
Chapter 3

Cycle-Based Symbolic Simulation

This chapter introduces our first technique to address the robustness and scalability limitations of

the traditional symbolic simulation approach. We present an algorithm that can be applied to much

more complex designs using a bounded amount of memory resources. The main focus of this

algorithm is to achieve as much breadth of traversal as possible while maintaining the advantages

of logic simulation, namely scalability and limited memory requirements. In the best situation,

this approach achieves the same breadth of traversal as a pure symbolic simulation algorithm, but

the breadth of the traversal can be reduced if that is required to minimize memory usage. Thus,

Cycle-Based Symbolic Simulation, or CBSS, can be viewed as a hybrid approach that exploits

the tradeoffs between symbolic search and logic simulation. Before diving into the presentation

of this new algorithm, we discuss the motivation for this direction of work, namely the use of

parameterization in symbolic simulation and its advantages for a reduced memory profile.

3.1 Parametric transformations

The central observation underlying the work of this thesis is that the expressions involved in a

symbolic simulation exploration carry more information than the algorithm uses. At the end of each

step, the Boolean expressions representing the state signals are fed back to the sequential inputs of

43

44 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

the gate level network and used for the next simulation step. As we pointed out in Section 2.7.1,

at the end of a generic step k, these expressions represent implicitly all the states that are reachable

by the design in k steps from an initial state S0. We observe now, that this implicit description of

the set of states S@k is most often redundant. Since the only information that needs to be transfered

across simulation steps is the set of states that have been reached in the previous step, it is generally

possible to define a more compact encoding of this set description, that is, a new parameterization

of the state set. We can then use this new implicit description for the next simulation step. Figure

3.1 shows where the transformation takes place in the simulation flow.

JKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJ

LKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKL
network

combinational

parametric
transformation

inputs outputs

S@k

Figure 3.1: Parameterization of the state vector during symbolic simulation

Consequently, if we can define a new encoding that uses compact BDDs and transforms the

expressions defining the set of reached states at the end of every simulation step based on this new

parameterization, then we can maintain a low memory profile across the process and thus achieve

better scalability and robustness in simulation.

Example 3.1. Consider once again the counter of Example 2.2. When we perform the first step of

symbolic simulation on this design, with reference to Figure 3.2 - step 1, we obtain the following

3.1. PARAMETRIC TRANSFORMATIONS 45

vector of Boolean expressions for the next state functions:

up � 1

x2
� 0

x1
� 0

x0
� r0 � c0

By varying the values associated with each of the variables in the expressions, that is, perform-

ing all the assignments � 00 � 01 � 10 � 11 � for the pair of variables r0 and c0, we obtain an explicit list

of all the states that can be reached in one step of symbolic simulation. For this example, such state

set is � 1000 � 1001 � . It’s easy to see that this set can be more simply encoded as � 100p0 � , where p0

is a new Boolean parameter. Note that the new parameterization uses only one Boolean variable

instead of two.

We can now use this new simpler representation of the state set for the second step of simula-

tion and obtain the expressions reported in Figure 3.2 - step 2 after simulating the combinational

portion of the network. The new state expressions depend now on three variables: r1, c1 and p0,

the parameter. Again, by evaluating the expressions for each possible assignment to the Boolean

variables, we only obtain three distinct states: � 1000 � 1001 � 1010 � . These three states can be more

efficiently encoded using only two parameters as:

up � 1

x2
� 0

x1
� p0

x0
� p0 � p1

As even this small example shows, most often symbolic simulation produces expressions that

are not an efficient encoding of the state set spanned by the traversal. In order to exploit the compact

46 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

MNMNMNMNMNMNMNMMNMNMNMNMNMNMNMMNMNMNMNMNMNMNMMNMNMNMNMNMNMNMMNMNMNMNMNMNMNMMNMNMNMNMNMNMNMMNMNMNMNMNMNMNMMNMNMNMNMNMNMNMMNMNMNMNMNMNMNMMNMNMNMNMNMNMNM
ONONONONONONONOONONONONONONONOONONONONONONONOONONONONONONONOONONONONONONONOONONONONONONONOONONONONONONONOONONONONONONONOONONONONONONONOONONONONONONONO

