
ACHIEVING SCALABLE HARDWARE VERIFICATION WITH

SYMBOLIC SIMULATION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Valeria Bertacco

August 2003

c
�

Copyright by Valeria Bertacco 2003

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion,

it is fully adequate in scope and quality as a dissertation for the

degree of Doctor of Philosophy.

Kunle Olukotun
(Principal Adviser)

I certify that I have read this dissertation and that, in my opinion,

it is fully adequate in scope and quality as a dissertation for the

degree of Doctor of Philosophy.

David Dill

I certify that I have read this dissertation and that, in my opinion,

it is fully adequate in scope and quality as a dissertation for the

degree of Doctor of Philosophy.

Mark Horowitz

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

In the past 40 years, electronic systems have become pervasive in modern society. Digital integrated

circuits (ICs) are at the heart of the large majority of these systems. These digital ICs are complex

systems containing millions of interconnected transistors in a very small area. Moreover, the under-

lying semiconductor fabrication technology used to fabricate these ICs allows doubling the number

of transistors in the same area approximately every 18 months.

The design of digital systems is a complex and time consuming process that progresses through

various phases and levels of abstraction, and relies heavily on CAD (Computer-Aided Design) soft-

ware tools. Within this context, ensuring the correctness of these digital systems is a major con-

sideration, especially because the cost of failures is becoming increasingly high. One of the most

famous recent examples of its importance is the Intel, Inc. Pentium’s flaw in the floating point

divide unit of 1994 that eventually forced Intel to replace all the Pentium chips that were already

in the market. In many cases, the possibility of failure is even unacceptable, examples of these

applications are: transportation systems, medical applications and financial systems. Even though

guaranteeing the correctness of a design is such a central aspect in its development, current veri-

fication methodologies are still inadequate to tackle the complex systems that are being developed

nowadays. Hardware design companies try to compensate for mediocre CAD tools by dedicating

the majority of their resources involved in a design to verification, yet are still unable to guarantee

correct functionality over the entire design space.

Logic simulation is the most widely accepted method for ensuring the correctness of digital ICs

in industry because of its scalability, flexibility and predictable run-time behavior. This technique is

v

based on verifying a digital system by providing sequences of binary values for each of the inputs

of the system and checking that the corresponding outputs are correct, based on what the design

team expected or described in a specification document. However, because of its inherent approach,

this validation technique usually can visit only a small fraction of all the possible configurations

of a system - also called the state space - and thus the discovery of bugs heavily relies on the

expertise of the designer of the test stimuli to select a few crucial configurations to verify. Symbolic

simulation is another verification method that is attracting increasing interest because it allows the

verification engineer to explore all, or a major portion, of a circuit’s state space without the need to

design time-consuming test stimuli. However, this approach poses a high demand on the resources

of the simulating host, and in particular, on the memory system, because of the complexity of the

algorithms involved and their unpredictable run-time behavior. Thus, the scalability of this approach

has been the main limiting factor to its mainstream deployment and so far its scope has been limited

to small systems.

This thesis presents new symbolic simulation based approaches to the verification problem that

radically improve scalability. We present two new techniques that narrow the performance gap be-

tween the complexity of digital systems that are being developed and the limited ability to verify

them. The first technique, Cycle-Based Symbolic Simulation, is a unique combination of formal

methods and logic simulation that can stimulate a circuit with a very large number of input combi-

nations and sequences in parallel. The key concept is the use of a parametric form to represent the

set of states visited during simulation. This approach maintains a high degree of scalability, in line

with current cycle-based logic simulation techniques, while achieving better efficiency. To better

exploit the use of parameterization in improving the memory profile of simulation, the second tech-

nique, Disjoint Support Decomposition Based Symbolic Simulation, exploits the disjoint support

decomposition properties of the state functions. We develop a new algorithm that exposes the dis-

joint decomposition properties of a Boolean function by restructuring its BDD representation. The

new algorithm is very efficient in the sense that it has worst-case complexity that is only quadratic

in the size of the initial BDD, while previous algorithms had exponential complexity in the size of

vi

the function’s support. We deployed this algorithm to find the disjoint support decomposition of

the state functions in symbolic simulation. By restructuring the next-state functions using their dis-

joint support components, it is possible to gain better insight about the role of each input variable.

