
Chapter 5

A novel algorithm for Disjoint Support

Decompositions

This chapter introduces a new algorithm to expose the maximal disjoint support decomposition of

a Boolean function. The most relevant aspect of this algorithm is that its complexity is only worst-

case quadratic in the size of the BDD representation of a function. Previously known algorithms

had complexity exponential in the size of the support of the function to be decomposed. It is a well

known fact that there exists functions for which the BDD representation is exponential in the size

of their support – for instance, the functions representing the outputs of an integer multiplier [18]:

in such situations our algorithm does not present any mayor complexity benefit. However, most

complex functions that arise in the design and verification of digital circuits have BDD represen-

tations that are sub-exponential, hence the widespread use BDDs. For all these complex functions

the algorithm introduced here below is the first that can find a disjoint support decomposition in

sub-exponential time. Moreover, our algorithm finds the maximal disjoint support decomposition,

and consequently all the other decompositions, since they can be all derived from it, as we showed

in the previous chapter; on the other hand, previous algorithms could only find one or a few decom-

positions for a function, not necessarily the maximal DSD.

The algorithm traverses the BDD representation of a function in a bottom up fashion. At each

95

96 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

node it constructs the decomposition of the function rooted at the node based on the type of de-

compositions of each of the two cofactors of the node. The algorithm works by identifying all the

possible situations that may occur at a BDD node and constructing the proper decomposition. The

central part of this chapter analyzes the cases that may arise and shows what the resulting decom-

position should be for each of them. We present implementation details at the end of the chapter

and results we found by decomposing Boolean functions derived from the functionality of industrial

digital circuit testbenches.

5.1 Building the decomposition bottom-up

The algorithm to expose the maximal Disjoint Support Decomposition starts from a BDD repre-

sentation of the function F – see Section 2.3.1 – and finds all its disjoint support components by

traversing the BDD tree recursively in a bottom up fashion.

Since we are presenting a recursive approach, we assume to know the disjoint support decom-

position of the two cofactors F0 � F1 with respect to a variable z. This chapter describes how to build

the decomposition tree DT � F � from the decomposition of the cofactors, DT � F0 � and DT � F1 � .
In principle, one could build DT � F � by running a case analysis based on the decomposition type

of F0, F1. Example 5.1 below, however, indicates that this information alone may be not enough,

and additional comparisons need be carried out on DT � F0 ��� DT � F1 � :
Example 5.1. Let G, H, J denote three functions, with pairwise disjoint supports. Suppose they all

have a PRIME kernel. Suppose also that the two cofactors of F w.r.t. z are as follows:

F0
� G

F1
� G " H

That is, F0 has a PRIME decomposition, while F1 has an OR decomposition. The decomposition for

5.1. BUILDING THE DECOMPOSITION BOTTOM-UP 97

F can be found as follows:

F � xG " xG " xH � G " xH � OR � xH � G �
and KF is an OR function.

Consider now the case where F1 is as above, while F0
� J. Again we have a situation where F0

and F1 decompose through a PRIME and an OR function, respectively. However the decomposition

of F results as:

F � xJ " xG " xH � MUX � x � G " H � J �
and KF is a PRIME function.

Thus, functions with different decomposition types can have cofactors whose decomposition

types are identical.

In practice, in order to build the decomposition, it is necessary to take the specific actual lists of

F0 and F1 into consideration. The resulting analysis involves additional comparisons on the actual

lists that are often numerous and complex. Therefore, we present here a different solution, based on

the following observation:

Example 5.2. Suppose that F has a decomposition with KF a PRIME function:

F � KF � A1 � z ��� A2 �	�	�	�
� Al �� (5.1)

The two cofactors will then have decomposition

F0
� KF � A1 � z � 0 ��� A2 �	�	�	��� Al � (5.2)

F1
� KF � A1 � z � 1 ��� A2 �	�	�	��� Al ��

98 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

If neither A1 � z � 0 � nor A1 � z � 1 � is a constant, the kernels of F0 and F1 coincide, and the two

actuals lists differ in exactly one element. It will be shown below in Section 5.2 that also the inverse

is true: if F0 and F1 have the same prime kernel and very similar actuals lists, then F will have the

same kernel as F0 and the actuals list can be readily constructed. A similar observation holds also

if F has OR, AND, or XOR decomposition.

Example 5.2 suggests that we may subdivide the problem by distinguishing the case where both

A1 � z � 0 � and A1 � z � 1 � are constants, from the case when at most one of them is constant. In

fact, the former will requires a simpler analysis to identify the decomposition of the function F .

For both the two cofactors of A1 to be constant, A1 must have a single variable in its support and it

must be A1
� z or A1

� z. We refer to this situation as a new decomposition, since in this case we

are starting a new decomposition block that contains the single variable at the top of our bottom-up

decomposition construction. We refer to the other situation as an inherited decomposition, since in

this case we are, generally speaking, expanding a block that exists already in the decomposition of

the cofactors of F by “adding” the variable z to it.

Definition 5.1. We say that the decomposition of F: 2 KF , F � KF 3 is inherited if � S � A1 ���sx 2. It is

termed new otherwise.

It will be shown that in an inherited decomposition, F shares the kernel (and some actuals) with

at least one of its cofactors. In a new decomposition, this is not guaranteed to happen.

Let A10
� A1 � z � 0 � and A11

� A1 � z � 1 � , respectively. We further classify inherited decompo-

sitions as follows:

1. Neither A10 nor A11 is constant, A10 �� A11, and

(a) F has PRIME decomposition;

(b) F has AND, OR , or XOR decomposition;

2. Exactly one of A10, A11 is constant (i.e. A1 is the OR or AND of z – or z – with a suitable

function); and

5.2. CASE 1. NEITHER A10 NOR A11 IS CONSTANT AND A10 �� A11 99

(a) F has PRIME decomposition;

(b) F has AND, OR, XOR decomposition.

3. A10
� A11 and A10 is not a constant (i.e. A1 is the XOR of z with a suitable function); and

(a) F has a PRIME decomposition;

(b) F has AND or OR decomposition.

Notice that since A1 has a XOR decomposition, F cannot have a XOR decomposition.

Notice that, in the first type of inherited decompositions, A1 is essentially an arbitrary function

of three or more variables. A1 may of course have a XOR, OR, or AND decomposition, we just

exclude the situation where z (or z) appears as an element of its actuals list. The three scenarios are

mutually exclusive, and together they cover all the possibilities for inherited decompositions.

Given this classification of decomposition types, we proceed now as follows: Sections 5.2 to 5.4

cover all the three subtypes of inherited decompositions, Section 5.5 analyzes new decompositions.

Each Section shows how to determine which scenario a Shannon decomposition belongs to, and

how to construct DT � F � from DT � F0 � and DT � F1 � .
5.2 Case 1. Neither A10 nor A11 is constant and A10 �� A11

This case was implicitly described in Example 5.2. We need to distinguish the two subcases where

F is prime and where F is decomposed by an associative operator. The two subcases are addressed

separately by the two Lemmas below:

Case 1.a - PRIME decomposition

Lemma 5.1. A function F has a PRIME decomposition with arbitrary function A1 � z �	�	�	�t� in its

actuals list if and only if :

1. F0 and F1 both have PRIME decompositions;

100 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

2. the actuals lists F0 � KF0 and F1 � KF1 have the same size, and they differ in exactly one element,

called G and H, respectively;

3. either

F0 � G � 0 � � F1 � H � 0 � and F0 � G � 1 � � F1 � H � 1 � (5.3)

or

F0 � G � 0 � � F1 � H � 1 � and F0 � G � 1 � � F1 � H � 0 � (5.4)

must hold.

Moreover, if Eq. 5.3 holds, then F � KF is obtained from F0 � KF0 by replacing G with A1
� zG " zH,

else by replacing G with A1
� zG " zH.

Notice that Lemma 5.1 does not require any explicit comparison between KF0 and KF1 . These

comparisons are replaced by the comparison of generalized cofactors. We can thus avoid building

explicit representations of KF0 , KF1 .

Proof. To prove the only if part, notice that Eq. 5.2 indicates that KF divides F0 and F1. Since

we assumed KF to be PRIME, KF will be NP-equivalent to KF0 � KF1 . All elements of F � KF have

positive BDD polarity, hence, A2 �	�	�	��� Al will appear with the same polarity in F0 � KF0 and F1 � KF1 .

One or both of A10, A11, however, may have negative BDD polarity. Therefore, F0 � KF0 will actually

contain either A10 or A10. The same reasoning obviously applies to F1 � KF1 . We indicate with G,

H the functions actually appearing in F0 � KF0 and F1 � KF1 , respectively. To verify the third point,

consider taking the generalized cofactors of F0 and F1 with respect to G and H . If A10 and A11 have

the same polarity (say, positive), then KF0
� KF1 and we have:

F0 � A10
� 0 � � KF0 � G � 0 � A2 �	�	�	�
� Al � � KF1 � H � 0 � A2 �	�	�	��� Al � � F1 � A11

� 0 � (5.5)

F0 � A10
� 1 � � KF0 � G � 1 � A2 �	�	�	�
� Al � � F1 � A11

� 1 �� (5.6)

5.2. CASE 1. NEITHER A10 NOR A11 IS CONSTANT AND A10 �� A11 101

If A10 and A11 have opposite polarity (say, A10 has negative polarity), then

F0 � A10
� 0 � � KF0 � G � 0 � A2 �	�	�	�
� Al � � KF1 � H � 1 � A2 �	�	�	��� Al � � F1 � A11

� 1 � (5.7)

F0 � A10
� 1 � � KF0 � G � 1 � A2 �	�	�	�
� Al � � F1 � A11

� 0 �� (5.8)

Hence, Eqs. 5.5 and 5.7 reduce to Eq. 5.3 and 5.4.