PNPNPNPNPNPNPPNPNPNPNPNPNPPNPNPNPNPNPNPPNPNPNPNPNPNPPNPNPNPNPNPNPPNPNPNPNPNPNPPNPNPNPNPNPNPPNPNPNPNPNPNPPNPNPNPNPNPNPPNPNPNPNPNPNP
QNQNQNQNQNQNQQNQNQNQNQNQNQQNQNQNQNQNQNQQNQNQNQNQNQNQQNQNQNQNQNQNQQNQNQNQNQNQNQQNQNQNQNQNQNQQNQNQNQNQNQNQQNQNQNQNQNQNQQNQNQNQNQNQNQ

RNRNRNRNRNRNRNRRNRNRNRNRNRNRNRRNRNRNRNRNRNRNRRNRNRNRNRNRNRNRRNRNRNRNRNRNRNRRNRNRNRNRNRNRNRRNRNRNRNRNRNRNRRNRNRNRNRNRNRNRRNRNRNRNRNRNRNRRNRNRNRNRNRNRNR
SNSNSNSNSNSNSNSSNSNSNSNSNSNSNSSNSNSNSNSNSNSNSSNSNSNSNSNSNSNSSNSNSNSNSNSNSNSSNSNSNSNSNSNSNSSNSNSNSNSNSNSNSSNSNSNSNSNSNSNSSNSNSNSNSNSNSNSSNSNSNSNSNSNSNS

step 1 step 3step 2
state set state set

0
0
0
1

r c0 0

0
1

0

r0
c0

0
0
1

0
0
0
1

1
1
0
1

0
0
0
1

0
0
0
1

1

r1
c1

0
0
1

p0

r1
c1

p0

0
1

1r (p + c)10

0
1

p p0 1
1 0r c p1

Figure 3.2: Three steps of symbolic simulation for the counter of Example 2.2 and possible param-
eterizations of the reached state sets

memory representations allowed by parameterization, we need to find an efficient algorithm that can

discover good parameterizations automatically.

3.2 Parameterizations in symbolic simulation

Cycle-Based Symbolic Simulation is a hybrid approach in the sense that the values that are propa-

gated through the network can be both symbolic expressions or constant Boolean values. Section

2.3.1 showed that BDDs can be used to represent both efficiently.

Our algorithm adds a parameterization phase at the end of each simulation step to basic sym-

bolic simulation, as indicated in Figure 3.1. This parameterization transforms the state vector BDDs

into compact BDDs that use only a small amount of memory resources. It is possible that the set of

parametric BDDs produced spans only a subset of the original state set. This under-approximation

may occur as a trade-off between accuracy of the traversal (that is, producing an exact parame-

terization) and complexity of the expressions produced (which we want to keep at a minimum).

However, even when we settle for representing a subset of the state set, this set is chosen to maxi-

mize the amount of states represented for the amount of memory used.

Previous work has used parameterization techniques in connection with FSM traversal or sym-

bolic simulation to reduce the memory requirements of the algorithms. Often, user interaction is

required to suggest a relation among different signals of the systems under verification which can

3.3. THE CBSS ALGORITHM 47

be exploited for parameterizing the simulation. For instance, in [38], the authors exploit the de-

pendencies among state variables to simplify the traversal of a FSM. such dependencies need to be

suggested by the designer and are verified for correctness during the simulation of the system. [41]

presents a range of techniques to parameterize relations provided by the user. The work in [65]

automatically discovers dependencies among state variables during FSM traversal. Detecting such

dependencies requires checking all the state variables at each step of the traversal and transforming

both the reached set and the transition relation accordingly during every step of the traversal.

