Linear Classifiers

- $f_1(c, d) = [c = \text{LOCATION} \land w_{-1} = \text{"in"} \land \text{isCapitalized}(w)] \rightarrow \text{weight } 1.8$
- $f_2(c, d) = [c = LOCATION \land hasAccentedLatinChar(w)] -> weight -0.6$
- $f_3(c, d) \equiv [c = DRUG \land ends(w, "c")] \rightarrow weight 0.3$

$$f_1(c, d) \equiv [c = \text{LOCATION} \land w_{-1} = \text{``in''} \land \text{isCapitalized}(w)] \rightarrow \text{weight } 1.8$$

 $f_2(c, d) \equiv [c = \text{LOCATION} \land \text{hasAccentedLatinChar}(w)] \rightarrow \text{weight } -0.6$
 $f_3(c, d) \equiv [c = \text{DRUG} \land \text{ends}(w, \text{``c''})] \rightarrow \text{weight } 0.3$

- Maximum Entropy:
 - Make a probabilistic model from the linear combination $\sum \lambda_i f_i(c,d)$

$$P(c \mid d, \lambda) = \frac{\exp \sum_{i} \lambda_{i} f_{i}(c, d)}{\sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c', d)} \leftarrow \frac{\text{Makes votes positive}}{\text{Normalizes votes}}$$

$$f_1(c, d) \equiv [c = \text{LOCATION} \land w_{-1} = \text{"in"} \land \text{isCapitalized}(w)] \rightarrow \text{weight } 1.8$$

 $f_2(c, d) \equiv [c = \text{LOCATION} \land \text{hasAccentedLatinChar}(w)] \rightarrow \text{weight } -0.6$
 $f_3(c, d) \equiv [c = \text{DRUG} \land \text{ends}(w, \text{"c"})] \rightarrow \text{weight } 0.3$

Maximum Entropy:

• Make a probabilistic model from the linear combination $\sum \lambda_i f_i(c,d)$

$$P(c \mid d, \lambda) = \frac{\exp \sum_{i} \lambda_{i} f_{i}(c, d)}{\sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c', d)} \leftarrow \frac{\text{Makes votes positive}}{\text{Normalizes votes}}$$

- $P(LOCATION|in\ Qu\'ebec) = e^{1.8}e^{-0.6}/(e^{1.8}e^{-0.6} + e^{0.3} + e^0) = 0.586$
- $P(DRUG|in\ Qu\'ebec) = e^{0.3}/(e^{1.8}e^{-0.6} + e^{0.3} + e^{0}) = 0.238$
- $P(PERSON|in\ Qu\'ebec) = e^0/(e^{1.8}e^{-0.6} + e^{0.3} + e^0) = 0.176$
- The weights are the parameters of the probability model, combined via a "soft max" function

Feature-Based Linear Classifiers

- Given this model form, we will choose parameters $\{\lambda_i\}$ that maximize the conditional likelihood of the data according to this model.
- Parameter learning is omitted and not required for this course, but is often discussed in a machine learning class.
 - E.g. gradient descent for parameter learning

Outline

- Maximum Entropy
- Feedforward Neural Networks
 - Recurrent Neural Networks

Neural Network Learning

- Learning approach based on modeling adaptation in biological neural systems.
- Perceptron: Initial algorithm for learning simple neural networks (single layer) developed in the 1950's.
- Backpropagation: More complex algorithm for learning multi-layer neural networks developed in the 1980's. (not required for this class)