To prove the if part, recall that F0 and F1 both have PRIME decompositions and that their actuals

list differ in exactly one element (G vs. H). The cofactors of F0 and F1 with respect to G and H are

then well defined. Suppose first Eq. 5.3 holds:

F1
� HF1 � H � 0 �<" HF1 � H � 1 � � HF0 � G � 0 �<" HF0 � G � 1 �� (5.9)

Using the decomposition of F0 in Eq. 5.9 :

F1
� HKF0 � G � 0 � A2 �	�	�	��� Al ��" HKF0 � G � 1 � A2 �	�	�	�
� Al � � KF0 � H � A2 �	�	�	��� Al �� (5.10)

Eq. 5.10 indicates that KF0 divides F1 as well, hence F0 and F1 have the same decomposition type.

From Eq. 5.3 it also follows that

F � zF0 " zF1
� zKF0 � G � A2 �	�	�	��� Al �
" zKF0 � H � A2 �	�	�	��� Al � � KF0 � zG " zH � A2 �	�	�	��� Al � (5.11)

Eq. 5.11 indicates precisely that F has PRIME decomposition (its kernel being KF0), and that

F � KF
� � zG " zH � A2 �	�	�	��� Al � , which is what we needed to prove.

The case where Eq. 5.4 holds can be handled in the same way, just by replacing H with H.

Example 5.3. The function F � azb " ezb " cb # d has kernel KF � x1 � x2 � x3 � x4 � � x1x2 " x3x2 # x4

and actuals list � az " ez � b � c � d � . By computing the cofactors w.r.t. z, we obtain F0 and F1 with kernel

identical to KF and actuals lists: F0 � KF0
� � e � b � c � d � and F1 � KF1

� � a � b � c � d � , respectively. Since

the two cofactors satisfy all the three conditions of Lemma 5.1, we can find the decomposition of F

102 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

from their kernels and actuals lists.

Case 1.b - Associative decomposition

The case where F is decomposed by an associative operator is slightly more complex. Therefore, we

first provide the intuition, and then prove formally a criterion for identifying such a case. Suppose

F has a (say) OR decomposition:

F � ORk � A1 � z ��� A2 �	�	�	��� Ak �
The two cofactors will also have OR decomposition:

F0
� ORk � A10 � A2 �	�	�	��� Ak � and F1

� ORk � A11 � A2 �	�	�	��� Ak �
Notice, however, that one or both of A10 � A11 may have a OR decomposition as well. Let

A10
� ORl � B1 � B2 �	�	�	��� Bl � and A11

� ORm � C1 �	�	�	��� Cm � where l � m x 1
Therefore, KF0

� ORk q 1 � l , F0 � KF0
� � B1 �	�	�	�
� Bl � A2 �	�	�	�
� Ak � and KF1

� ORk q 1 � m, F1 � KF1
� � C1 �	�	�	��� Cm �

A2 �	�	�	��� Ak � . Notice that all the functions Bi must differ from all of the C j, and that the two actuals

lists still have at least one element in common � A2 �	�	�	��� Ak � . These observation are formalized in

Lemma 5.2 below:

Lemma 5.2. A function F has an OR decomposition with arbitrary function A1 � z �	�	�	�t� in its actuals

list if and only if:

1. both F0 and F1 have OR decompositions;

2. the set of common actuals Ac
� � A2 �	�	�	��� Ak � is not empty;

3. F0 � KF0) Ac �� /0 and F1 � KF1) Ac �� /0.

5.3. CASE 2. EXACTLY ONE OF A10, A11 IS CONSTANT 103

Proof. The only if part of the proof follows immediately from the previous observations. For the if

part, let B1 �	�	�	��� Bl denote the functions in F0 � KF0) Ac, and C1 �	�	�	�
� Cm those in F1 � KF1) Ac. Then ,

F0
� ORk q 1 � l � B1 �	�	�	��� Bl � A2 �	�	�	�
� Ak � and F1

� ORk q 1 � m � C1 �	�	�	��� Cm � A2 �	�	�	��� Ak �
Hence,

F � z * F0 " zF1
� ORk � zORl � B1 �	�	�	��� Bl ��" zORm � C1 �	�	�	��� Cm ��� A2 �	�	�	��� Ak � (5.12)

We need to show now that zORl � B1 �	�	�	��� Bl ��" zORm � C1 �	�	�	��� Cm � does not have an OR decompo-

sition. Suppose, by contradiction, that it has an OR decomposition. Then, some of the terms� B1 �	�	�	��� Bl � would coincide with some of the � C1 �	�	�	�
� Cm � , against our assumptions. Hence, Eq.

5.12 indicates that F has a ORk decomposition.

Identical results can be shown for the AND and XOR cases.

5.3 Case 2. Exactly one of A10, A11 is constant

We now assume that exactly one of A10, A11 is a constant. We consider only the case A10
� 0, so

that effectively A1
� zA11. The other cases can be handled similarly. In this scenario we need to

consider separately the case where F will have a PRIME decomposition, and the case where F will

be decomposed by an associative operator.

Case 2.a - PRIME decomposition

In this case :

F � KF � A1 � A2 �	�	�	��� Al �

104 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

where KF is a PRIME function. Recalling that A1
� zA11, the two cofactors are:

F0
� KF � 0 � A2 �	�	�	��� Al � and F1

� KF � A11 � A2 �	�	�	��� Al � (5.13)

Eq. 5.13 indicates that:

1. KF is also the kernel of F1;

2. F1 � KF differs from F � KF in exactly one element (A11 va. A1).

3. KF is not the kernel of F0.

Again, the following Lemma helps us avoid comparing kernels explicitly:

Lemma 5.3. A function F has a PRIME decomposition with A1
� zG in its actuals list, for a

suitable non-constant function G if and only if :

1. F1 has a PRIME decomposition;

2. there exists a function G � F1 � KF1 such that F1 � G � 0 � � F0.

Proof. For the only if part, recall that Eq. 5.13 indicates that F1 has the same kernel as F . The

second point also follows immediately from Eq. 5.13, using G � A11.

For the if part, notice that, since F0
� F1 � G � 0 � ,

F � z * F0 " zF1
� z * KF1 � 0 � A2 �	�	�	��� Al ��" zKF1 � G � A2 �	�	�	��� Al � � KF1 � zG � A2 �	�	�	��� Al �

indicating precisely that KF1 is also the kernel of F , and that A1
� zG .

It is worth noticing that Lemma 5.3 does not indicate which function in F1 � KF1 needs be chosen

for the cofactoring. Indeed, all functions Ai � F1 � KF1 such that S � Ai �<� S � F0 � � /0 are candidates.

5.3. CASE 2. EXACTLY ONE OF A10, A11 IS CONSTANT 105

Case 2.b - Associative decomposition

Since we assumed at the beginning of Section 5.3 that A1 has an AND decomposition, zA11, F can

have only OR or XOR decomposition. We focus here on OR decompositions, the XOR case being

conceptually identical.

Again, we need to consider the case where A11 itself may have an OR decomposition.

Let

A11
� ORl � B1 �	�	�	�
� Bl � l x 1

The case where A11 does not have a OR decomposition is implicitly addressed by l � 1. The

decomposition of F can then be written as :

F � ORk � zA11 � A2 �	�	�	�
� Ak � k x 2

F0
� ORk q 1 � A2 �	�	�	��� Ak � (5.14)

F1
� ORk � A11 � A2 �	�	�	��� Ak � � ORk � l q 1 � B1 �	�	�	��� Bl � A2 �	�	�	��� Ak � (5.15)

Equation 5.15 indicates that F1 will also have an OR decomposition. F0, however, may have a

different decomposition: in fact, in the special case k � 2, Eq. 5.14 simplifies to F0
� A2 and A2

does not have an OR decomposition by hypothesis. In the general case, all the actuals of F0 � ORk q 1

will belong to F1 � ORk � l q 1. In the special case k � 2, F0 itself will be an element of F1 � ORk � l q 1.

These observations are formalized below:

Lemma 5.4. A function F has an ORk decomposition with A1
� zG in its actuals list, for a suitable

non-constant function G if and only if:

1. F1 has an ORk � l q 1 decomposition with k x 2 and l x 1;

2. either k z 2 and F0 has an ORk q 1 decomposition and F0 � KF0 � F1 � KF1; or k � 2 and F0 �

106 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

F1 � KF1 .

Proof. The only if part follows directly from the above observations. For the if part, suppose:

F1
� ORk q 1 � l � B1 �	�	�	��� Bl � A2 �	�	�	��� Ak �

and

F0
� ORk q 1 � A2 �	�	�	��� Ak ��

Consequently, we have:

F � zF0 " zF1
� OR2 � ORk q 1 � A2 �	�	�	��� Ak ��� zORl � G1 �	�	�	�
� Gl �	�� ORk � zORl � G1 �	�	�	��� Gl ��� A2 �	�	�	��� Ak �

which is what we needed to show. Notice that the algebra holds also for the corner case k � 2.

5.4 Case 3. A10
� A11 and A10 is not a constant

In this scenario A1 has XOR decomposition : A1
� z # A10. It is not restrictive to assume that A10 has

positive BDD polarity. Again, we need to address the case where F has a PRIME decomposition

separately from the other cases.

