
Chapter 6

Exact Parameterizations for Symbolic

Simulation

The theory of disjoint support decompositions provides important insights on the structure of a

Boolean function and on the role and influence of each of its support variables. Moreover, the algo-

rithm presented in the previous chapter allows us to take advantage of such insights very efficiently.

We saw at the end of Chapter 3 that the parameterization technique of Cycle-Based Symbolic Sim-

ulation is computationally very efficient, but not exact. Often we may need to compromise by

exploring only a subset of the possible set of states of the design under verification in order to main-

tain simulation efficiency. In some cases, this trade off produces simulation performance that is

comparable to plain logic simulation in terms of vectors simulated per second.

Here we present a new parameterization technique that, by exploiting the disjoint decomposition

properties of the functions in the state vector, can produce an exact parameterization, that is a new

set of functions spanning the exact same state set as the original state vector. These new functions

have smaller support than the original ones, and thus a simpler BDD representation.

In other words, if the parameterization of CBSS was building a function PS@k such that

R � PS@k ��[ R � S@k ���
137
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the algorithm presented in this chapter builds a parameterized vector function such that

R � PS@k � � R � S@k ��
We call the new algorithm DSD-based Symbolic Simulation, (DSD-SS).

6.1 Re-encoding the state function

This new technique for improved scalability and robustness in symbolic simulation is similar to

CBSS in that it inserts a parameterization phase in the feedback look of symbolic simulation as

indicated in Figure 3.1. However, now we take a completely different approach to how we perform

the parameterization.

In order to generate the parametric state vector for DSD-SS, at each step of simulation we

start by generating the disjoint support decomposition representation for each of the component

functions of the state vector. While each element of the vector has a tree decomposition with no

reconvergence, as described in Chapter 4, it is now possible that two or more elements intersect at

some intermediate node of their trees.

Figure 6.1 shows an example of a decomposed state vector for a small design with only four

memory elements. The dashed line delimits the decomposition of component s1 to show that each

single component function is represented by a tree. We call this structure a decomposition graph.

The decomposed representation is generated dynamically during the simulation. We then use

this representation to generate a parameterization of the state vector. The parameterization we

propose is based on the observation that at each symbolic simulation step k, it is possible to substitute

the state function S@k : Bmk � Bn with a new function PS@k such that R � S@k � � R � PS@k � without

affecting the results of the simulations; namely: 1) The set of outputs that can be generated by the

circuit and 2) the set of states the circuit can reach at each cycle. If we can find a suitable function

PS@k that also has a smaller BDD representation (i.e., fewer BDD nodes), then we can control the

size of the Boolean expression and improve the performance of symbolic simulation.
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Figure 6.1: A decomposed state vector for a small design

The relationship between the set of states spanned by the new PS@k vector function versus the

original state vector and the entire search space is reported in Figure 6.2. It is worth comparing it

with the corresponding Figure 3.5 of the CBSS parameterization of Chapter 3.

In the following sections we present various transformations that we apply to the decomposi-

tion graph to accomplish the objective of producing an exact parameterization with a more compact

representation than the original state vector. For each of these transformations, we show that the

function vectors before and after the transformation span the same identical range. The first tech-

nique, called reduction at free points, is independent of the type of decomposition node it applies

to. Prime function elimination is specific to PRIME nodes, while non-dominant variable removal

refers to variable inputs that fan out to associative operators nodes.

In presenting the techniques, we will refer to the generic vector function F instead of S@k since

such transformations can be applied to any Boolean vector function. Moreover, we will use the terms

decomposition graph F and function F interchangeably to refer to the multiple output function F.
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Figure 6.2: The parameterized frontier set PS@k

6.2 Reduction at Free Points

The first transformation, called reduction at free points, aims to simplify the decomposition graph

by finding nodes which constitute a single cut-point. In other words, the output of such nodes is

only affected by a set of variables which don’t influence any other portion of the graph.

We first provide the definition of a free point and we show an example transformation. Then we

provide proof that the transformation does not affect the range of the vector function.

The following definition is also illustrated in Figure 6.3:

Definition 6.1. A free point p in a decomposition graph of F is a function corresponding to an

output of a block in the graph. It has the property that, if we substitute the sub-graph rooted at the

point with a new input variable w, the new function G has disjoint support with the function rooted

at p:

F � x1 �	�	�	��� xm � � G � w� xp � 1 �	�	�	��� xm ��¤ p � x1 �	�	�	��� xp � (6.1)

and S � G ��� S � p � � /0.