Another research direction related to symbolic simulation and parameterizations focuses on

partitioning the search exploration based on circuit related constraints and then performing multiple

simulation for each element of the partition. In this context, parameterization techniques have been

used to express the conditions of each subcase of the partitioned constraints. In particular, Jain et

al. considered in [40] a variety of Boolean formula representations for the constraints and proposed

a method to obtain parametric solutions. Aagaard et al. [1] introduced an alternative method where

the case splitting on the constraints is based on Shannon decomposition.

In contrast, the focus of the algorithm presented here is to be fully automatic in a symbolic sim-

ulation context and to introduce a parameterization that is efficiently computed and produces very

compact results in terms of memory requirements. We compare our approach to logic simulation

and show that while each simulation step is more time consuming, since it manipulates Boolean

expressions instead of constant values, it also produces the equivalent of multiple logic simulations

test vector in a single pass. Experimental results report a quantitative analysis of the performance

of this new approach to logic simulation.

3.3 The CBSS algorithm

Cycle-Based Symbolic Simulation is initialized by setting the state of the circuit to the initial con-

stant vector S0 (see Section 2.4.3 for a definition of S0). Each of the combinational input signals is

48 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

assigned a distinct symbolic variable IN@0
� � i1@0 �	�	�	��� im@0 � . The simulation proceeds by com-

puting the Boolean expressions corresponding to each node in the combinational portion of the

network, as in the basic symbolic simulation algorithm. At the end of a simulation step, the ex-

pressions representing the next-state functions undergo a parametric transformation. During this

parameterization, a minimal number of inputs could be set to constants. The objective of the se-

lection is to maximize the breadth of the traversal, while keeping the representation of the state set

compact through use of Boolean expressions with a small BDD.

During the simulation, we do not compute a reached set as in symbolic state traversal (Section

2.6.1). This computation is one of the main causes of reduced scalability of symbolic state traver-

sal. Its main advantage is to maintain a history of states previously visited in the traversal, which is

central to 1) discover when all the reachable states have been visited and the traversal is complete

and to 2) select a set of states to use in the next simulation step, possibly with a compact represen-

tation. However, the simulation approach we present here targets circuits whose size is beyond the

capability of symbolic state traversal. In general we don’t expect to complete the simulation within

a few hundreds steps, as it is generally the case for the type of designs that symbolic state traversal

approaches. Moreover, we use a novel parameterization algorithm that does not require reached

set information.

After parameterization, the newly generated functions are used as present state for the next state

of simulation. Figure 3.3 shows how the algorithm just described corresponds to the iterative model

for symbolic simulation. Notice that now we have added two new blocks to those in Figure 2.16.

The outputs of the parametric transformation (PAR-TRF) block are: 1) the parametrized state vector

that is fed to the present state in the next step of simulation and 2) a set of parametric equations that

relate the newly created parameters p@k to the set of combinational inputs � IN@0 �	�	�	�
� IN@k � .
The parametric representation of frontier sets that we adopted can be constructed and manipu-

lated very efficiently. The selection of which inputs to tie and to what value is based on the ease of

construction of this representation. Alternatively, the value selection can be left to the user or to the

tool: by evaluating to constant symbolic variables selectively, it is possible to symbolically simulate

3.4. THE PARAMETERIZATION PHASE 49

IN
@0

OUT
@0

IN
@k

OUT
@k

IN
@1

OUT
@1

Sk+1S@0
S@1 S@2 PAR

TRF

@1
PE

PAR
TRF

@k
PE

k+1PSPAR
TRF

@0
PE

PS PS@1 @2TUTUTUTUTUTUTTUTUTUTUTUTUTTUTUTUTUTUTUTTUTUTUTUTUTUTTUTUTUTUTUTUTTUTUTUTUTUTUTTUTUTUTUTUTUTTUTUTUTUTUTUT
VUVUVUVUVUVVUVUVUVUVUVVUVUVUVUVUVVUVUVUVUVUVVUVUVUVUVUVVUVUVUVUVUVVUVUVUVUVUVVUVUVUVUVUV