Case 3.a - PRIME decomposition

If F has PRIME decomposition, then

F0
� KF � A10 � A2 �	�	�	�
� Al � and F1

� KF � A10 � A2 �	�	�	��� Al � (5.16)

Again, KF0 and KF1 are NP-equivalent to KF , hence, F0 and F1 have PRIME decompositions. More-

over, F0 � KF0 and F1 � KF1 are identical (because of the definition of normal Decomposition Tree - see

5.4. CASE 3. A10
� A11 AND A10 IS NOT A CONSTANT 107

also Section 4.4.3). Another consequence of Eq. 5.16 is that:

F0 � A10
� 0 � � F1 � A10

� 1 � F0 � A10
� 1 � � F1 � A10

� 0 �
The following Lemma provides necessary and sufficient conditions for identifying this case:

Lemma 5.5. A function F has a PRIME decomposition with A1
� z # G in its actuals list, for a

suitable non-constant function G if and only if:

1. F0 and F1 have PRIME decompositions;

2. F0 � KF0
� F1 � KF1;

3. there exists a function H in F0 � KF0 such that:

F0 � H � 0 � � F1 � H � 1 � and F0 � H � 1 � � F1 � H � 0 � (5.17)

In this case, either G � H or G � H.

Proof. The only if part follows directly from the introduction to this case. For the if part, observe

that if Eq. 5.17 holds, then:

F1
� HF0 � H � 1 �<" HF0 � H � 0 �

F � zF0 " zF1
� zHF0 � H � 0 �<" zHF0 � H � 1 �<" zHF0 � H � 1 ��" zHF0 � H � 0 �� � zH " zH � F0 � H � 0 �<"�� zH " zH � F0 � H � 1 � � F0 � H � z # H ��

Hence, F has the same kernel as F0, and its actuals list coincides with that of F0, except for

one element, namely, H , which is being replaced by either z # H or by � z # H � , depending on the

polarity of the BDD representation.

Notice that Lemma 5.5 does not indicate which function of F0 � KF0 needs to be XOR-ed with

z. Unfortunately, there is no way of knowing other than checking each function until Eq. 5.17 is

verified.

108 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

Case 3.b - Associative decomposition

The difference from Case 3.a lies again in the fact that the candidate H may have the same decom-

position type (AND, OR) as F . The way to handle this difference has been described already in

Sections 5.2 and 5.3 for the other cases. Therefore, we omit it from the present analysis.

5.5 New decompositions

We now consider the case where A1
� z or A1

� z. We need to distinguish three subcases, namely,

(a) F has an AND or OR decomposition;

(b) F has an XOR decomposition;

(c) F has a PRIME decomposition.

These cases will be handled separately in the three paragraphs below.

Case a - AND or OR decomposition

F � OR � z � G � , then the two cofactors are Fz
� G and Fz

� 1. Conversely, if Fz
� 1, then F �

Fzz " 1z � OR � z � Fz � . Hence the decomposition is inferred by verifying that one of Fz is the constant

1. Since z �� S � FG � , F has a OR decomposition with z � F � OR. The second case can be treated

similarly showing that F has an OR decomposition with z � F � OR if and only if the cofactor Fz is

the constant 1. The case of AND decomposition is symmetrical, with the constant 0 replacing the

constant 1. In summary, a new AND or OR decomposition is discovered if one of the two cofactors

F0 or F1 is a constant:' F1
� 1 � F � z " F0.' F0
� 1 � F � z " F1.' F0
� 0 � F � z � F1

� z " F1.' F1
� 0 � F � z � F0

� z " F0.

5.5. NEW DECOMPOSITIONS 109

Case b - XOR decomposition

If F � XOR � z � G � , then Fz
� G � Fz

� G, and conversely, if Fz
� Fz, then F has XOR decomposition

with z � F � XOR. For this case, the decomposition is inferred by checking that Fz
� Fz.

Case c - PRIME decomposition

This case is by far the most complex of all. There are no necessary and sufficient conditions for

identifying this case : It is determined by failing to construct any other type of decomposition. As

mentioned, we do not need to keep track of the particular PRIME function used in the decomposi-

tion. Therefore, the task at hand is just to identify the actuals list F � KF . Unlike the previous cases,

in order to build this list, we will need to compare not just the actuals lists F0 � KF0 , F1 � KF1 , but the

entire trees. Fortunately, this comparison can still be carried out efficiently. The rest of this section

contains the details of this construction and the theoretical justification.

Consider once again the Shannon decomposition of a function F with disjunctive decomposition

F � KF � z � A2 � A3 �	�	�	��� Al � :

Fz
� KF � 0 � A2 � A3 �	�	�	�y� Fz

� KF � 1 � A2 � A3 �	�	�	�t� (5.18)

Let Ly1 � y2 �			�� ym � and Ly1 � y2 �			5� ym � denote the functions KF � 0 � y2 �	44� ym � and KF � 1 � y2 �	44� ym � ,
respectively. Eq. 5.18 can then be written as

Fz
� Ly1 � A2 � A3 �	�	�	�y� Fz

� Ly1 � A2 � A3 �	�	�	�y� (5.19)

In general, Ly1 and Ly1 may be further decomposable. Moreover, they may depend on only a

subset of y2 �	�	�	�
� ym. For this reason, in order to determine the decomposition of F , it is not sufficient

to compare the actuals list of Fz � Fz. However, from Eq. 5.19, Ly1 divides Fz. From Lemma 4.7, the

set of functions � A2 � A3 �	�	�	�	� forms a cut of DT � Fz � and thus F � KF also contains a cut of the same

decomposition tree. Similar reasoning applies to Fz.

110 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

The definition of uniform-support is needed to identify which functions from the two decompo-

sition trees of the cofactor we need to select as components of DT � F � :
Definition 5.2. Given a function F and a variable z � S � F � , a function A appearing in DT � Fz � or in

DT � Fz � is said to have uniform-support if it has positive polarity and exactly one of the following

is true:

1. S � A �_[S � Fz �<� S � Fz � and A appears in DT � Fz � only;

2. S � A �_[S � Fz �<� S � Fz � and A appears in both DT � Fz � and DT � Fz � ;
3. S � A �_[S � Fz �<� S � Fz � and A appears in DT � Fz � only.

A is also termed maximal if for no other uniform-support function B appearing in DT � Fz � or

DT � Fz � , we have S � A �_� S � B � .
For a given pair of decomposition trees DT � Fz � , DT � Fz � , we denote by Max � Fz � Fz � the set of

maximal uniform support functions. It is this set of functions, togheter with the top variable z, that

we will use as the actuals list for the decomposition of F . Theorem 5.6 shows that this is the correct

set of functions for F � KF .

Example 5.4. Consider the function F of Figure 5.1. The decomposition of the two cofactors

F0 and F1 is shown by its normal Decomposition Tree (which includes signed edges to indicate

complementation of the function rooted at the signed node). The set Max � Fz � Fz � for this function

is � x1 " x2 � x3 � x4x5 � x6 � . Notice that x1 " x2 appears implicitly in DT � F0 � by rule (2) of Definition

4.7, while it appears implicitly in DT � F1 � by rule (3) of the same Definition since the first element

of F1 � KF1 is A1
� x1 " x2 " x6.

The first three elements of the maximal set satisfy condition 2 of the definition of uniform support,

while the last element satisfies condition 1.

As we mentioned, the set Max � Fz � Fz � effectively represents the actuals list of F . This is stated

by the following Theorem:

5.5. NEW DECOMPOSITIONS 111

z

x4 x5

6x

x1 x2x2x1

F

0 1

x6 x4 x5

OR

OR

MUX

x3

OR OR OR

Figure 5.1: PRIME decomposition.

Theorem 5.6. For a function F with decomposition F � KF
� � z � A1 �	�	�	��� Al � , the actuals list is given

by � z �08 Max � Fz � Fz � .
We first illustrate the result with an example and then prove the Theorem.

Example 5.5. Based on Theorem 5.6, the actuals list for the decomposition of the function in Figure

5.1 is given by � z � x1 " x2 � x3 � x4x5 � x6 � . The kernel function can then be easily derived by substituting

the corresponding element of the formals list for each element of the actuals list. The formals list is� y1 � y2 � y3 � y4 � y5 � and the kernel is KF
� y1MUX � y2 " y3 � y4 � y5 �<" y1 �	� y2 " y5 �<" y4 � .

The proof of Theorem 5.6 requires the proof of some properties of uniform-support functions.

Lemma 5.7. Any two maximal uniform-support functions of DT � Fz � or DT � Fz � have disjoint sup-

port.

Proof. We prove the Lemma by contradiction by showing that if two uniform-support functions

A1 � A2 share support variables, then at least one of them is not maximal. Notice, first of all, that

there must be at least one decomposition tree where both functions appear. In fact, if one function

only appeared in DT � Fz � and the other only appeared in DT � Fz � , then, by definition of uniform-

support, they would also be disjoint support. For sake of simplicity, we assume that both functions

appear in DT � Fz � .
We need now to distinguish a few cases.

112 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

' Both A1 and A2 appear in DT � Fz � explicitly. It is easy to see that, in order for the supports

to overlap, either A1 appears as a node in the subtree DT � A2 � , or A2 appears as a node in the

subtree DT � A1 � . In the first case, S � A1 ��� S � A2 � , while in the second case S � A2 ��� S � A1 � .
In either case, one of the two functions is not maximal, as we intended to show.

' One of the two functions (say, A1) appears only implicitly, while A2 appears explicitly. Then

it must be:

A1
� { k

i . 1Bi k x 2 (5.20)

where { is one of AND, OR, XOR , and Bi are disjoint-support functions. Moreover, there is

a function Q1 appearing explicitly in DT � Fz � such that

Q1
� { m

i . 1Bi 2 b k � m (5.21)

Notice that Q1 does not need to be uniform-support. A2 shares support variables with A1, thus,

either A2 appears explicitly in DT � Q1 � or Q1 appears explicitly in DT � A2 � . If Q1 appears

explicitly in DT � A2 � or if A2
� Q1, however, S � A2 ��� S � A1 � , and A1 is not maximal.