ARTIFICIAL NEURON

Topics: connection weights, bias, activation function

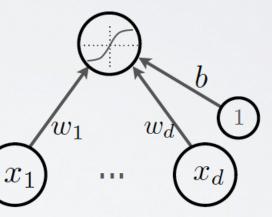
• Neuron pre-activation (or input activation):

$$a(\mathbf{x}) = b + \sum_{i} w_i x_i = b + \mathbf{w}^{\top} \mathbf{x}$$

• Neuron (output) activation

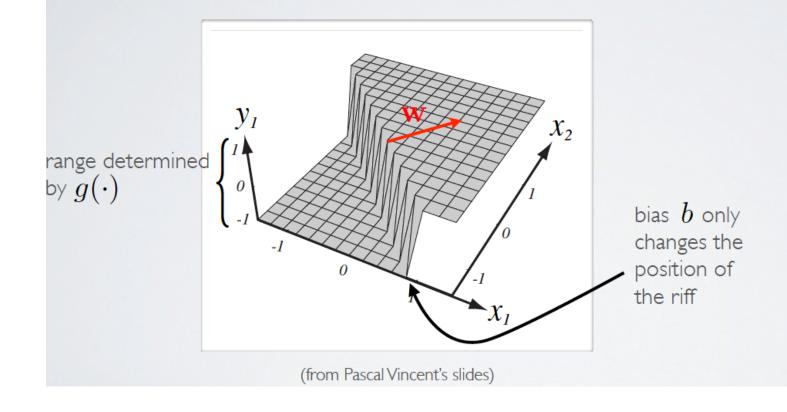
$$h(\mathbf{x}) = g(a(\mathbf{x})) = g(b + \sum_{i} w_i x_i)$$

- W are the connection weights
- b is the neuron bias
- $g(\cdot)$ is called the activation function



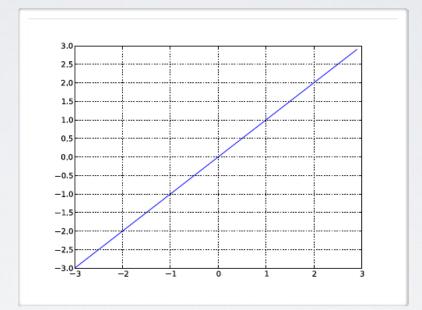
ARTIFICIAL NEURON

Topics: connection weights, bias, activation function



Topics: linear activation function

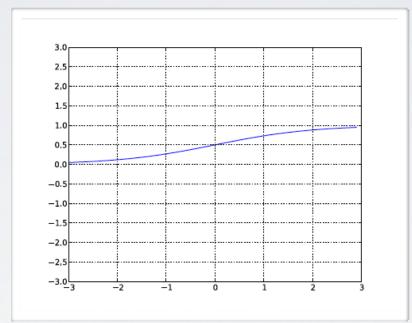
- Performs no input squashing
- Not very interesting...



$$g(a) = a$$

Topics: sigmoid activation function

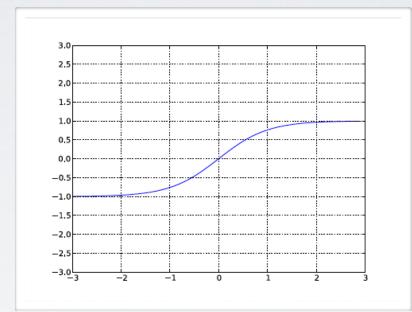
- Squashes the neuron's pre-activation between 0 and 1
- Always positive
- Bounded
- Strictly increasing



$$g(a) = \operatorname{sigm}(a) = \frac{1}{1 + \exp(-a)}$$

Topics: hyperbolic tangent ("tanh") activation function

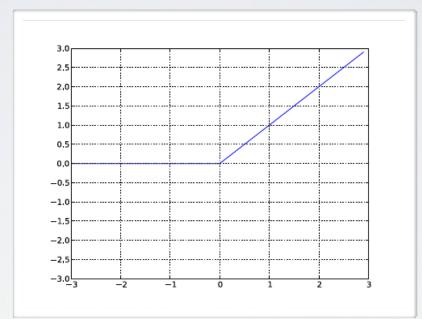
- Squashes the neuron's pre-activation between
 I and I
- Can be positive or negative
- Bounded
- Strictly increasing



$$g(a) = \tanh(a) = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)} = \frac{\exp(2a) - 1}{\exp(2a) + 1}$$