Consequently, the next-state functions can be transformed into a simpler parametric form without

sacrificing simulation accuracy. Both of these techniques have been tested on the ISCAS bench-

mark suite. The results show that the first technique can simulate very large trace sets in parallel,

maintaining a simulation speed and memory profile that are much closer to logic simulation. The

second technique is effective in reducing the memory requirements of symbolic simulation while

maintaining exact state exploration.

vii

viii

Acknowledgements

I would like to first thank my graduate advisor Kunle Olukotun. Throughout these years, he has

always been prompt and available in supporting whatever direction of research and of life I decided

to pursue. In our technical interactions, he would always go straight to the results of my work

and challenge me on their practical contribution to the quality of verification for industrial scale

digital designs. David Dill has been the person I could always go to for bouncing ideas and have

illuminating technical discussions. When my ideas could survive his dissecting analysis, I knew

I could publish them. On a personal level, I always admired his bluntness that would eliminate a

lot of useless conversation in our interactions. Thanks also to Mark Horowitz for being part of my

defense committee and reviewing this thesis even though it is not central to his research area.

My years in Synopsys have played a central role in shaping my understanding of design veri-

fication as an industrial challenge first and a research area later. My colleagues have been crucial

in providing me with invaluable opportunities: Ghulam Nurie, Swami Venkat and the marketing

team of the Vera Group allowed me to interact with customers in meetings that have always been

enlightening in my quest towards an understanding of the needs of the hardware designers. Pei-Hsin

Ho, my manager in the Advanced Technology Group of Synopsys, gave me the chance to be part

of a high-profile technical team and take part in seminars and technical conferences, all while never

losing sight of the objective of providing solutions for the design industry. Most of all, he showed

me how to efficiently achieve technology transfer, taking academic research and deploying it in

software solution for the hardware design community. I would like to thank my other colleagues in

the Advanced Technology Group, in particular: Stephen Edwards, Thomas Shiple, James Kukula,

ix

David Cyrluk, Tony Ma, Kevin Harer, Jerry Taylor, Randy Harr and Robert Damiano.

I spent the past year at Stanford completing my PhD work. During this time I shared my office

with John Davis. John has created a very positive work environment for me, he has always provided

good advice and been very helpful. He has been crucial especially during the preparation of my

oral defense talk for which he provided countless bits of advice, asked me all the most difficult

questions and forced me to rehearse it until it would flow seamlessly, by which point he could give

the talk himself. I would also like to thank all the people that supported me by making available all

those resources that are involved in putting together a thesis. My thanks go especially to: Charlie

Orgish, Darlene Hadding, Lance Hammond and Azita Emami-Neyestanak. My undergraduate ad-

visor, Maurizio Damiani, first introduced me to research and to the area of Computer Aided Design

for integrated circuits. I would like to thank him for the numerous interactions and collaborations

that lasted long after my undergraduate studies and spurred many of the publications that led to this

research work. The material presented in Chapters 4 and 5 has been shaped by many months of

intense discussions with him.

On a personal level, I would like to thank my parents for teaching me the first concepts of

mathematics and logic and for introducing me early in my life to pursuing both education and

industry experience, contrary to the Italian tradition of completing all the studies before gaining any

work experience. I also want to thank my family for supporting my choices in my path through life.

My brother Livio provided all sort of technical support and advice and solved many system crashes,

most often connecting from some remote location around Europe. Finally, I thank all my friends in

the Stanford community who provided me with enthusiastic social entertainment during my years

at Stanford.

As this work comes closer to completion, I look forward to new research in the years to come

that will hopefully both have practical use and be intellectually stimulating. Thus, I see this disser-

tation more as a stepping stone in my research work than as the end of my efforts.