A2 must then appear explicitly in DT � Q1 � , i.e.in exactly one of DT � Bi � , i � 1 		m. But if A2

appears explicitly in any DT � Bi ��� i � 1 �	�	�	��� k, then S � A2 ��� S � A1 � and A2 is still not maximal.

Finally, if A2 appears explicitly in any DT � Bi ��� i � k " 1 �	�	�	��� m, then S � A2 �U� S � A1 � � /0,

against the hypothesis.

' Finally, suppose that both A1 and A2 appear implicitly. Then there must be an associative

operator � � AND, OR or XOR such that

A2
� � l

i . 1Ci (5.22)

5.5. NEW DECOMPOSITIONS 113

Moreover, there must be a function Q2 appearing explicitly in DT � Fz � such that

Q2
� � n

i . 1Ci 2 b l � n (5.23)

As both Q1 and Q2 appear explicitly in DT � Fz � , exactly one of the following must hold :

1. S � Q1 �
� S � Q2 � � /0. But then S � A1 ��[S � Q1 ��� S � Q2 ��� S � A2 � � /0, against the hypoth-

esis.

2. Q1 appears in DT � Ci � for one of the functions Ci � i b l. But, from Eq. 5.22, S � A1 ��[
S � Ci ��[S � A2 � , and again one of the functions (A1) is not maximal.

3. Q1 appears in DT � Ci � for some Ci � l � i b n. This case is also impossible since it would

be S � A1 ��[S � Ci �<� S � A2 � � /0.

4. Q1
� Q2. Then, the operator { of Eq. 5.20 must coincide with � , and the functions Ci

in Eq. 5.23 must coincide with the functions Bi in Eq. 5.21. Hence, A2 can be written as

A2
� { l

i . jBi for1 b j b k � l b m (5.24)

Consider then the function

U � { l
i . 1Bi (5.25)

U contains all the functions in the decomposition of A1 � { and of A2 � { . Hence, U has

uniform support, and S � U ��� S � A1 ��� S � U ��� S � A2 � , showing again that at least one of

A1 � A2 is not maximal.

In summary, in all cases, the assumption that A1 � A2 share variables leads to the conclusion that at

least one of them is not maximal, as we intended to prove.

Lemma 5.8. The set Max � Fz � Fz � contains a cut of DT � Fz � and of DT � Fz � .

114 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

Proof. We only prove that Max � DT � Fz ��� DT � Fz �	� contains a cut of DT � Fz � , the second part being

entirely symmetrical.

Consider the collection C of functions Ai � Max � DT � Fz ��� DT � Fz �	� such that S � Ai �|� S � Fz � �� /0.

From the definition of uniform support, for each such function, S � Ai ��[S � Fz � and they appear in

DT � Fz � . From Lemma 5.7, they are disjoint-support. Therefore,}
Ai � C

S � Ai ��[S � Fz �� (5.26)

It remains to be shown that the containment relation 5.26 is actually an equality. To this regard,

notice that for each variable xi � S � Fz � , the function xi is trivially uniform-support. Either it is

maximal, or there exist a maximal uniform-support function Xi appearing in DT � Fz � whose support

contains xi. This function must then belong to Max � DT � Fz ��� DT � Fz �	� and therefore xi must belong

to the left-hand side of Eq. 5.26. This completes the proof.

We define now a bi-cut as a set of uniform-support functions that provides a cut for the cofactors’

decomposition trees:

Definition 5.3. Given a function F and a variable z � S � F � , a collection of uniform support func-

tions (not necessarily maximal) C2
� � Ai � is termed a bi-cut if the following holds:

1. S � Ai ��� S � A j � � /0 for i �� j;

2. C2 contains a cut of DT � Fz � and of DT � Fz � .
Example 5.6. Consider a function F such that Fz

� � x1 " x2 � x4 and Fz
� � x1 " x2 " x3 � x5 as in

Figure 5.2 (we present a non-normal decomposition tree for improved readability). A possible bi-

cut for such function is C2
� � x1 " x2 � x3 � x4 � x5 � . Note that the set C � � x1 " x2 " x3 � x4 � x5 � is not a

bi-cut since it does not contain a cut of DT � Fz � .
From Lemma 5.8, Max � DT � Fz ��� DT � Fz �	� is a bi-cut. It is also straightforward to verify that

Max � DT � Fz ��� DT � Fz �	� has minimum size among bi-cuts. We now show that bi-cuts have a one-to-

one correspondence to decompositions. These facts will be enough to prove Theorem 5.6.

5.5. NEW DECOMPOSITIONS 115

x1 x2 x1 x3x2

OR 5x

z

AND

OR 4x

AND

F

0 1

Figure 5.2: Function for Example 5.6.

Lemma 5.9. Let M denote any function dividing F, such that F � M � � z � A2 �	�	�	��� Am � . Then, the

subset C2
� � A2 �	�	�	��� Am � is a bi-cut of F w.r.t. z. Conversely, for each bi-cut C2 there exists a

function M such that F � M � � z ��8 C2.

Proof. Eq. 5.19 shows that C2 contains a cut of DT � Fz � and of DT � Fz � . The functions Ai are

all disjoint-support, and each of them appears in at least one of DT � Fz ��� DT � Fz � (or else F would

be independent from the variables in S � Ai �). We also need to show, however, that each Ai has

uniform support. To this end, suppose, for the sake of contradiction, that the support of one of the

functions (say, S � A2 �) is not uniform. It is not restrictive to assume that A2 appears in DT � Fz � . Then

S � A2 ��[S � Fz � . Since we take A2 to be not uniform, it must be

S � A2 �<� S � Fz � �� /0 (5.27)

otherwise A2 would be uniform by condition 1 of the definition of uniform-support; and

S � A2 �<� S � Fz � �� /0 (5.28)

otherwise A2 would be uniform by condition 2. Let C indicate a subset of C2 forming a cut of

116 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

DT � Fz � ; it follows that

S � C � � }
Ai � C

S � Ai � � S � Fz � ; (5.29)

The last equality being valid by definition of cut.

From Eq. 5.28, if A2 � C , then S � C �6� S � Fz � �� /0, contradicting Eq. 5.29. Hence, A2 cannot

belong to C . We now show that A2 cannot be left out of C either: From Eq. 5.27, there is a variable

x in S � A2 �<� S � Fz � . Since all functions of C2 are disjoint-support, x cannot be in the support of any

other function of the bi-cut C2. Hence, if A2 is left out of C , x �� S � C � and C is not a cut of DT � Fz � .
In summary, A2 could not be in a cut of DT � Fz � , but it could not be left out, a contradiction. Hence,

A2 must have uniform support and C2 is a bi-cut of F w.r.t. z.

We now show that for any given bi-cut C2 we can construct a decomposition of F . Consider

the subset C0
� � A2 �	�	�	��� Ac0 � of C2 forming a cut of Fz. From Lemma 4.7, there exists a function

L0 � y2 �	�	�	��� yc0 � such that Fz � L0
� C0. Let also C1

� � Ac1 �	�	�	��� Am � denote the subset of C2 forming a

cut of DT � Fz � . There exists then a function L1 � yc1 �	�	�	��� ym � such that Fz � L1
� C1. It is then easy to

verify that the function L � y1 �	�	�	��� ym � � y1L0 � y2 �	�	�	��� yc0 ��" y1L1 � yc1 �	�	�	�
� ym � satisfies

L � z � A2 �	�	�	�
� Am � � F � (5.30)

that is, we have constructed a decomposition of F from C2.

Finally, the proof of Theorem 5.6 follows:

Proof. - Theorem (5.6) - From Lemma 5.9, a function L can be found such that F � L � � z ��8
Max � Fz � Fz � . Then, from Theorem 4.2, F � KF cannot contain more elements than � z ��8 Max � Fz � Fz � .
Since Max � Fz � Fz � is a bi-cut of minimum size, F � KF cannot contain fewer elements either, and

consequently F � KF and F � L must have the same size. In this case, however, from Theorems 4.2

and 4.4, KF must be NP-equivalent to L and F � KF must coincide with � z �08 Max � Fz � Fz � , modulo

NP-equivalence.

5.6. PUTTING IT ALL TOGETHER: THE DSD PROCEDURE 117

5.6 Putting it all together: The DSD procedure

We detail now the decomposition procedure. This description sets the stage for the complexity

analysis presented in Section 5.7.

The algorithm traverses the nodes of the BDD of F in a bottom-up fashion. During the sweep,

each node is inspected, and the decomposition tree of the function rooted at this node is determined

from the decomposition of its cofactors and the top variable using the results presented earlier in

this chapter.

The BDD node is then labeled with a signed – see Section 4.4.3 – pointer (DEC *) to the root

of its decomposition tree.

void decompose_node(BDD* node) {

node = NodeRegular(node);

if (node->dec != NULL) return;

var z = node->topVar;

BDD *cof0 = node->cofactor0;

BDD *cof1 = node->cofactor1;

decompose_node(cof0);

decompose_node(cof1);

DEC *dec0 = GetDecomposition(cof0);

DEC *dec1 = GetDecomposition(cof1);

DEC *res = decompose(z,dec0, dec1);

node->dec = res;

return

}

The function GetDecomposition simply extracts the DEC pointer from a BDD node, and

complements it if the BDD node was complemented. The call to decompose is the decomposition

procedure proper:

118 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

DEC *decompose(var z, DEC* dec0, DEC* dec1) {

res = decompose_INHERITED(z, dec0, dec1); // cases 1 2 3

if (res) return(res);

res = decompose_NEW(z, dec0, dec1);

return(res);

}

We attempt the decomposition as an inherited or new decomposition. Each subroutine then

considers all the corresponding cases from the previous section.