Topics: rectified linear activation function

- Bounded below by 0 (always non-negative)
- Not upper bounded
- Strictly increasing
- Tends to give neurons with sparse activities



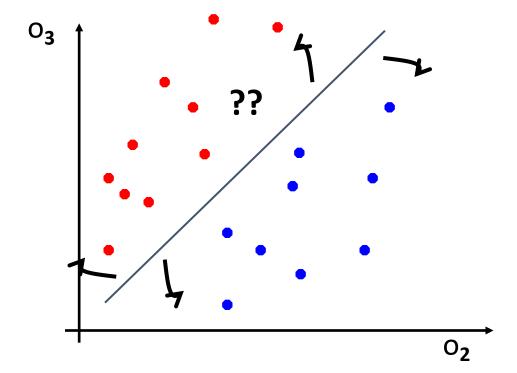
$$g(a) = reclin(a) = max(0, a)$$

```
class Neuron(object):
    # ...

def forward(inputs):
    """ assume inputs and weights are 1-D numpy arrays and bias is a number """
    cell_body_sum = np.sum(inputs * self.weights) + self.bias
    firing_rate = 1.0 / (1.0 + math.exp(-cell_body_sum)) # sigmoid activation function
    return firing_rate
```

Linear Separator

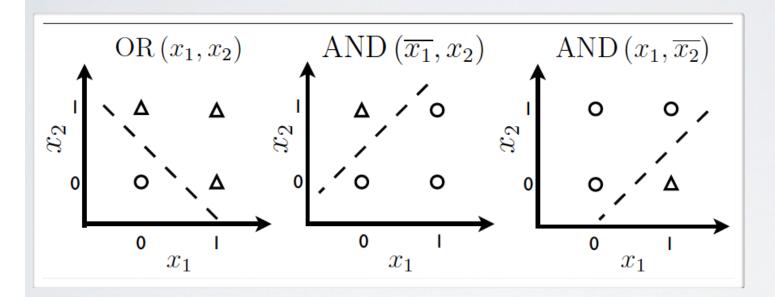
 Since one-layer neuron (aka perceptron) uses linear threshold function, it is searching for a linear separator that discriminates the classes.



ARTIFICIAL NEURON

Topics: capacity of single neuron

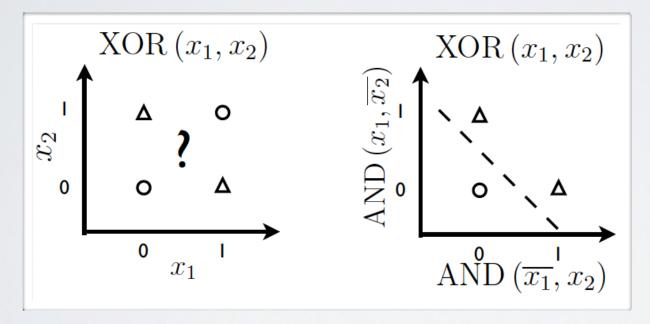
• Can solve linearly separable problems



ARTIFICIAL NEURON

Topics: capacity of single neuron

· Can't solve non linearly separable problems...



· ... unless the input is transformed in a better representation

NEURAL NETWORK

 $(w_i^{(2)})$

 $h(\mathbf{x})_i$

Topics: single hidden layer neural network

Hidden layer pre-activation:

$$\mathbf{a}(\mathbf{x}) = \mathbf{b}^{(1)} + \mathbf{W}^{(1)}\mathbf{x}$$
$$\left(a(\mathbf{x})_i = b_i^{(1)} + \sum_j W_{i,j}^{(1)} x_j\right)$$