Figure 6.3 shows three free points with darkened circles. Note that the output of p is a free point

since none of the variables in the support of p appears in the support of other parts of the graph. On
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Figure 6.3: A vector function and its free points

the other hand, the dashed circle at the output of q is not a free point since, if we split the graph at

that node, the two functions obtained, H and q with F � H ¤ q, would still share the input q1.

The following theorem shows that we can use free points to simplify the decomposition graph:

Theorem 6.1. Given a decomposition graph for a multiple output Boolean function F � x1 �	�	�	��� xm � :

Bm � Bn, a free point p � x1 �	�	�	��� xp � : B p � B in it, and the function G � p � xp � 1 �	�	�	��� xm � : Bm q p � 1 �
Bn, obtained by substituting the function p �+� with the new input variable p in the graph of F,

R � F � � R � G � .
Proof. Consider the function F � x1 �	�	�	� xm � and compute its range by splitting on the input variables

[27]:

R � F � � R � Fx1 . 0 �<8 R � Fx1 . 1 �
By applying this equation recursively over all the variables � x1 �	�	�	� xp � in the support of p, we

obtain:

R � F � � }� i1 I ¬ ¬ ¬5I ip � � B p

R � Fx1 . i1 I x2 . i2 I ¬ ¬ ¬5I xp . ip � (6.2)
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Using Equation 6.1:

Fx1 . i1 I x2 . i2 I ¬ ¬ ¬�I xp . ip
� Gp . iw where iw � p � i1 �	�	�	��� ip ���� 0 � 1 �

since p evaluates to a constant. Substituting in Eq. 6.2 we finally obtain:

R � F � � }
iw �~® 0 I 1 ¯ R � Gp . iw � � R � G �

Thus, we can substitute all the free points with new variables and generate a new state function

G with a smaller representation.

A simple traversal of the graph is sufficient to discover all the free points with maximal support,

that is, all the free points whose support is not contained in any other free point of the decomposition

graph:

Definition 6.2. A free point p �+� is said to have maximal support if its support S � p � is not a proper

subset of any other free point in the graph.

The transformation of free sub-graphs with new variables produces a new function G, with� S � G ���sb�� S � F ��� .
Example 6.1. Consider the decomposition graph of Figure 6.4. Figure 6.4.a shows all the free

points of the graph with filled circles. The free points surrounded by a dashed circle are also

maximal and we can substitute the portion of the graph rooted at these nodes with a new parameter,

without affecting the range of the graph. Figure 6.4.b shows the new, reduced graph obtained.

Note that, anytime we perform a free point reduction we remove a set of input variables from the

support of the vector function F. Thus, we can reassign any of these variables from a combinational

input variable role to a parameter variable role and use it as the parameter assigned to the free point.
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Figure 6.4: Free points elimination for Example 6.1

6.3 Elimination of Prime functions

As mentioned in Section 4.4.3, each block of a decomposition is either termed a PRIME function

or it is an associative operator. We found that, if a PRIME function satisfies certain conditions, we

can remove it from the decomposition graph, along with all of its sub-graph and substitute it with a

fresh input variable.

In order for the substitution to be acceptable, the output node of the PRIME block has to be

almost a free point, in the sense that up to one input of the PRIME block can be a node shared with

rest of the decomposition graph. As the proof shows, in this special case, the tree rooted at the

PRIME block can still be removed. In fact, PRIME blocks inherently guarantee that their output

cannot be kept constant by assigning any single one of their input signals. It follows that, no matter

what is the value for the node that is shared with the rest of the decomposition graph, the output of

PRIME block can still assume both values 0 and 1, and thus has full range.

Theorem 6.2. Given a prime function r � r1 �	�	�	��� rr � in a decomposition graph F, if all of its inputs,

except at most one, are free points, than the decomposition graph G obtained by substituting the

new variable r for function r �+� ,
F � x1 �	�	�	� xm � � G � r�	�	�	� xm �<¤ r � r1 �	�	�	� rr �
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is such that

R � F � � R � G ��
Proof. We distinguish two cases:

1. All the inputs of the prime block are free points. Then the output of the free block is also a

free point and the theorem reduces to the hypothesis of Theorem 6.1.