A DEC node contains a .type field and an .actuals list. The type field has four possible

values: VAR (for simple variables), OR, XOR and PRIME; and it represents the decomposition type

of the function rooted at that node. The actuals list is a list of signed pointers to BDD nodes. Each

pointer represents a function in F � KF .

It is worth noting that decompose INHERITED,decompose NEW are just switches, activat-

ing other procedures. In addition, since we must succeed with at at least one type of decomposition,

the return value of decompose is guaranteed to be non-null. Finally, when two or more cases

require a similar analysis, we group them in the same procedure so that portion of the computation

can be shared; this is especially exploited in building inherited decompositions:

DEC* decompose_INHERITED(var z, DEC* dec0, DEC* dec1) {

// case 1.b 2.b 3.b for AND/OR dec.

res = decompose_INHERITED_OR_123.b(z, dec0, dec1);

if (res) return(res);

// case 1.b 2.b for XOR dec.

res = decompose_INHERITED_XOR_12.b(z, dec0, dec1);

if (res) return(res);

//case 1.a 2.a 3.a

res = decompose_INHERITED_PRIME_1.a(z, dec0, dec1);

5.6. PUTTING IT ALL TOGETHER: THE DSD PROCEDURE 119

if (res) return(res);

res = decompose_INHERITED_PRIME_2.a(z, dec0, dec1);

if (res) return(res);

res = decompose_INHERITED_PRIME_3.a(z, dec0, dec1);

return(res);

}

DEC* decompose_NEW(var z, DEC* dec0, DEC* dec1) {

res = decompose_NEW_OR(z, dec0, dec1); //case 4.a

if (res) return(res);

res = decompose_NEW_XOR(z, dec0, dec1); //case 4.b

if (res) return(res);

res = decompose_NEW_PRIME(z, dec0, dec1); //case 4.c

return(res);

}

Since the maximal decomposition is unique, the calling order of the various subprocedures is ir-

relevant; with the following exception: since we only detect a new PRIME decomposition by failing

all other cases, the procedure that builds a new PRIME decomposition, decompose NEW PRIME,

must be kept last. In practice, we exploit this level of freedom by ordering the procedures based

on the amount of analysis that they require, the fastest ones first; and disregarding even the group-

ing of new decompositions and inherited ones. For instance, Cases 4.a and 4.b are the fastest,

and our implementation of decompose node executes first of all decompose NEW OR and

decompose NEW XOR.

In the reminder of this section, we will not discuss complement edges for BDD and DEC nodes

any further. In particular, the segments of pseudo-code consider only nodes with positive polarity

for simplicity, the extensions to include also nodes with negative polarity being straightforward.

We now analyze the subprocedures of decompose in detail.

120 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

5.6.1 Inherited decompositions

OR decompositions

decompose INHERITED OR 123.b groups the constructions described in Sections 5.2, 5.3 and

5.4 for identifying OR decompositions. For all of the three cases, we need to consider the actuals

lists of the two cofactors and identify the common elements, which will be part of the resulting

actuals list. To this list, we need to add a new element obtained by calling the second prototype of

decompose nodewith the node’s top variable and the reminder OR decompositions as cofactors.

Notice that this new element must be the first element of the resulting actuals list, based on the

definition of normal Decomposition Tree from Section 4.4.3.

This procedure is successful as long as at least one of the two cofactor has an OR decomposition

and there is at least one element in common between the actuals lists of F0 and F1. If, the actuals list

of one cofactor is a proper subset of the other, then we have a Case 2.b decomposition. Otherwise

we have a Case 1.b or 3.b decomposition.

Moreover, if one of the cofactors does not have a OR decomposition, for the purpose of this

analysis, we consider its actuals list to have only one element, the cofactor function itself: Lemma

5.4 shows how to treat this situation in its special case of k � 2.

DEC* decompose_INHERITED_OR_123.b(var z, DEC* dec0, DEC* dec1) {

DEC* res, dec0_residue, dec1_residue;

list common = list_intersect(dec0->actuals, dec1->actuals);

if (list_size(common) > 0 &&

dec0->type == dec1->type == OR) {

dec0_residue = buildDecNode(OR, dec0->actuals - common);

if (list_size(dec0_residue->actuals) == 0)

dec0_residue = CONST_0;

if (list_size(dec0_residue->actuals) == 1)

dec0_residue = getFirst(dec0_residue->actuals);

5.6. PUTTING IT ALL TOGETHER: THE DSD PROCEDURE 121

// equivalently for right_residue

G = decompose(z, dec0_residue, dec1_residue);

res = buildDecNode(OR, { G, common}); //constructs node

return res;

}

else if (list_intersect(dec0->actuals, dec1) ||

list_intersect(dec1->actuals, dec0))

// build resulting decomposition

// similar to above case

}

else return 0;

}

XOR decompositions

Inherited XOR decompositions can arise only from Cases 1.b and 2.b of Section 5.2.

Similarly to what has been discussed in the previous section, we need once again to check that

at least one of the two cofactors is an XOR decomposition and that there is at least one element

in common between the two actuals lists. The rest of the construction corresponds to the one for

inherited OR decompositions.

PRIME decompositions

The first type of inherited PRIME decomposition is Case 1.a. The conditions for that case require

that the two cofactors be both PRIME decompositions, the actuals lists differ in exactly one element

and the cofactors w.r.t. those two elements match.

Example 5.7. Consider again the function of Example 4.7 and assume that the top variable in its

122 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

BDD representation was g. We consider available the decompositions of the cofactors w.r.t. g:

F0
� MAJORITY � G � H � i � ;

G � a # b;

H � L " e;

L � cd;

F1
� MAJORITY � G � H � N � ;

N � ITE � f � h � i � ;
Both F0 and F1 are decomposed by the same PRIME function MAJORITY . Their actuals lists

are � G � H � h � and � G � H � N � , respectively. They differ in exactly one element, namely, N instead of h.

We then check if Eq. 5.3 or 5.4 holds. This check can be carried out by computing F0 � i � 0 � ,
F0 � i � 1 � , F1 � N � 0 � , F1 � N � 1 � , and verifying that F0 � i � 0 � � F1 � N � 0 � , F0 � i � 1 � � F1 � N � 1 � .
We then form a representation of the function I � g * i " gMUX � f � h � i � and construct the decompo-

sition of F as MAJORITY � G � H � I � . Note that, unless the decomposition of I is already known, we

need to build that, too using the second prototype of decompose node.

The following pseudocode checks if Eq. 5.3 or 5.4 hold. It returns the decomposition of F if

the tests are successful:

DEC* decompose_INHERITED_PRIME_1.a (var z, DEC* dec0, DEC* dec1) {

DEC* res;

BDD* left_el, right_el, l0, r0;

if (dec0->type != dec1->type != PRIME) return 0;

if (list_size(dec0->actuals) != list_size(dec1->actuals))

return 0;

common = list_intersect(dec0->actuals, dec1->actuals);

if (list_size(common) != size(dec0->actuals) -1) return 0;

5.6. PUTTING IT ALL TOGETHER: THE DSD PROCEDURE 123

// the two functions differ in exactly one argument

left_el = dec0->actuals - common;

right_el = dec1->actuals - common;

l0 = cofactor(dec0, left_el, 0);

r0 = cofactor(dec1, right_el, 0);

// compute also l1 and r1

if (((l0 == r0) && (l1 == r1)) ||

((l1 == r0) && (l0 == r1))) {

G = decompose (z, left_el->dec, right_el->dec);

res = buildDecNode(PRIME, { G, common });

return res;

}

else return 0;

}

Case 2.a has a more complex set of comparisons. As the reader may recall from Section 5.3,

Lemma 5.3 does not indicate precisely which is the function G to use to cofactor F1. Instead we

have a pool of candidates which are all the functions Ai � F1 � KF1 such that S � Ai �<� S � F0 � � /0.

Thus we can detect such decomposition by considering the generalized cofactors (see Definition

2.3) of F1 with respect to a subset of its actuals list elements and compare the result with F0 to check

if there is an element that satisfies the condition 2 of the Lemma.

It is important to note that each of these cofactor operations have complexity that it is only linear

in the size of the BDD of F1 (instead of quadratic). The reason for this simplified operation lies in

the fact that the functions that we use in the cofactor operation are one in the decomposition of the

other. To see this, consider a function F � L � G �			 � and suppose we want to compute the cofactor

w.r.t. G � 1. Then, FG . 1
� KF � 1 �			 � . To compute the last expression, we just need to consider any

124 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

combination of inputs of G such that G � 1, for instance a cube that satisfies G. We can then take

the cofactor of F w.r.t. this cube to obtain our result, which is a linear time operation.

In general, we need to identify all the candidate Ai � F1 � KF1 functions, and for each of those

compute two generalized cofactors: F1 � Ai
� 0 � and F1 � Ai

� 1 � until we find a match. In the worst

case, this entails the computation of 2 (n cofactors, where n is the number of candidate elements.

Example 5.8. Consider the functions Fz
� ITE � A � CD � B " C ��� Fz

� CD. The actuals list of Fz

contains A, B, C, D, of which only A and B are disjoint support from Fz.