Hidden layer activation:

$$\mathbf{h}(\mathbf{x}) = \mathbf{g}(\mathbf{a}(\mathbf{x}))$$

• Output layer activation:

$$f(\mathbf{x}) = o\left(b^{(2)} + \mathbf{w}^{(2)^{\mathsf{T}}} \mathbf{h}^{(1)} \mathbf{x}\right) \underbrace{x_1}_{\text{output activation function}}^{\mathsf{T}, j} \dots \underbrace{x_j}_{\text{output activation}}^{\mathsf{T}, j} \dots \underbrace{x_j}_{\text{output activation function}}^{\mathsf{T}, j} \dots \underbrace{x_j}_{\text{output activation}}^{\mathsf{T}, j} \dots \underbrace{x_j}_{\text{output activa$$

NEURAL NETWORK

Topics: softmax activation function

- For multi-class classification:
 - we need multiple outputs (I output per class)
 - ullet we would like to estimate the conditional probability $p(y=c|\mathbf{x})$
- We use the softmax activation function at the output:

$$\mathbf{o}(\mathbf{a}) = \operatorname{softmax}(\mathbf{a}) = \left[\frac{\exp(a_1)}{\sum_c \exp(a_c)} \dots \frac{\exp(a_C)}{\sum_c \exp(a_c)}\right]^{\top}$$

- strictly positive
- sums to one
- Predicted class is the one with highest estimated probability

NEURAL NETWORK

Topics: multilayer neural network

- \bullet Could have L hidden layers:
 - layer pre-activation for k>0 $(\mathbf{h}^{(0)}(\mathbf{x})=\mathbf{x})$

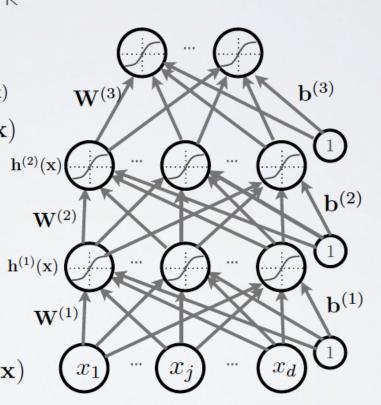
$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

▶ hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

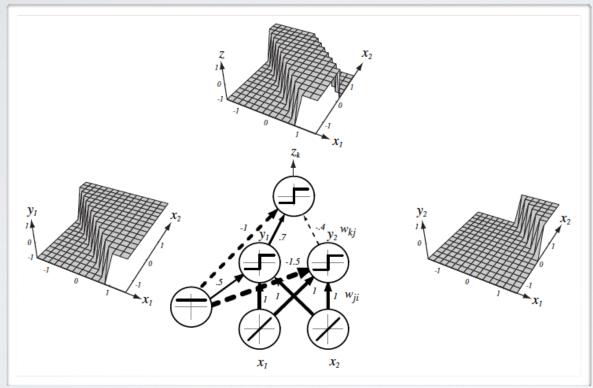
• output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$



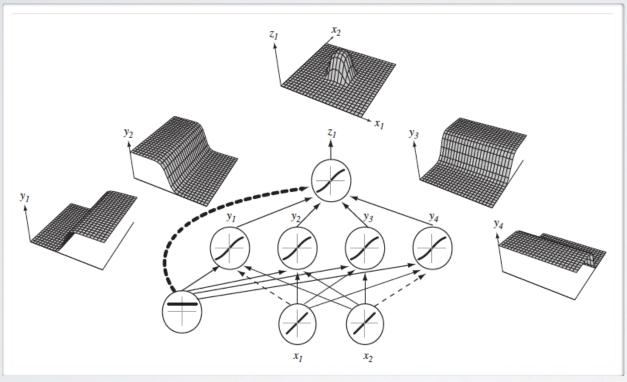
```
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)
```

Topics: single hidden layer neural network



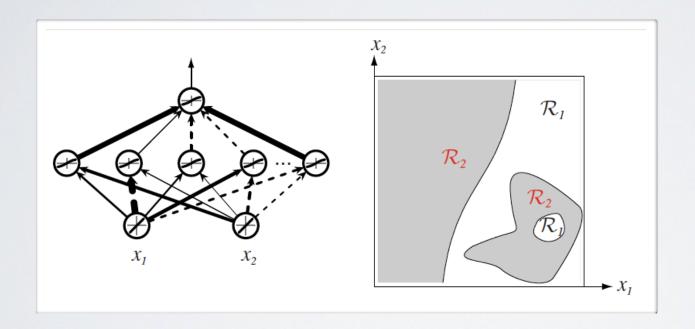
(from Pascal Vincent's slides)