2. The prime block r has one input that it is not a free-point, say r1, without loss of generality.

All the other inputs to the prime function: � r2 �	�	�	�
� rr � are still free points and we can assume

that have been reduced to input variables by Theorem 6.1.

In the most general case, r1 is a single output function of other input variables that are in the

support of both G and r: S � r1 � � � a1 �	�	�	�
� ap � . The function F has then the form:

F � a1 �	�	�	� ap � r2 �	�	�	� rr �	�	�	� xm � � G � r� a1 �	�	�	� ap � r1 �	�	�	� xm ��¤ r � r1 �	�	�	� rr �
¤ r1 � a1 �	�	�	� ap � (6.3)

Let’s proceed again by computing the R � F � by recursively splitting on the input variables:

R � F � � }� i1 I ¬ ¬ ¬�I ip � � B p

R � Fa1 . i1 I a2 . i2 I ¬ ¬ ¬5I ap . ip � (6.4)

For each different assignment � i1 �	�	�	��� ip � , r1 evaluates to a constant value:

ir � r1 � i1 �	�	�	��� ip ���Î� 0 � 1 ��
Substituting the expansion of F as in Eq. 6.3, we obtain:

Fa1 . i1 I ¬ ¬ ¬5I ap . ip
� Ga1 . i1 I ¬ ¬ ¬�I ap . ip I r1 . ir1

¤ rr1 . ir1
(6.5)

Note that we cannot drop the cofactors w.r.t. the ai in G because r1 is not a free point and thus
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its inputs fan out to other nodes of the graph.

Now, the function rr1 . ir1
� r2 �	�	�	��� rr � is a free point and as such it can be substituted by a new

free variable r. We show now that it is not possible that rr1 . ir1
� r2 �	�	�	��� rr � reduces to a constant

for any value of ir1 . In fact, if that was the case, r could be expressed as r � r1 { rres � r2 �	�	�	�
� rr � ,
where { is either AND or OR and S � r1 �|� S � rres � � /0. r would then have a disjoint support

decomposition through an associative operator and would not be a PRIME function.

By carrying on the substitution r � rr1 . ir1
� r2 �	�	�	��� rr � , Eq. 6.5 reduces to:

Fa1 . i1 I a2 . i2 I ¬ ¬ ¬5I ap . ip
� Ga1 . i1 I a2 . i2 I ¬ ¬ ¬5I ap . ip

which substituted into Eq. 6.4 proves the theorem.
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Figure 6.5: General case for prime function elimination: (a) before and (b) after

A possible structure for the graph F is represented in Figure 6.5.a: All the inputs to block r

are free points, except for r1. We can then remove the block r and substitute it with a new input

variable obtaining the graph in Figure 6.5.b without affecting the range of the function. Note that

input variables r2 and r3 are not needed anymore.
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Example 6.2. The testbench s1196 from the IWLS suite contains the blocks reported in Figure 6.6

in its next state function at step 10 of symbolic simulation. The variables names are just indices

corresponding to the variables in the support of the state function. Since the prime function r has

the two inputs x35 and x39 that are free points and only one input that has multiple fanout, we can

completely eliminate this portion of the graph and just substitute it with the input variable r.

x35

x39

1x19

17x

x16

r
0

PRIME

blocks
To other

AND

OR

Figure 6.6: Prime elimination for Example 6.2.

6.4 Removal of non-dominant variables

Under certain conditions, an input variable can be removed from the decomposition graph without

affecting its range.

Example 6.3. Consider the following 3-outputs function:

f1
� AND � b � e �

f2
� AND � e � OR � a � b � d �	�

f3
� XOR � a � c �

The range of this function is B 3 7Ï� 101 � 100 � . We can remove the variable a from the function,

by cofactoring all the components w.r.t. a � 0 without changing the range spanned by F. The result
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is:

f1
� AND � b � e �

f2
� AND � e � OR � b � d �	�

f3
� c

and it still has range B3 7�� 101 � 100 � .
We could do the simplification in the example because the range of the function for a � 1 is a

subset of the range for a � 0. The following definition formalizes the situation:

Definition 6.3. An input variable of a decomposition graph has a non-dominant value 0 iff it fans

out only to blocks that are decomposed through OR or XOR associative operators. It has a non-

dominant value 1 iff it fans out only to blocks that are AND or XOR decompositions. Otherwise it

does not have a non-dominant value.