We observe that by assigning B � 1, however, Fz
� A " CD �� Fz, and that assigning B � 0

results in Fz
� C � A " D � �� Fz. The function B is then discarded. Assigning A � 1 instead results in

Fz
� ITE � 1 � CD � B " C � � CD � Fz. A new function Z � A " z is constructed, and F is decomposed

as ITE � Z � CD � B " C � .
The following pseudocode reflects the observations above:

DEC* decompose_INHERITED_PRIME_2.a (var z, DEC* dec0, DEC* dec1) {

DEC* res;

BDD* l0,l1;

tree_tag(dec1->actuals);

// find the untagged elements in the left actuals list

tryset = list_untagged(dec0->actuals);

foreach(BDD* argument in tryset) {

l1 = cofactor(dec0, argument, 1);

l0 = cofactor(dec0, argument, 0);

if (l1 == dec1) {

G = decompose (z, argument->dec, CONST_1);

list actuals = dec0->actuals - argument + G;

res = buildDecNode(PRIME, actuals);

return res;

5.6. PUTTING IT ALL TOGETHER: THE DSD PROCEDURE 125

} else if (l0 == dec1) {

// similar to above.

}

}

// if unsuccessful, repeat by labeling the left tree

}

Case 3.a can be carried out analogously to case 1.a, with the difference that now instead of

checking that the lists differ in exactly one element, we expect them to be identical. Once again the

candidate function H with reference to Lemma 5.5 can be any of the actuals list elements.

5.6.2 New decompositions

OR and XOR decompositions

decompose NEW OR and decompose NEW XOR implement the checks of Sections 5.5 and 5.5.

In the general case we create a new decomposition tree node of type OR or XOR and with an actuals

list of length 2. However, note that it is possible that the non-constant cofactor has already a decom-

position of the same type. If we detect this situation, the decomposition node will have an actuals

list that is the same of its cofactor with the new element z prepended.

PRIME decompositions

In order to implement the construction of a new PRIME decomposition, we need to construct the

set Max � F0 � F1 � as shown in Theorem 5.6.

Construction of Max � G � H �
This operation allows us to find the set of maximal uniform support functions of two functions G,

H whose decomposition is known. We show now how to construct a decomposition tree whose

126 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

root node has as its actuals list precisely the set of functions Max � G � H � . We call this tree also

Max � G � H � .
Given two normal Decomposition Trees DTG and DTH , representing the decomposition of two

functions G and H , respectively, the tree Max � G � H � is the tree obtained as follows:

1. Max � G � H � contains each node appearing in both DTG and DTH ;

2. Max � G � H � contains each arc appearing in both DTG and DTH ;

3. if a node N of DTG represents a function FN , such that S � FN ��� S � H � � /0, then the tree rooted

at N belongs to Max � G � H � . Similarly for nodes of DTH .

4. there is a node N labeled OR (XOR) for each pair of nodes NG � DTG � NH � DTH labeled OR

(XOR) and such that S � FN1 �6� S � FN2 � �� /0. The actuals of N are the actuals common to NG

and NH . The node N is suppressed if it has fewer than two actuals.

5. a root node is added. There is an arc from the root node to each node with no ancestors.

The construction above takes trivially time linear in the size of the two trees.

Example 5.9. Figure 5.3 illustrates two decomposition trees DTG and DTH and the construction of

Max � G � H � . In the graph we represent AND nodes as AND instead of complemented OR only for

readability.

The node OR and node l belong to the intersection by rule 3. The tree rooted at PRIME by rules

1 and 2. The two nodes AND follow rule 4 producing the AND in the Max � G � H � tree.

To build a new PRIME decomposition, we simply need to build the Max � F0 � F1 � tree and label

the root node with type PRIME.

Example 5.10. Consider the case F0
� ITE � abc � d " e " f � g # h � , F1

� ITE � ab � e " f " g � h # c � .

5.7. COMPLEXITY ANALYSIS AND CONSIDERATIONS 127

dc e i

l

a b

OR

f g h

PRIME

a b

OR

c

AND

ed
i

l

f g h

PRIME

PRIME XOR

ANDAND

DT DTHG Max(G,H)

Figure 5.3: Two functions and the construction of their Max � G � H � tree.

The set Max � F0 � F1 � is given by:

A � ab;

E � e " f ;

Max � F0 � F1 � � � A � E � c � d � g � h ��
Thus, the decomposition of F � zF0 " zF1 is given by F � KF � z � A � E � c � d � g � h � .
5.7 Complexity analysis and considerations

This section analyzes the complexity of the algorithm, given a function F whose BDD representa-

tion has #BDD nodes and whose support � SF � has #VAR variables.

Notice, first of all, that the length of any actuals list in DTF is bound by the number of variables

in the support of the function, �F � KF �`b�� SF � . We now analyze the complexity of each procedure in

decompose.

The new decomposition procedures decompose NEW OR and decompose NEW XOR require

only constant time operations: O � k � . decompose NEW PRIME requires only building the set

128 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

Max � F0 � F1 � . As pointed out previously, the complexity of this operation is linear in the size of the

decomposition trees involved. The number of nodes in a decomposition tree is bound by #VAR;

thus the complexity for this procedure is O � #VAR � .
Inherited decomposition procedures involve recursive calls to decompose. The inherited pro-

cedures for OR and XOR decompositions require intersecting two actuals lists, operation linear in

their length, and performing a recursive decomposition call. Note that, at each recursive call, the

support of the function to decompose has at least one fewer variable, since the common portion of

the final actuals list must have at least a support of size one. In conclusion, for these two procedures,

we can write a recursive equation of their complexity: O �w� SF ��� � O � #VAR ��" O �w� SF �w) 1 � .
decompose INHERITED PRIME 1.a has a similar treatment, with two differences: 1) In

addition of intersection the actuals lists, we need to compute also 4 generalized cofactors. As we

showed in Section 5.6.1, these are special cofactors operations whose complexity is linear with the

size of the BDDs involved. 2) At each recursive step, the support of the function to decompose now

has at least two fewer variables, since we are dealing with PRIME nodes which have at least three

inputs. The recursive operation for this procedure is thus: O �w� SF ��� � O � #VAR �<" 4 � O � #BDD �|"
O �w� SF �¡) 2 � .

decompose INHERITED PRIME 2.a and decompose INHERITED PRIME 3.a require

a list intersection, a number of cofactors operations, up to twice the length of the actuals lists and a

recursive call to decompose. However, in this case the call is guaranteed to be terminated by a new

OR decomposition whose complexity, as we saw, is constant: O � #VAR �|" 2 � O � #BDD � #VAR �|"
O � k � .

By solving the recursive equation of decompose INHERITED PRIME 1.a, we obtain a

complexity of O � #BDD � #VAR � , which cannot be made worse even by terminating any of the

recursive steps. with a decompose INHERITED PRIME 3.a call. Thus this is also the worst

complexity of decompose.

Since we need to call this procedure for each BDD node in the representation of F , the overall

complexity of our algorithm is: O � #BDD2 � #VAR � .

5.8. EXPERIMENTS ON THE DECOMPOSABILITY OF INDUSTRIAL TESTBENCHES 129

Previously known algorithms – see Section 4.2 – had exponential complexity in the size of SF

and would compute only one of the many decompositions of a function. The complexity of our

algorithm is dominated by the size of the BDD that represents the function F , not by the num-

ber of variables in its support. Moreover, it has the advantage of computing the finest granularity

decomposition, from which all others can be derived.

For those functions whose BDD representation has size exponential in the number of the input

variables, our algorithm has no better complexity than previously known ones. However, it is known

that most functions representing digital circuit have corresponding BDDs whose size is much more

compact and thus it is possible to build such BDDs even for some very large functions. Using

our algorithm it is practically always possible to find the maximal disjunctive decomposition of a

function, once a BDD has been built.

5.8 Experiments on the decomposability of industrial testbenches

The algorithm described in this chapter was implemented in a C++ program and tested on the

circuits from the Logic Synthesis Benchmarks suite [68] and the ISCAS’89 Benchmark Circuits

[16], including their 1993 additions. We report results on all the testbenches of the two suites. The

testbenches are grouped by benchmark suite and by group within the suite: the Logic Synthesis suite

includes two-level combinational circuits, multi-level combinational networks, sequential circuits

and the tests added in ‘93. The ISCAS ‘89 suite includes a set of core sequential testbenches and

additional circuits from ‘93. For all the sequential circuits, we considered only the combinational

portion of the tests, we created an additional primary output for each latch input net and an additional

primary input for each latch output. For each testbench, we first built the ROBDDs representing each

output node as a function of the primary inputs, and then we attempted the decomposition of this

functions.

The decomposition results are reported in 5.1. Next to the testbench’s name we indicate how

many of the output functions we could decompose: Output corresponds to the number of outputs of

130 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

the circuit, DEC reports how many of this output functions have a disjoint support decomposition.

Output functions that are constant or a copy of a single input signal are considered decomposable.

When not all of the outputs could be decomposed, we also looked at the non-decomposable outputs

and checked if any of the two cofactors w.r.t. the top variable were decomposable. Column Dec Cof

reports in how many cases at least one of the two cofactors resulted decomposable. We report a “-”

in this column when all the outputs of the circuits were decomposable and thus the decomposability

of the cofactors is not meaningful. By just glancing at the table, it’s easy to notice that the column

Dec Cof has a - for most of the circuits, meaning all of the outputs for that testbench are found to

be decomposable.

Often, if a function is not decomposable, its cofactors are, and thus it is still possible to obtain a

representation that has almost all the advantages and properties of disjoint support decompositions,

except for a non-disjoint multiplexer corresponding to the node with the top variable of the specific

BDD. Notice that even fairly big functions have a disjoint decomposition in most cases. For visual

reference to the more complex testbenches, the table reports in boldface those circuits whose BDD

construction, before starting the decompostion, required building more than 10,000 nodes.