Topics: single hidden layer neural network



(from Pascal Vincent's slides)

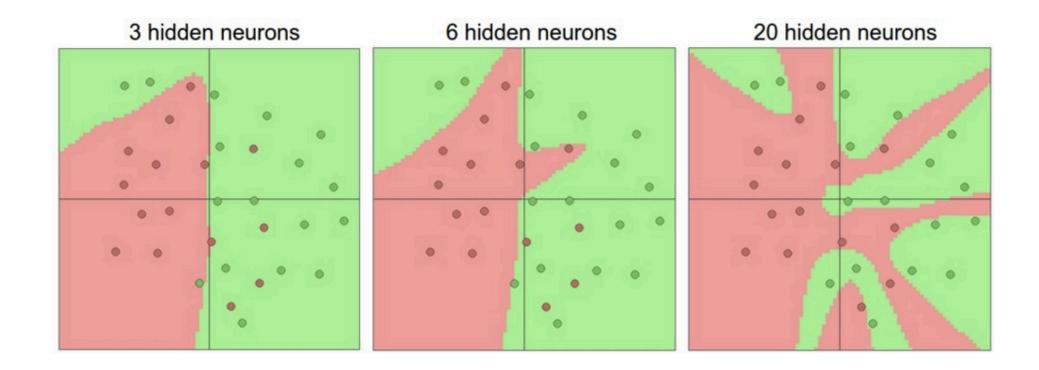
Topics: single hidden layer neural network



(from Pascal Vincent's slides)

Topics: universal approximation

- Universal approximation theorem (Hornik, 1991):
 - "a single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units"
- The result applies for sigmoid, tanh and many other hidden layer activation functions
- This is a good result, but it doesn't mean there is a learning algorithm that can find the necessary parameter values!



How to train a neural network? (Not covered in this course, only for reference)

Topics: multilayer neural network

- Could have L hidden layers:
- ▶ layer input activation for k>0 $(\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x})$

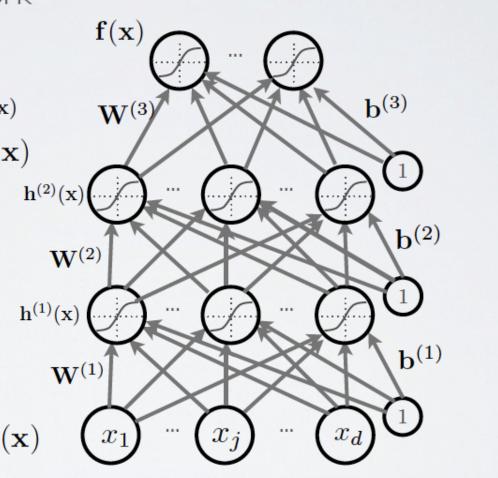
$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

• hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

• output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$



Empirical Risk Minimization

Topics: empirical risk minimization, regularization

- Empirical risk minimization
 - framework to design learning algorithms

$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) + \lambda \Omega(\boldsymbol{\theta})$$

- $l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$ is a loss function
- $\Omega(oldsymbol{ heta})$ is a regularizer (penalizes certain values of $oldsymbol{ heta}$)
- Learning is cast as optimization
 - ideally, we'd optimize classification error, but it's not smooth
 - loss function is a surrogate for what we truly should optimize (e.g. upper bound)