Note in particular that a variable may have a non-dominant value 0 and a non-dominant value

1 simultaneously if it fans out only to XOR decompositions. The theorem below shows that in the

most general case, a variable that fans out only to associative operators can be removed from the

decomposition graph if it has a unique non-dominant value for the whole graph.

Theorem 6.3. If a decomposition graph F has an input variable v with non-dominant value k �� 0 � 1 � , and each of the blocks (i.e., intermediate single-output functions) that have v in their fanin

have at least one other input in their fanin that is a free point, then: R � F � � R � Fv . k �
Proof. For a generic function F, we have:

R � F � � R � Fv . k �<8 R � Fv . k̄ � (6.6)

We now show that under the conditions specified:

R � Fv . k̄ ��[ R � Fv . k � (6.7)
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and Eq. 6.6 reduces to R � F � � R � Fv . k � .
Let’s consider first the case where k � 0 and let’s label each of the functions that have v in

their fanin x � v� p � x1 �	�	�	� xx � , y � v� q � y1 �	�	�	� yy � , w � v� r� w1 �	�	�	� ww � . . . where p, q, r . . . are the free points

in each of them and xi, yi, wi . . . are other variables the functions depend on. The x �+� , y �+� , w �+� ,
. . . functions by hypothesis can only be OR or XOR decompositions.

We can then express F using the composition of these functions:

F � G � x � y � w�	�	�	�<� x1 �	�	� xx � y1 �	�	� yy �	�	�	� ww �	�	�	�y��¤ x � v� p � x1 �	�	�	� xx �<¤ y � v � q � y1 �	�	�	� yy ���	�	�
Note that, in general, xi, yi, wi . . . are also in the fanin of G. Let’s now compute the two cofactors of

F w.r.t. v:

Fv . 0
� G � x � y � w�	�	�	�<� x1 �	�	� xx � y1 �	�	� yy �	�	�	� ww �	�	�	�t��¤ x � 0 � p � x1 �	�	�	� xx �<¤ y � 0 � q � y1 �	�	�	� yy �<¤Ï�	�	�

Fv . 1
� G � x � y � w�	�	�	�<� x1 �	�	� xx � y1 �	�	� yy �	�	�	� ww �	�	�	�t��¤ x � 1 � p � x1 �	�	�	� xx �<¤ y � 1 � q � y1 �	�	�	� yy �<¤Ï�	�	�

In order to show the inclusion of the ranges of Eq. 6.7, we are going to represent each range

as a union of ranges by cofactoring the variables in the support of x, y, w, . . . one function at a time

starting with x �+� :
R � Fv . 0 � � }� x1 ¬ ¬ ¬ xx � � Bx

R � G � x � y �	�	�	� x1 �	�	��� y1 �	�	�y�<¤ x � 0 � p � x1 �	�	�y� x1 . ix1 I ¬ ¬ ¬ �
R � Fv . 1 � � }� x1 ¬ ¬ ¬ xx � � Bx

R � G � x � y �	�	�	� x1 �	�	��� y1 �	�	�y�<¤ x � 1 � p � x1 �	�	�y� x1 . ix1 I ¬ ¬ ¬ �
We distinguish two cases for each x, y, w, . . . function:

1. x is a OR decomposition. When all the � x1 �	�	�	�
� xx � are zero, for Fv . 1, x evaluates to the

constant value 1. For Fv . 0, x � p. In all the other cases x evaluates to 1. By grouping all the

component ranges so that to distinguish the special case from all the others , we can simplify



6.4. REMOVAL OF NON-DOMINANT VARIABLES 149

the expressions:

R � Fv . 0 � � R � G � p � y �	�	�	� 0 �	�	� 0 �	�	�	�	�	� }� x1 I ¬ ¬ ¬5I xx �+Ð. 0
R � G � 1 � y �	�	�	� x1 �	�	� xx �	�	�y� x1 . ix1 I ¬ ¬ ¬

R � Fv . 1 � � R � G � 1 � y �	�	�	� 0 �	�	� 0 �	�	�	�	�	� }� x1 I ¬ ¬ ¬5I xx �+Ð. 0
R � G � 1 � y �	�	�	� x1 �	�	� xx �	�	�	�y� x1 . ix1 I ¬ ¬ ¬

It can be easily seen that the first range for Fv . 1 is a subset of the corresponding range for

Fv . 0, while the rest of the expression is identical.