WUWUWUWUWUWUWWUWUWUWUWUWUWWUWUWUWUWUWUWWUWUWUWUWUWUWWUWUWUWUWUWUWWUWUWUWUWUWUWWUWUWUWUWUWUWWUWUWUWUWUWUW
XUXUXUXUXUXUXXUXUXUXUXUXUXXUXUXUXUXUXUXXUXUXUXUXUXUXXUXUXUXUXUXUXXUXUXUXUXUXUXXUXUXUXUXUXUXXUXUXUXUXUXUX

YUYUYUYUYUYYUYUYUYUYUYYUYUYUYUYUYYUYUYUYUYUYYUYUYUYUYUYYUYUYUYUYUYYUYUYUYUYUYYUYUYUYUYUY
ZUZUZUZUZUZZUZUZUZUZUZZUZUZUZUZUZZUZUZUZUZUZZUZUZUZUZUZZUZUZUZUZUZZUZUZUZUZUZZUZUZUZUZUZ

Figure 3.3: Cycle-Based symbolic simulation flow

any neighborhood of an input trace generated by the test bench.

3.4 The parameterization phase

The parameterization technique is based the following observation. In symbolic FSM traversal, the

next state function δ can be, in general, complex. The next state functions of symbolic simulation

at time step 0, S1, can be derived from δ as:

S1 � i@0 � : I : Bm � S : Bn � � δ � s � i ��� s � S0 � I / IN@0 ��� (3.1)

that is, by evaluating the state variables to the initial state values and substituting the combinational

input variables with the input variables of time step 0. Often, because the state variables are eval-

uated to constant, the resulting components of S1 are very simple, such as constants, copies of an

input, or complement of an input. Moreover, an input variable may be copied into several com-

ponents of S1: there are then functional dependencies among the various state bits. We use these

functional dependencies to obtain a simplified representation PS1 of S1. At each time step k, we

produce a simple, parameterized representation of the next state functions to use for the next step

k " 1. By always presenting a simple set of functions at the present state signals of the network we

are able to generate next state functions S@k that are always simpler and more compact than the

50 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

CBSS(network_model) �
assign(present_state_signals, reset_state_pattern);
for (step = 0; step < MAX_SIMULATION_STEPS; step+1) �

input_symbols = create_boolean_variables (m, step);
assign(input_signals, input_symbols);
foreach (gate) in (combinational_netlist) �

compute_boolean_expression (gate);�
output_symbols = read(output_signals);
state_symbols = read(next_state_signals);
check_simulation_output(output_symbols);
/* the next line also writes out the parametric equations */
parametric_state_set = parameterize(state_symbols, step);
assign (present_state_signals, par_state_set);��

Figure 3.4: The CBSS algorithm - pseudocode

ones involved in the pure symbolic simulation algorithm.

In practice, we never explicitly build the next function δ. Rather, at each clock tick k, we use

the functional dependencies among the components of the next state function S@k at time k to

build a parameterized version, PS@k, for time k " 1. If, in spite of our efforts, PS@k becomes too

complex to be represented with BDDs within our memory budget, a few symbolic variables are tied

to constant values to simplify it.

Notice that the parametric representation allows us to avoid the computation and representation

of the global next state functions of the circuit as in symbolic state traversal, thereby avoiding a

lengthy simulation set-up time.

3.4.1 Using functional dependencies

We discover and exploit functional dependencies using a parametric representation of the next state

set. Figure 3.3 illustrates the approach. We introduce some intermediate variables p i. At a generic

3.4. THE PARAMETERIZATION PHASE 51

clock tick k, we inspect the BDDs of S@k and build a function PS@k such that (see Definition 2.2):

R � PS@k � � R � S@k ��
 (3.2)

In practice, we will settle for a PS@k such that 1) the number of parameter variables p is small, and

2) R � PS@k � is a “large” and easily identifiable subset of R � S@k � :
R � PS@k ��[R � S@k ��
 (3.3)