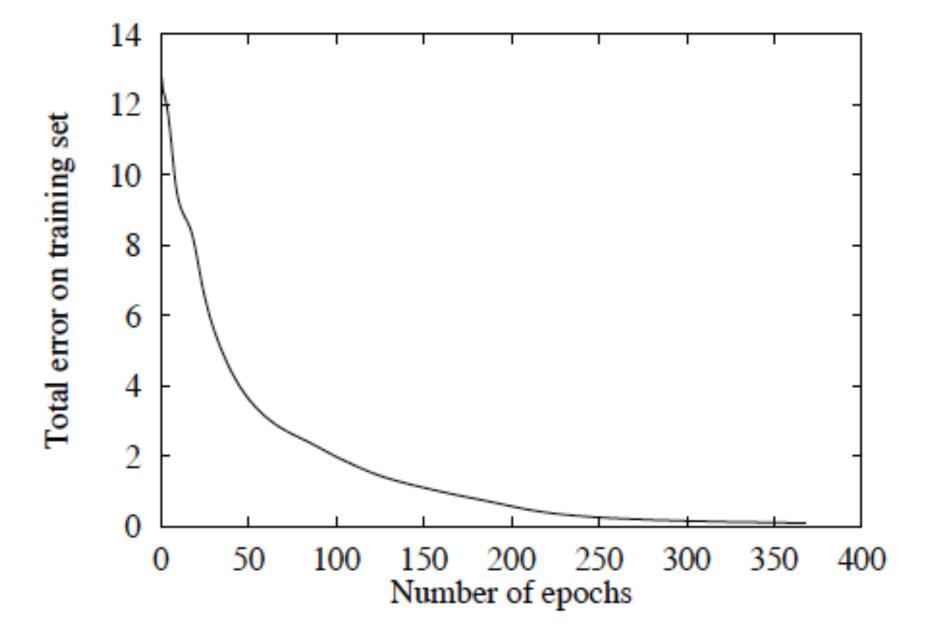
LOSS FUNCTION

Topics: loss function for classification

- Neural network estimates $f(\mathbf{x})_c = p(y = c|\mathbf{x})$
 - ullet we could maximize the probabilities of $y^{(t)}$ given $\mathbf{x}^{(t)}$ in the training set
- To frame as minimization, we minimize the negative log-likelihood natural log (ln)

$$l(\mathbf{f}(\mathbf{x}), y) = -\sum_{c} 1_{(y=c)} \log f(\mathbf{x})_{c} = -\log f(\mathbf{x})_{y}$$

- we take the log to simplify for numerical stability and math simplicity
- sometimes referred to as cross-entropy



[figure from Greg Mori's slides]

REGULARIZATION

Topics: L2 regularization

$$\Omega(\boldsymbol{\theta}) = \sum_{k} \sum_{i} \sum_{j} \left(W_{i,j}^{(k)} \right)^{2} = \sum_{k} ||\mathbf{W}^{(k)}||_{F}^{2}$$

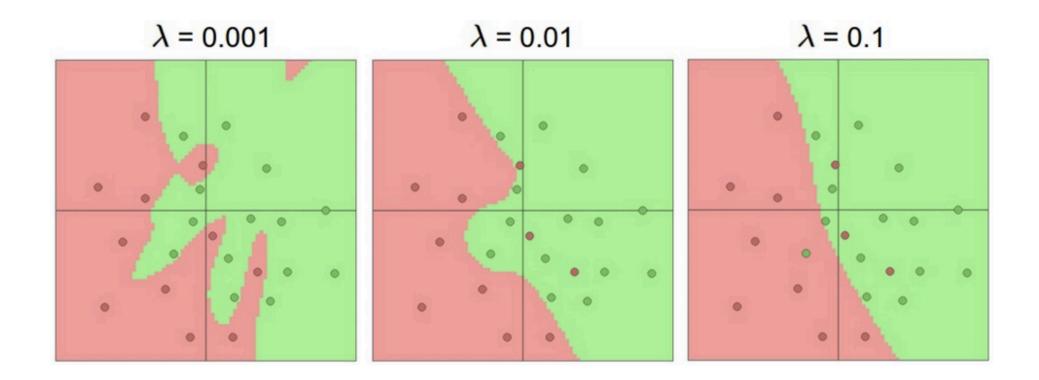
Empirical Risk Minimization

Topics: empirical risk minimization, regularization

- Empirical risk minimization
 - framework to design learning algorithms

$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) + \lambda \Omega(\boldsymbol{\theta})$$

