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Abstract

In the past 40 years, electronic systems have become pervasive in modern society. Digital integrated

circuits (ICs) are at the heart of the large majority of these systems. These digital ICs are complex

systems containing millions of interconnected transistors in a very small area. Moreover, the under-

lying semiconductor fabrication technology used to fabricate these ICs allows doubling the number

of transistors in the same area approximately every 18 months.

The design of digital systems is a complex and time consuming process that progresses through

various phases and levels of abstraction, and relies heavily on CAD (Computer-Aided Design) soft-

ware tools. Within this context, ensuring the correctness of these digital systems is a major con-

sideration, especially because the cost of failures is becoming increasingly high. One of the most

famous recent examples of its importance is the Intel, Inc. Pentium’s flaw in the floating point

divide unit of 1994 that eventually forced Intel to replace all the Pentium chips that were already

in the market. In many cases, the possibility of failure is even unacceptable, examples of these

applications are: transportation systems, medical applications and financial systems. Even though

guaranteeing the correctness of a design is such a central aspect in its development, current veri-

fication methodologies are still inadequate to tackle the complex systems that are being developed

nowadays. Hardware design companies try to compensate for mediocre CAD tools by dedicating

the majority of their resources involved in a design to verification, yet are still unable to guarantee

correct functionality over the entire design space.

Logic simulation is the most widely accepted method for ensuring the correctness of digital ICs

in industry because of its scalability, flexibility and predictable run-time behavior. This technique is
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based on verifying a digital system by providing sequences of binary values for each of the inputs

of the system and checking that the corresponding outputs are correct, based on what the design

team expected or described in a specification document. However, because of its inherent approach,

this validation technique usually can visit only a small fraction of all the possible configurations

of a system - also called the state space - and thus the discovery of bugs heavily relies on the

expertise of the designer of the test stimuli to select a few crucial configurations to verify. Symbolic

simulation is another verification method that is attracting increasing interest because it allows the

verification engineer to explore all, or a major portion, of a circuit’s state space without the need to

design time-consuming test stimuli. However, this approach poses a high demand on the resources

of the simulating host, and in particular, on the memory system, because of the complexity of the

algorithms involved and their unpredictable run-time behavior. Thus, the scalability of this approach

has been the main limiting factor to its mainstream deployment and so far its scope has been limited

to small systems.

This thesis presents new symbolic simulation based approaches to the verification problem that

radically improve scalability. We present two new techniques that narrow the performance gap be-

tween the complexity of digital systems that are being developed and the limited ability to verify

them. The first technique, Cycle-Based Symbolic Simulation, is a unique combination of formal

methods and logic simulation that can stimulate a circuit with a very large number of input combi-

nations and sequences in parallel. The key concept is the use of a parametric form to represent the

set of states visited during simulation. This approach maintains a high degree of scalability, in line

with current cycle-based logic simulation techniques, while achieving better efficiency. To better

exploit the use of parameterization in improving the memory profile of simulation, the second tech-

nique, Disjoint Support Decomposition Based Symbolic Simulation, exploits the disjoint support

decomposition properties of the state functions. We develop a new algorithm that exposes the dis-

joint decomposition properties of a Boolean function by restructuring its BDD representation. The

new algorithm is very efficient in the sense that it has worst-case complexity that is only quadratic

in the size of the initial BDD, while previous algorithms had exponential complexity in the size of
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the function’s support. We deployed this algorithm to find the disjoint support decomposition of

the state functions in symbolic simulation. By restructuring the next-state functions using their dis-

joint support components, it is possible to gain better insight about the role of each input variable.

Consequently, the next-state functions can be transformed into a simpler parametric form without

sacrificing simulation accuracy. Both of these techniques have been tested on the ISCAS bench-

mark suite. The results show that the first technique can simulate very large trace sets in parallel,

maintaining a simulation speed and memory profile that are much closer to logic simulation. The

second technique is effective in reducing the memory requirements of symbolic simulation while

maintaining exact state exploration.
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