The following two columns report the number of inputs of the circuit (Inputs) and the maximum

number of inputs to any block in the decomposition tree of the output functions for that testbench

(FanIn). It is worth noticing that in many cases, even the most complex, decomposition can reduce

considerably the largest fanin to any block in the network’s representation, while keeping each

block disjoint support from the others. Then we indicated the total number of blocks in the normal

decomposition trees. These latter two values are helpful in giving an indication of the amount of

partitioning possible in the routing of the benchmark circuit.

The last four columns provide performance information. The first time/memory pair reports

the time in seconds and the amount of memory in kilobytes required to produce the ROBDDs of

all the output functions of a testbench. The second pair indicates the additional time and memory

required to construct the normal decomposition trees from the ROBDDs. All the experiments were

run on a Linux PC equipped with a Pentium 4 processor running at 2.7Ghz and 2GB of memory

5.8. EXPERIMENTS ON THE DECOMPOSABILITY OF INDUSTRIAL TESTBENCHES 131

and 512Kb of cache. In running the tests, we used a proprietary ROBDD package. In particular,

our ROBDD package records the support of the functions associated to each ROBDD node. While

this feature is convenient because of the number of support operations and tests we need to per-

form, its efficiency could be optimized. Moreover, our decomposition package has also room for

implementation improvements.

Dec BDD performance DEC performanceCircuit Outputs DEC
Cof

Inputs FanIn Blocks
Time (s) Mem (KB) Time (s) Mem (KB)

Logic Synthesis ‘91 - Two level tests

5xp1 10 9 0 7 7 20 0.00 13 0.00 1
9sym 1 0 0 9 9 1 0.00 59 0.00 1
alu4 8 1 0 14 14 10 0.04 417 0.01 22
apex1 45 43 0 45 30 224 0.02 373 0.02 37
apex2 3 3 - 39 29 16 0.17 1384 0.02 22
apex3 50 39 2 54 42 200 0.01 399 0.02 23
apex4 19 5 0 9 9 22 0.01 384 0.01 23
apex5 88 88 - 117 14 463 0.03 377 0.01 59
bw 28 15 4 5 5 57 0.00 11 0.00 3
clip 5 0 2 9 9 5 0.00 62 0.00 3
con1 2 0 2 7 6 2 0.00 2 0.00 0
duke2 29 24 3 22 17 91 0.00 108 0.00 13
e64 65 65 - 65 2 2080 0.01 83 0.00 5
misex1 7 1 0 8 7 8 0.00 4 0.00 1
misex2 18 17 1 25 7 105 0.00 10 0.00 3
misex3c 14 2 5 14 14 20 0.01 186 0.00 11
misex3 14 2 1 14 14 16 0.07 410 0.00 15
o64 1 1 - 130 2 129 0.00 85 0.00 8
rd53 3 1 1 5 5 6 0.00 7 0.00 0
rd73 3 1 0 7 7 8 0.00 41 0.00 1
rd84 4 2 0 8 8 16 0.01 84 0.00 1
sao2 4 4 - 10 8 12 0.00 41 0.00 2
seq 35 35 - 41 33 198 0.08 385 0.02 41
vg2 8 8 - 25 24 23 0.00 95 0.00 4
xor5 1 1 - 5 2 4 0.00 5 0.00 0

Logic Synthesis ‘91 - FSM tests

daio 6 5 1 6 3 4 0.00 1 0.00 0
ex1 39 39 - 30 23 677 0.00 67 0.01 54
ex2 21 21 - 22 18 340 0.00 37 0.00 8
ex3 12 12 - 13 10 98 0.00 10 0.00 9
ex4 23 23 - 21 8 283 0.00 14 0.00 5
ex5 11 11 - 12 10 78 0.00 10 0.00 4
ex6 16 12 4 14 13 58 0.00 15 0.00 8
ex7 12 12 - 13 11 97 0.00 13 0.00 3
s1196 32 24 6 33 21 68 0.01 59 0.00 34
s1238 32 24 6 33 21 68 0.01 64 0.00 35
s1423 79 77 2 92 32 330 0.01 376 0.06 348

Table 5.1: Disjoint Support Decomposition results - continued on next page

132 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

Dec BDD performance DEC performanceCircuit Outputs DEC
Cof

Inputs FanIn Blocks
Time (s) Mem (KB) Time (s) Mem (KB)

s1488 25 23 2 15 12 59 0.01 77 0.00 11
s1494 25 23 2 15 12 59 0.01 77 0.00 11
s208 10 10 - 20 3 53 0.00 10 0.00 3
s27 4 4 - 8 2 11 0.00 1 0.00 0
s298 20 17 3 18 8 32 0.00 9 0.00 3
s344 26 23 0 25 7 37 0.00 11 0.00 3
s349 26 23 0 25 7 37 0.00 10 0.00 3
s382 27 27 - 25 7 70 0.00 11 0.00 5
s386 13 13 - 14 9 67 0.00 12 0.00 3
s400 27 27 - 25 7 70 0.00 11 0.00 4
s420 18 18 - 36 3 113 0.00 25 0.00 10
s444 27 27 - 25 7 70 0.00 25 0.00 6
s510 13 5 3 26 19 24 0.00 25 0.00 9
s526n 27 24 2 25 8 66 0.00 16 0.00 4
s526 27 24 3 25 8 66 0.00 15 0.00 4
s641 42 42 - 55 18 150 0.00 37 0.01 25
s713 42 42 - 55 18 150 0.00 42 0.01 28
s820 24 22 1 24 17 109 0.00 29 0.00 7
s832 24 22 1 24 17 109 0.00 30 0.00 7
s838 34 34 - 68 3 233 0.00 46 0.01 67
s953 52 47 2 46 17 97 0.01 54 0.00 13

Logic Synthesis ‘91 - Multi level tests

9symml 1 0 0 9 9 1 0.00 37 0.00 1
alu2 6 4 0 10 10 8 0.00 78 0.00 5
alu4 8 4 0 14 14 14 0.01 199 0.00 11
apex6 99 99 - 135 14 369 0.00 77 0.00 24
apex7 37 37 - 49 9 155 0.00 44 0.00 13
b1 4 3 1 3 3 2 0.00 1 0.00 0
b9 21 21 - 41 8 54 0.00 15 0.00 4
C1355 32 0 0 41 41 32 0.23 1545 73.57 41689
C17 2 1 1 5 4 4 0.00 0 0.00 0
C1908 25 7 0 33 32 93 0.05 754 2.40 5787
C2670 140 119 1 233 78 187 0.05 666 1.36 8017
C3540 22 14 0 50 50 49 0.53 2301 2.05 16348
C432 7 1 1 36 36 23 0.01 329 0.07 489
C499 32 0 0 41 41 32 0.16 1406 100.61 40187
C5315 123 80 10 178 66 186 0.04 371 0.12 1032
C7552 108 107 1 207 118 295 0.18 1148 0.25 1899
C880 26 26 - 60 41 96 0.02 373 0.41 3374
c8 18 10 8 28 3 69 0.00 19 0.00 2
cc 20 20 - 21 4 32 0.00 7 0.00 2
cht 36 36 - 47 3 74 0.00 12 0.00 4
cm138a 8 8 - 6 2 40 0.00 1 0.00 1
cm150a 1 1 - 21 20 2 0.00 8 0.00 2
cm151a 2 2 - 12 11 2 0.00 3 0.00 1
cm152a 1 0 0 11 11 1 0.00 2 0.00 1
cm162a 5 5 - 14 4 19 0.00 5 0.00 1
cm163a 5 5 - 16 3 26 0.00 3 0.00 1

Table 5.1: Disjoint Support Decomposition results - continued on next page

5.8. EXPERIMENTS ON THE DECOMPOSABILITY OF INDUSTRIAL TESTBENCHES 133

Dec BDD performance DEC performanceCircuit Outputs DEC
Cof

Inputs FanIn Blocks
Time (s) Mem (KB) Time (s) Mem (KB)

cm42a 10 10 - 4 2 30 0.00 1 0.00 1
cm82a 3 3 - 5 3 6 0.00 2 0.00 1
cm85a 3 3 - 11 3 20 0.00 6 0.00 1
cmb 4 4 - 16 2 33 0.00 10 0.00 1
comp 3 3 - 32 3 63 0.00 24 0.00 19
count 16 16 - 35 3 168 0.00 7 0.00 2
cu 11 11 - 14 6 43 0.00 4 0.00 1
decod 16 16 - 5 2 64 0.00 2 0.00 1
des 245 245 - 256 14 560 0.07 373 0.02 77
example2 66 49 17 85 11 281 0.00 25 0.00 12
f51m 8 8 - 8 7 13 0.00 17 0.00 1
frg1 3 3 - 28 19 12 0.00 77 0.00 4
frg2 139 139 - 143 17 519 0.01 336 0.01 60
k2 45 43 2 45 30 224 0.01 353 0.02 38
lal 19 19 - 26 2 89 0.00 11 0.00 3
ldd 19 18 1 9 5 60 0.00 8 0.00 2
majority 1 1 - 5 4 2 0.00 1 0.00 0
mux 1 1 - 21 20 2 0.00 13 0.00 2
my adder 17 17 - 33 3 48 0.00 67 0.00 9
pair 137 137 - 173 28 724 0.03 374 0.06 275
parity 1 1 - 16 2 15 0.00 5 0.00 1
pcler8 17 17 - 27 3 99 0.00 12 0.00 4
pcle 9 9 - 19 3 62 0.00 5 0.00 2
pm1 13 13 - 16 3 46 0.00 5 0.00 1
rot 107 104 3 135 42 351 0.04 621 0.25 2114
sct 15 14 1 19 3 63 0.00 11 0.00 2
tcon 16 8 8 17 3 8 0.00 2 0.00 1
term1 10 10 - 34 10 66 0.00 69 0.00 5
too large 3 3 - 38 29 16 0.06 587 0.01 16
ttt2 21 18 2 24 8 66 0.00 31 0.00 3
unreg 16 16 - 36 3 48 0.00 7 0.00 3
vda 39 29 10 17 17 81 0.00 121 0.01 15
x1 35 35 - 51 17 181 0.01 192 0.00 16
x2 7 7 - 10 6 24 0.00 4 0.00 1
x3 99 99 - 135 14 369 0.01 121 0.00 22
x4 71 71 - 94 8 207 0.00 48 0.00 13
z4ml 4 4 - 7 3 9 0.00 14 0.00 1