The set PS@k that we generate has cardinality that is 2p, where p is the number of parameters we

introduce during the parameterization phase. The diagram in Figure 3.5 shows the relation between

the whole state space of the system, S@k and PS@k.

frontier set
at step k

\]\]\]\]\]\]\]\]\\]\]\]\]\]\]\]\]\\]\]\]\]\]\]\]\]\\]\]\]\]\]\]\]\]\\]\]\]\]\]\]\]\]\\]\]\]\]\]\]\]\]\\]\]\]\]\]\]\]\]\\]\]\]\]\]\]\]\]\\]\]\]\]\]\]\]\]\\]\]\]\]\]\]\]\]\
^]^]^]^]^]^]^]^]^^]^]^]^]^]^]^]^]^^]^]^]^]^]^]^]^]^^]^]^]^]^]^]^]^]^^]^]^]^]^]^]^]^]^^]^]^]^]^]^]^]^]^^]^]^]^]^]^]^]^]^^]^]^]^]^]^]^]^]^^]^]^]^]^]^]^]^]^^]^]^]^]^]^]^]^]^

parameterized
frontier set
at step k

design state space

@k
S

PS@k

Figure 3.5: The parameterized frontier subset PS@k

Section 3.4.2 provides the details on PS@k and its construction. The BDD of the next state

functions for step k " 1 is then built by simulation of the combinational portion of the circuit. In

terms of the δ function, this corresponds to:

Sk � 1 � i@k � 1 � : I : Bm � S : Bn � � δ � s � i ��� s � PS@k � I / IN@k � 1 � (3.4)

and a new PSk � 1 constructed by parameterization. Notice that the state variables are effectively

52 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

replaced by the parametric variables pi.

In addition, we build a second mapping PE@k. This second mapping expresses each pi as a

function of inputs and intermediates at the previous tick. PE@k should also be “simple”, for the

following reason. Suppose an error is discovered at time k. There is then an assignment of primary

inputs and intermediates at time k that exposes the bug. We need to be able to map the assignment

of intermediates to an assignment of inputs and intermediates at time k) 1, and then iteratively back

to primary inputs at time k) 2 �	�	�	�
� 0.

The parametric transformation develops in two phases: the first phase identifies simple variables,

while the second phase parameterizes unbound functions. The pseudocode of the function is shown

in Figure 3.6. It guarantees that R � Sk � can be parameterized in linear time. If this is not the case,

it identifies variables for assignment, and cofactors Sk accordingly. The actual constant values used

for the assignment could correspond to the values provided in a testbench for the design, if this is

available. For instance, if at the third step of CBSS simulation we need to evaluate to a constant

the variable corresponding to input x, we could extract the value assigned at input x in the testbench

at the third step of logic simulation. By choosing values based on this criteria, we guarantee that

our CBSS algorithm produces a design exploration that includes the search corresponding to logic

simulation run on the same testbench. For instance, if there is a testbench that drives the design to a

specific corner case to check it, CBSS can not only check that specific configuration of the system,

but also cover a set of additional configurations that are “close” to the target one in the FSM model.

Whenever a testbench is not available, we can still automatically produce a random value for

the variable assignment. This choice will drive the design through a random walk of the state space.

The pseudocode of the parameterization phase is shown in Figure 3.6. The details of functions

find simple complex var, find shared eqclasses, and remap are described in the

following sections. Function assign & cofactor simply takes a vector of expressions and a set

of variables, assigns a value to each of the variables in the set and partially evaluates each expression

based on these values.

3.4. THE PARAMETERIZATION PHASE 53

parameterize(state_equations, step) �
<simple, complex> = find_simple_complex_var(state_equations);
state_equations = assign_&_cofactor(state_equations, complex);
state_equations = remap(state_equations, simple);
append_param_equations(simple, step);
<classes, shared> = find_shared_eqclasses(state_equations);
state_equations = assign_&_cofactor(state_equations, shared);
state_equations = remap(state_equations, classes);
append_param_equations(classes, step);
return state_equations;�

Figure 3.6: parameterize function - pseudocode

3.4.2 How to classify the components of the state vector

We show how to quickly identify a function PS@k such that R � PS@k � is a “large” subset of R � S@k � .
The set of transformations presented in the next two sections can be applied to any Boolean vector

function. For purposes of readability, in the following definitions we will refer to the generic func-

tion V : Bn � Bm. As explained above, the CBSS algorithm applies such transformation to the next

state vector S@k.