- $l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$ is a loss function
- $\Omega(oldsymbol{ heta})$ is a regularizer (penalizes certain values of $oldsymbol{ heta}$)
- Learning is cast as optimization
 - ideally, we'd optimize classification error, but it's not smooth
 - loss function is a surrogate for what we truly should optimize (e.g. upper bound)



[http://cs231n.github.io/neural-networks-1/]

INITIALIZATION

size of $\mathbf{h}^{(k)}(\mathbf{x})$

Topics: initialization

- For biases
 - initialize all to 0
- For weights
 - ▶ Can't initialize weights to 0 with tanh activation
 - we can show that all gradients would then be 0 (saddle point)
 - ▶ Can't initialize all weights to the same value
 - we can show that all hidden units in a layer will always behave the same
 - need to break symmetry
 - Recipe: sample $\mathbf{W}_{i,j}^{(k)}$ from $U\left[-b,b\right]$ where $b=\frac{\sqrt{6}}{\sqrt{H_k+H_{k-1}}}$ the idea is to sample around 0 but break symmetry
 - other values of b could work well (not an exact science) (see Glorot & Bengio, 2010)

Model Learning

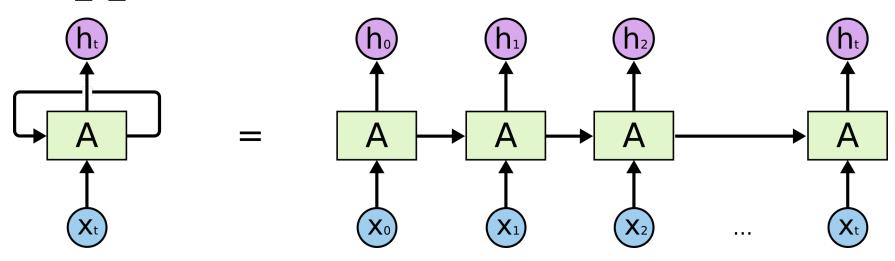
- Backpropagation (BP) algorithm (not required for this course)
- Further reading on BP:
 - https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
 - https://mattmazur.com/2015/03/17/a-step-by-step-backpropagationexample/

Outline

- Maximum Entropy
- Feedforward Neural Networks

Long Distance Dependencies

- It is very difficult to train NNs to retain information over many time steps
- This makes it very difficult to handle long-distance dependencies, such as subject-verb agreement.
- E.g. Jane walked into the room. John walked in too. It was late in the day. Jane said hi to _?_



Recurrent Neural Networks

Feed-forward NN

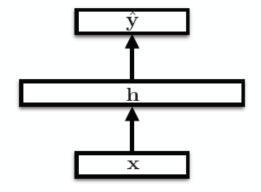
$$\mathbf{h} = g(\mathbf{V}\mathbf{x} + \mathbf{c})$$

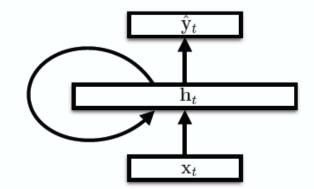
$$\hat{\mathbf{y}} = \mathbf{W}\mathbf{h} + \mathbf{b}$$