2. x is an XOR decomposition. For the 1-cofactor, Fv . 1, x � XNOR � p � x1 �	�	�	��� xx � . In the case

of the 0-cofactor, Fv . 0, x evaluates to the complement: x � XOR � p � x1 �	�	�	�
� xx � . We can again

group all the component ranges so that to distinguish the cases where XOR � x1 �	�	�	��� xx � � 0

from the ones where XOR � x1 �	�	�	��� xx � � 1:

R � Fv . 0 � � }
XOR � x1 I ¬ ¬ ¬ xx ��. 0

R � G � p � y �	�	�	� x1 �	�	�y� x1 . ix1 I ¬ ¬ ¬ }
XOR � x1 I ¬ ¬ ¬ xx ��. 1

R � G � p̄ � y �	�	�	� x1 �	�	�y� x1 . ix1 I ¬ ¬ ¬
R � Fv . 1 � � }

XOR � x1 I ¬ ¬ ¬ xx ��. 0

R � G � p̄ � y �	�	�	� x1 �	�	�y� x1 . ix1 I ¬ ¬ ¬ }
XOR � x1 I ¬ ¬ ¬ xx ��. 1

R � G � p � y �	�	�	� x1 �	�	�y� x1 . ix1 I ¬ ¬ ¬
And it can be observed that the two components of each expression match. It follows:

R � Fv . 0 � � R � Fv . 1 � .
This procedure can be applied recursively for each of the other functions y, w, . . . , by computing

and grouping all the cofactors for the sets of input variables � y1 �	�	� yy � , � w1 �	�	� ww � , . . . .

For the case where k � 1, the functions x, y, w, . . . can now only be AND or XOR decompositions.

The corresponding proof can be obtained by substituting AND for OR and 1 for 0 in the proof just

discussed. Finally, for the case where the input variable v has both a non- dominant value 0 and 1,

we can just use any of the two value- specific proofs.
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Figure 6.7: Non-dominant variable removal for Example 6.4

Example 6.4. Figure 6.7.a shows a system with two non-dominant variables: x1 has a non-dominant

value 1, since it only fans out to AND and XOR nodes, while x3 has a non-dominant value 0, since

it fans out to OR and XOR. After removing of these two non-dominant variables and eliminating the

nodes left with only one input, we obtain the system in Figure 6.7.b. Note that at this point we can

apply the free point reduction technique to the graph of F.

6.5 DSD-SS Implementation

Our implementation of the Disjoint Support Decomposition based Symbolic Simulator performs the

parameterizations at the end of each symbolic simulation step. We first generate the decomposition

graph for the state vector S@k and then attempt the three transformations described above. Often,

the graph produced by applying one of the transformations enables further simplifications through

some of the other transformations.

Even when all of the transformations fail, we still want to maintain a compact representation for

the state function S@k, so that we can make further progress with the simulation. Thus, when the

state function exceeds a threshold value, we choose a variable to set to a constant value. The variable

with fanout to the maximum number of blocks is selected becuase by simplifying this variable we
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eliminate the largest interdependency among the nodes of the graph and thus we maximize the

likelyhood of creating a graph where our techniques can be applied in future simulation steps. When

computing the fanout of a primary variable that is candidate for elimination, we only consider those

decomposition blocks which have other input variables in their fanin. The intuition behind this

choice is that those blocks are closer to become free points, since some of their inputs are already

free points.

We found experimentally that often, after eliminating a variable by setting it to constant as

described, we could discover additional free points or variables with non-dominant values.

6.6 Experimental results

The algorithm presented in this chapter was implemented in a C++ program called Disjoint Sup-

port Decomposition based Symbolic Simulator (DSD-SS). We tested this approach on the largest

sequential circuits from the Logic Synthesis Benchmarks suite [68] and the ISCAS’89 Benchmark

Circuits [16], including their 1993 additions, as we did for the previous CBSS technique in Chap-

ter 3. Table 6.1 reports results on all but the smallest testbenches of the two suites (we excluded

from the table the circuits with less then 20 memory elements). The testbenches are grouped by

benchmark suite. The experiments were run on a Linux PC equipped with a Pentium 4 processor

running at 2.7Ghz and 2GB of memory and 512Kb of cache. We linked the DSD-SS to the CUDD

package [29] as the underlying BDD manipulation library for the combinational portion of the sim-

ulation and a proprietary BDD package for the parameterizations. We set the reordering threshold in