x

Contents

Abstract v

Acknowledgements ix

1 Introduction 1

1.1 Functional validation . 2

1.2 Formal verification . 3

1.2.1 Symbolic simulation . 4

1.3 Contributions of the thesis . 5

1.4 Organization of the thesis . 6

2 Design and verification of digital systems 9

2.1 The design flow . 10

2.2 RTL verification . 14

2.3 Boolean variables and functions and their representation 17

2.3.1 Binary Decision Diagrams . 18

2.4 Models for design verification . 21

2.4.1 Structural network model . 21

2.4.2 State diagrams . 23

2.4.3 Mathematical model of Finite State Machines 25

2.5 Functional validation . 26

xi

2.6 Formal verification . 31

2.6.1 Symbolic Finite State Machine traversal 32

2.7 Symbolic Simulation . 35

2.7.1 The algorithm . 37

2.7.2 The challenge in symbolic simulation . 41

3 Cycle-Based Symbolic Simulation 43

3.1 Parametric transformations . 43

3.2 Parameterizations in symbolic simulation . 46

3.3 The CBSS algorithm . 47

3.4 The parameterization phase . 49

3.4.1 Using functional dependencies . 50

3.4.2 How to classify the components of the state vector 53

3.4.3 The remap function . 57

3.5 Implementation and complexity . 59

3.6 Experimental results . 61

3.7 Conclusion . 65

4 Disjoint Support Decompositions 67

4.1 Introduction . 68

4.2 Related work on Disjoint Support Decompositions 69

4.3 Terminology . 71

4.3.1 Decomposition trees. 73

4.4 The unique maximal Disjoint Support Decomposition 73

4.4.1 Decomposition by prime functions. 75

4.4.2 A characterization of F � KF . 78

4.4.3 The normal Decomposition Tree . 86

4.5 On the decomposability of Boolean functions . 92

xii

5 A novel algorithm for Disjoint Support Decompositions 95

5.1 Building the decomposition bottom-up . 96

5.2 Case 1. Neither A10 nor A11 is constant and A10 �� A11 99

5.3 Case 2. Exactly one of A10, A11 is constant . 103

5.4 Case 3. A10
� A11 and A10 is not a constant . 106

5.5 New decompositions . 108

5.6 Putting it all together: The DSD procedure . 117

5.6.1 Inherited decompositions . 120

5.6.2 New decompositions . 125

5.7 Complexity analysis and considerations . 127

5.8 Experiments on the decomposability of industrial testbenches 129

5.9 Conclusion . 136

6 Exact Parameterizations for Symbolic Simulation 137

6.1 Re-encoding the state function . 138

6.2 Reduction at Free Points . 140

6.3 Elimination of Prime functions . 143

6.4 Removal of non-dominant variables . 146

6.5 DSD-SS Implementation . 150

6.6 Experimental results . 151

6.7 Summary . 155

7 Conclusion 157

7.1 Parameterized approaches in symbolic simulation 157

7.2 Disjoint support decompositions . 158

7.3 The future of this work . 159

Bibliography 161

xiii

List of Tables

3.1 Cycle Based Symbolic Simulation results . 62

5.1 Disjoint Support Decomposition results . 131

6.1 Disjoint Support Decomposition-based simulation results 154

xiv

List of Figures

2.1 Design flow of a digital system . 11

2.2 Approaches to verification . 16

2.3 Binary Decision Diagrams . 19

2.4 Graphic symbols for some basic logic gates . 22

2.5 Structural network model . 22

2.6 Network model of a 3-bits up/down counter with reset 23

2.7 State diagram of a 3-bit up/down counter . 24

2.8 State diagram of a 1-hot encoded 3-bit counter . 25

2.9 Compiled logic simulator . 27

2.10 Logic simulation - pseudocode . 29

2.11 FSM state traversal - pseudocode . 35

2.12 Logic and symbolic simulation . 36

2.13 Symbolic simulation algorithm - pseudocode . 38

2.14 Symbolic simulation for Example 2.8 - Initialization phase 38

2.15 Symbolic simulation for Example 2.8 - Simulation Step 2 40

2.16 Iterative model of symbolic simulation . 40

3.1 Parameterization of the state vector during symbolic simulation 44

3.2 Three steps of symbolic simulation for the counter of Example 2.2 and possible

parameterizations of the reached state sets . 46

xv

3.3 Cycle-Based symbolic simulation flow . 49

3.4 The CBSS algorithm - pseudocode . 50

3.5 The parameterized frontier subset PS@k . 51

3.6 parameterize function - pseudocode . 53

3.7 Classifying simple and complex variables - pseudocode 55

3.8 Classifying shared variables - pseudocode . 57

4.1 Decompositions for Example 4.1 . 68

4.2 A decomposition tree for Example 4.3. 74

4.3 Decomposition representation of the function of Example 4.7 88

4.4 Decomposition tree for Example 4.8. 89

5.1 PRIME decomposition. 111

5.2 Function for Example 5.6. 115

5.3 Two functions and the construction of their Max � G � H � tree. 127

6.1 A decomposed state vector for a small design . 139

6.2 The parameterized frontier set PS@k . 140

6.3 A vector function and its free points . 141

6.4 Free points elimination for Example 6.1 . 143

6.5 General case for prime function elimination: (a) before and (b) after 145

6.6 Prime elimination for Example 6.2. 146

6.7 Non-dominant variable removal for Example 6.4 150

7.1 Trade-offs of in the breadth vs. scalability plane 159

xvi