Recurrent NN

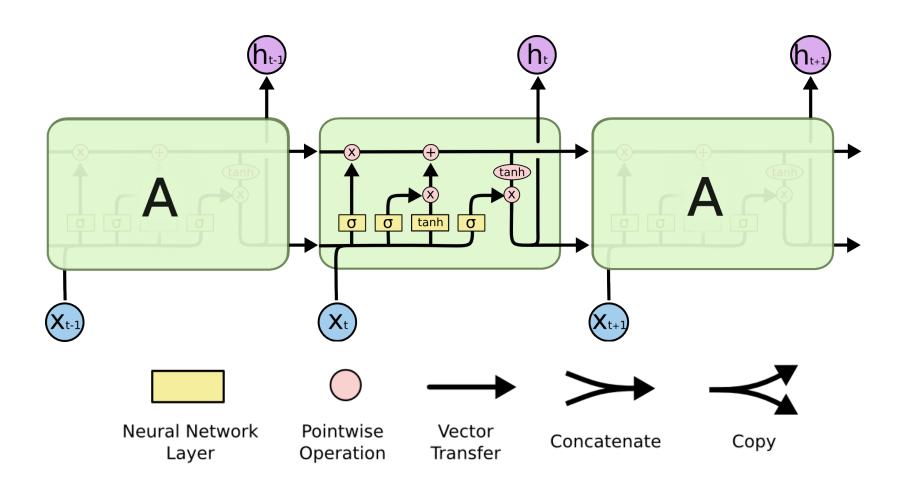
$$\mathbf{h} = g(\mathbf{V}\mathbf{x} + \mathbf{c})$$
 $\mathbf{h}_t = g(\mathbf{V}\mathbf{x}_t + \mathbf{U}\mathbf{h}_{t-1} + \mathbf{c})$

$$\hat{\mathbf{y}} = \mathbf{W}\mathbf{h} + \mathbf{b}$$
 $\hat{\mathbf{y}}_t = \mathbf{W}\mathbf{h}_t + \mathbf{b}$



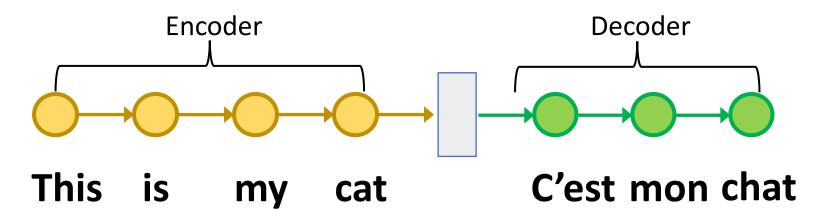


Long-Short Term Memory Networks (LSTMs)

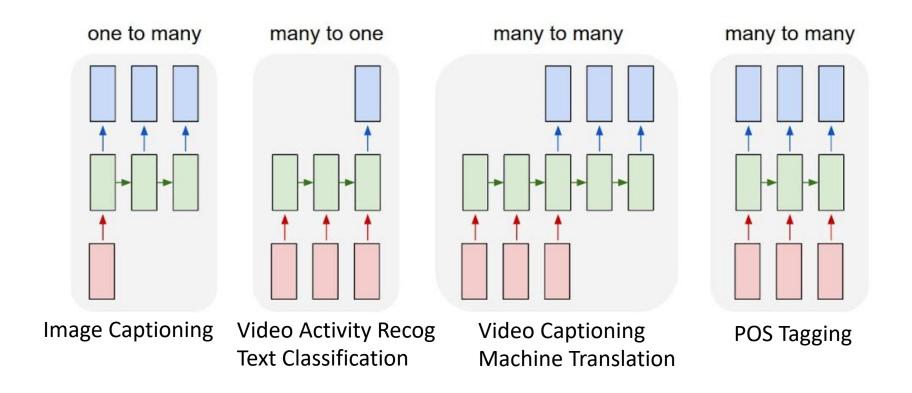


Sequence to Sequence

• Encoder/Decoder framework maps one sequence to a "deep vector" then another LSTM maps this vector to an output sequence.



Summary of LSTM Application Architectures



Successful Applications of LSTMs

- Speech recognition: Language and acoustic modeling
- Sequence labeling
 - POS Tagging
 - NER
 - Phrase Chunking
- Neural syntactic and semantic parsing
- Image captioning
- Sequence to Sequence
 - Machine Translation (Sustkever, Vinyals, & Le, 2014)
 - Summarization
 - Video Captioning (input sequence of CNN frame outputs)