CUDD to 80,000 nodes. Each testbench is run for 100 simulation steps and, at the end of each step,

DSD-SS performs the decomposition of the next state symbolic vector and applies the transforma-

tions described in Sections 6.2-6.4. Whenever the transformations are not sufficient to provide an

exact small representation for the state vector, we resort to pick a variable to evaluate to a constant

value, in order to guarantee a compact representation. The variable is chosen based on the criteria

described in the previous section. After a few experiments, we chose 2,500 nodes as a reasonable
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value to use for the upper limit for the size of the state vector. We noticed that, generally speaking,

this value can be used to trade-off simulation breadth vs. time.

For each circuit, the table reports first the same relevant metrics that we presented before in

Table 3.1: the number of inputs In, outputs Out, memory elements FF, and internal network gates

Gates.

The next three columns report how many times we were able to apply our transformations: FP

is the cumulative number of free point substitutions, PE is the number of prime function elimina-

tions, NVD the number of non-dominant variables removals over all the symbolic simulation steps.

The next column of this group, Null, counts the cumulative number of times where no exact trans-

formation could be applied, but the state vector was within the limit size (of 2,500 nodes), and

thus DSD-SS advanced to the next step of simulation without applying any parameterization. Note

that during a single simulation step we may apply more than one technique until we reduce the

state vector within limits or until no additional exact parameterization is possible. The values of

Table 6.1 indicate that the conditions that allow an exact parameterization of the state vector are

frequently met in almost all the circuits. In particular, in most cases the transformations can be

applied successfully multiple times during each same simulation step. Free point elimination is the

parameterization that achieves the best results across all the testbenches producing a total 2,417 ex-

act simplifications over 4,200 simulation steps (42 testbenches, each run for 100 steps). The second

most successful technique appears to be the non-dominant variable removal, which was applied for

a total of 1,243 times, while prime function elimination satisfied the necessary conditions for exact

parameterization only 139 times.

The purpose of the next group of columns is to compare the breadth of the state exploration

between DSD-SS and a pure symbolic simulator that does not include parameterization. To this

end, we built a plain symbolic simulator and we constrained it to have the same upper bound for

the size of the state vector at the end of each simulation cycle as DSD-SS. While the only reduction

technique available to the plain symbolic simulator was approximation of the state vector by eval-

uating symbolic variables to constant values, DSD-SS would attempt first exact parameterization,
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and default to approximation only as a backup method. The number of variables approximated to

constant provides an indication of how much the search breadth has been restricted: every time a

variable is set to constant, we cut in half the amount of equivalent simulation traces checked by the

exploration. Thus, in this section of the table, a bigger value indicates a more aggressive approxi-

mation and a smaller breadth of search. DSD-SS greatly outperformed a pure symbolic simulator

in all but three testbenches. The situation of a test such as s635, can arise because DSD-SS chooses

the variable to approximate so to maximize the chance of being able to perform additional exact pa-

rameterizations. This may not be the choice that leads to the smallest BDD vector size with the least

number of approximations. However, in all the other cases, even with this disadvantage, DSD-SS

avoids the elimination of many symbolic variables and propagates through the simulation a factor

of 2 to 10 times more symbols over a plain symbolic simulator, when the same amount of memory

is available. The situation of test bigkey is exceptional in this sense: because of the exact parameter-

izations, DSD-SS could avoid the evaluation to constant of more than 11,000 symbols over a plain

symbolic simulator.

The last column reports the execution times of DSD-SS. The current implementation of DSD-

SS at this point is fairly poor, since we need to transfer the data back and forth between the two

BDD packages many times during the simulation. The proprietary BDD package that we currently

use to perform the parameterizations has special functionalities for linking to the Disjoint Support

Decomposition library. Execution times are also penalized by multiple variable reorderings in the

CUDD package that are triggered by many of the testbenches. We hope in the near future to be able

to directly link the DSD library to the CUDD package; we expect this connection to provide great

improvements in the performance of DSD-SS. At this point, the plain symbolic simulator executes

faster than DSD-SS since it can rely simply on the usage of the CUDD package. Still, in a few

cases DSD-SS can gain enough advantage from a compact representation to be faster than the plain

simulator, for instance, in the case of test bigkey.