Logic Synthesis ‘91 - Addition ‘93

b12 9 8 0 15 8 31 0.01 58 0.00 2
bigkey 421 194 3 487 10 232 0.19 371 0.02 83
clma 115 115 - 416 36 532 24.25 373 0.01 38
cordic 2 2 - 23 8 18 0.09 349 0.00 3
cps 109 109 - 24 15 1147 0.03 210 0.01 66
dalu 16 15 1 75 31 227 0.12 373 0.02 33
dsip 421 194 3 453 12 232 0.18 372 0.03 85
ex4p 28 28 - 128 15 46 0.06 363 0.01 15
ex5p 63 54 2 8 8 271 0.04 195 0.00 8
i10 224 224 - 257 74 1098 0.64 3294 14.21 102333

Table 5.1: Disjoint Support Decomposition results - continued on next page

134 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

Dec BDD performance DEC performanceCircuit Outputs DEC
Cof

Inputs FanIn Blocks
Time (s) Mem (KB) Time (s) Mem (KB)

i1 13 13 - 25 3 43 0.00 4 0.00 2
i2 1 1 - 201 6 187 0.00 154 0.00 17
i3 6 6 - 132 2 126 0.00 28 0.00 8
i4 6 6 - 192 2 186 0.00 53 0.00 37
i5 66 66 - 133 2 132 0.01 19 0.00 7
i6 67 1 29 138 5 69 0.00 45 0.01 8
i7 67 3 64 199 6 72 0.01 64 0.00 12
i8 81 18 63 133 17 93 0.05 372 0.04 35
i9 63 0 0 88 13 63 0.01 93 0.01 58
mm4a 16 16 - 20 13 52 0.00 60 0.00 8
mm9a 36 36 - 40 28 117 0.03 386 0.26 2110
mm9b 35 35 - 39 29 293 0.03 384 0.35 1892
mult16a 17 17 - 34 3 64 0.00 61 0.00 7
mult16b 31 31 - 48 3 61 0.01 13 0.00 4
mult32a 33 33 - 66 3 128 0.04 381 0.01 105
s208 9 9 - 19 3 46 0.00 5 0.00 4
s38584 1730 1611 113 1465 36 5146 9.92 946 0.17 887
s5378 212 211 0 199 52 784 0.11 242 0.02 154
s838 33 33 - 67 3 562 0.01 33 0.00 65
s9234 174 169 5 172 40 509 0.10 280 0.01 59
sbc 83 83 - 68 21 404 0.02 110 0.01 44
sqrt8ml 4 4 - 8 5 11 0.00 11 0.00 1
sqrt8 4 4 - 8 7 7 0.00 11 0.00 1
squar5 8 4 2 5 5 14 0.00 8 0.00 1
t481 1 1 - 16 2 15 0.02 190 0.00 1
table3 14 0 2 14 14 14 0.01 176 0.02 152
table5 15 3 2 17 17 25 0.01 169 0.02 130

ISCAS ‘89 - FSM tests

s1196 32 24 6 32 21 68 0.00 59 0.00 34
s1238 32 24 7 32 21 68 0.00 69 0.01 56
s13207.1 790 783 7 700 42 1805 1.01 371 0.03 97
s13207 790 783 7 700 42 1805 1.04 371 0.03 96
s1423 79 77 2 91 32 330 0.01 191 0.01 148
s1488 25 23 2 14 12 59 0.01 77 0.00 11
s1494 25 23 2 14 12 59 0.01 77 0.00 11
s15850.1 684 651 33 611 148 2074 1.9 1059 0.62 2606
s15850 684 651 33 611 148 2074 2.13 813 0.58 2349
s208 9 9 - 18 3 46 0.00 5 0.00 7
s27 4 4 - 7 2 11 0.00 1 0.00 0
s298 20 17 2 17 8 32 0.00 7 0.00 2
s344 26 23 0 24 7 37 0.00 10 0.00 3
s349 26 23 0 24 7 37 0.00 10 0.00 3
s35932 2048 2048 - 1763 6 3371 8.00 371 0.01 135
s382 27 27 - 24 7 70 0.00 10 0.00 3
s38584.1 1730 1611 113 1464 36 5146 12.53 801 0.16 959
s38584 1730 1611 113 1464 36 5146 11.32 824 0.14 912
s386 13 13 - 13 9 67 0.00 14 0.00 4
s400 27 27 - 24 7 70 0.00 11 0.00 5

Table 5.1: Disjoint Support Decomposition results - continued on next page

5.8. EXPERIMENTS ON THE DECOMPOSABILITY OF INDUSTRIAL TESTBENCHES 135

Dec BDD performance DEC performanceCircuit Outputs DEC
Cof

Inputs FanIn Blocks
Time (s) Mem (KB) Time (s) Mem (KB)

s420 17 17 - 34 3 154 0.00 16 0.00 11
s444 27 27 - 24 7 70 0.01 23 0.00 6
s510 13 5 5 25 19 24 0.00 23 0.00 4
s526n 27 24 2 24 8 66 0.01 15 0.00 4
s526 27 24 3 24 8 66 0.01 15 0.00 4
s5378 213 212 0 214 51 795 0.10 288 0.03 211
s641 42 42 - 54 18 150 0.00 54 0.01 55
s713 42 42 - 54 18 150 0.01 46 0.00 41
s820 24 22 1 23 17 109 0.00 30 0.00 7
s832 24 22 1 23 17 109 0.00 30 0.00 7
s838 33 33 - 66 3 562 0.00 37 0.00 100
s9234 250 245 4 247 48 707 0.42 372 0.05 250
s953 52 47 2 45 17 97 0.01 58 0.00 12

ISCAS ‘89 - Addition ‘93

prolog 158 152 4 172 67 424 0.03 175 0.00 101
s1196 32 24 6 32 21 68 0.01 59 0.00 34
s1269 47 30 9 55 35 97 0.01 231 0.03 115
s1512 78 78 - 86 18 285 0.01 136 0.00 33
s3271 130 102 28 142 15 353 0.03 198 0.01 38
s3330 205 199 5 172 67 424 0.03 199 0.02 159
s3384 209 172 37 226 39 373 0.03 151 0.01 202
s344 26 23 0 24 7 37 0.00 10 0.00 3
s4863 88 66 2 153 22 190 1.96 4231 9.03 43400
s499 44 44 - 23 5 423 0.00 41 0.00 9
s635 33 33 - 34 2 591 0.00 16 0.00 4
s6669 269 194 44 322 16 380 0.92 2237 1.66 7848
s938 33 33 - 66 3 562 0.01 37 0.00 100
s967 52 47 2 45 17 97 0.01 59 0.00 11
s991 36 36 - 84 54 53 0.01 102 0.00 21

Table 5.1: Disjoint Support Decomposition results

In most cases the additional time to decompose a function is small compared to the time required

to build the initial ROBDDs. However, there are a few cases where this is not the case: specifically

C1355 and C499 of the Logic Synthesis suite cannot find a decomposition for any of the primary

outputs, yet the algorithm is very time consuming. These circuits are very similar, they have the

same number of inputs and outputs and they are both error correcting circuits as reported in [68].

By inspecting the two circuits we found that the intermediate nodes of these circuits up to about half

way in the bottom-up construction were often decomposable; then the repetitive application of the

algorithm decompose NEW PRIME, Section 5.6.2, made so that the top half of the construction

produces almost invariably a PRIME decomposition with a kernel identical to the function itself.

136 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

Circuit i10 from Logic Synthesis ‘91 - Addition ‘93 instead, requires times and memory resources

above average because of the long actuals lists that are produced during the computation. Table

5.1 reports decomposition results for all the circuits in the test suites mentioned above with two

exceptions: we could not apply the decomposition algorithm to circuit C6288 (a 16-bit multiplier)

since we run out of memory building the initial ROBDDs for it; circuit s38417 runs out of memory

during the decomposition because of its large support size and long intermediate actuals lists in-

volved. We hope to be able to tackle this latter testbench with a more clever implementation of the

decomposition algorithm. We summarized the results and found that we could decompose 16,472

functions out of a total of 18,584. The total time spent constructing the ROBDDs was 79.63s, while

the time spent after that to attempt the functions’ decompositions was 209.11s.

5.9 Conclusion

We presented in this chapter a novel algorithm that can generate the maximal disjoint support de-

composition of a Boolean function represented by its BDD. The worst case complexity of this

algorithm is only quadratic in the size of the BDD representation, while previously proposed algo-

rithms has exponential complexity on the number of variables in the support of the function. We

found it very fast in practice as we were able to obtain the decomposition of most testbenches in

time comparable to the construction of their BDD. Experimental results indicate that the majority

of functions representing the behavior of digital systems are indeed decomposable and the maxi-

mal disjoint decomposition has a fine granularity, as indicated by the support size of the biggest

component block.

The next chapter will exploit these encouraging results in devising a new type of parameteriza-

tion for symbolic simulation. This time the parameterization is exact, meaning that we generate a

set of parameterized functions whose range matches exactly the frontier set of represented by the

state vector.