Finally, the testbenches with a “-” mark indicate that either the plain symbolic simulator or

DSD-SS run out of the allotted time of one hour of execution. For these testbenches we only report
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Par.techniques Symbol reductionsCircuit In Out FF Gates
FP PE NDV

Null
DSD-SS PlainSym.

Time (s)

Logic Synthesis ‘91 - FSM tests

ex1 9 19 20 622 0 0 0 100 0 0 0.3
s1423 17 5 74 830 5 0 3 18 156 659 48.78
s838 35 2 32 596 0 1 1 98 0 0 7.98
s953 16 23 29 658 67 0 1 6 555 677 108.37

Logic Synthesis ‘91 - Addition ‘93

bigkey 262 197 224 9211 28 0 47 1 178 11781 30.17
clma 382 82 33 24482 9 0 20 69 12 10 17.46
dsip 228 197 224 3893 24 0 0 1 395 13043 428.48
mm9a 12 9 27 639 0 0 14 27 110 71 11.93
mm9b 12 9 26 786 2 0 3 7 211 277 62.18
mult16b 17 1 30 284 63 0 78 1 1185 1229 107.55
mult32a 33 1 32 715 0 0 0 1 2003 - 9507.86
s38417 28 106 1465 23771 49 1 13 6 148 867 7.75
s38584 38 304 1426 20281 138 1 34 9 516 1755 86.18
s5378 35 49 163 3232 136 0 30 1 636 1145 615.63
s838 34 1 32 618 0 0 0 51 52 61 66.21
s9234 36 39 135 3019 156 1 117 0 297 477 48.69
sbc 40 56 27 1143 183 1 28 1 1086 1314 244.3

ISCAS ‘89 - FSM tests

s13207.1 62 152 638 9539 53 1 12 8 607 1080 35.1
s13207 31 121 669 9539 27 0 2 31 96 189 26.15
s1423 17 5 74 830 5 0 3 18 156 637 52.17
s15850.1 77 150 534 11316 103 23 100 0 994 2615 326.22
s15850 14 87 597 11316 2 0 98 0 55 120 9.93
s35932 35 320 1728 23085 0 0 0 16 245 1183 18.68
s38417 28 106 1636 27648 47 1 12 6 155 1293 6.52
s38584.1 38 304 1426 24619 124 0 51 9 500 1624 61.15
s38584 12 278 1452 24619 21 0 0 9 141 458 19.27
s5378 35 49 179 3973 150 0 58 1 680 1027 388.27
s838 34 1 32 626 0 0 0 51 52 61 72.76
S9234.1 36 39 211 6585 204 1 104 3 682 1096 110.46
s9234 19 22 228 6585 88 0 11 18 311 437 41.78
s953 16 23 29 658 38 0 1 7 547 764 110.97

ISCAS ‘89 - Addition ‘93

prolog 36 73 136 1845 130 6 10 0 459 1201 169.99
s1269 18 10 37 771 13 0 3 2 - 1306 -
s1512 29 21 57 990 136 95 113 0 278 931 34.54
s3271 26 14 116 2166 0 0 1 16 714 1469 23.37
s3330 40 73 132 2020 144 5 51 0 472 1460 83.77
s3384 43 26 183 1734 61 2 3 4 1551 2565 297.18
s4863 49 16 104 2492 163 0 149 0 - 2400 -
s635 2 1 32 382 31 0 0 35 82 5 55.74
s6669 83 55 239 3272 17 22 0 1 - 6262 -
s938 34 1 32 626 0 0 0 51 52 61 70.76
s967 16 23 29 677 0 0 50 50 0 731 2.56

Table 6.1: Disjoint Support Decomposition-based simulation results
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the number of transformations that we were able to complete.

6.7 Summary

This chapter introduced a new parameterization technique for symbolic simulation, DSD-SS. This

work was published in [11]. Its core contribution is in exploiting the disjoint support decomposition

properties of the state vector to generate a compact parameterization during symbolic simulation.

The major advantage of this approach is that it is a loss-less transformation, that means we

can generate a compact representation of the state vector, without losing any of the information it

carries between simulation steps. Results show that, within a fixed amount of memory resources

dedicated to represent the frontier set, we can keep a much broader search space than pure symbolic

simulation.
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