Definition 3.1. A variable x is termed simple if there is a component Vi of V such that S � Vi � � � x � .
Given a function V, let Si denote the set of simple variables. A component V i is termed simple if

S � Vi �_[Si.

Definition 3.2. Let again Si denote the set of simple variables. A non-constant component function

Vi is termed complex if:

1. S � Vi ��� Si �� /0 and

2. S � Vi ��� Si �� /0.

For a complex function Vi, a variable belonging to S � Vi �<� Si is also termed complex.

Definition 3.3. A function is unbound if it is neither simple nor complex. Two components V i and

V j of V are termed equivalent if they are unbound and either Vi
� V j or Vi

� V j holds.

54 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

Definition 3.4. Given an equivalence class ε of functions with reference to the previous definition,

we indicate with S � ε � the set of variables belonging to the support of any function in ε. A variable

x � S � V � is said to be bound if it belongs only to the support of a single equivalence class of V. It

is termed shared if it belongs to more than one class.

Example 3.2. Consider the following function S@k:

S@k � x � y � : B2 � B7 � � x � x � y � 0 � f � x � y ��� g � x � y ��� y �
Its components are only: 1) constants, 2) functions of a single variable, or 3) functions of variables

also appearing as single variables in other components (that is, simple functions).

In this situation, an exact parametric description is obtained by replacing x and y with two

parameters:

PS@k
� � p0 � p0 � p1 � 0 � f � p0 � p1 ��� g � p0 � p1 ��� p1 �

Notice that PE@k is just a data-transfer: p0
� x, p1

� y.

Suppose now that PS@k consists only of simple and complex functions. By assigning a value to

complex variables, other complex variables may become simple:

Example 3.3. Consider

S@k � q � r� s � x � y � � � x � y � x " y " q " r� s " xq ��

S@k I 0 and S@k I 1 are simple. S@k I 2 and S@k I 3 are complex, as variables q, r and s are complex. If

we assign q and r as q � 0 and r � 1, component S@k I 3 become simple and S@k can have a simple

parametric representation:

PS@k � p0 � p1 � p2 � � � p0 � p1 � 1 � p2 ��

3.4. THE PARAMETERIZATION PHASE 55

Simple and complex variables (and functions) are identified in a two-pass scan of the BDDs of

S@k. Figure 3.7 shows the pseudocode for identifying them. We assume that initially, all component

functions are labeled UNBOUND. The first foreach loop finds the support of each component of

S@k and identifies simple variables. The second foreach loop identifies complex variables and

places them in Co. It also classifies the functions whose support is all contained in Si as simple.

find_simple_complex_var(state_equations) �
Si = Co = /0;
foreach (eq) in (state_equations) �

if (support_size(eq) == 1) �
Si = Si 8 support(eq);
assign_type(eq, SIMPLE);��

foreach (eq) in (state_equations) �
if (support(eq) � Si �� /0) �

csupp = support(eq) 7 Si;
if (csupp �� /0) �

Co = Co 8 csupp;
assign_type(eq, COMPLEX);� else �
assign_type(eq, SIMPLE);���

return <Si, Co>;�
Figure 3.7: Classifying simple and complex variables - pseudocode

After complex variables are identified and removed, each component of S@k is labeled as either

SIMPLE or UNBOUND. Unbound functions have no support variables in Si.

We then examine unbound functions. The simplest case occurs when one such function has

support disjoint from all other components. For example, in Eq. 3.5 below:

S@k
� � f � p � q ��� x � y � g � x � y �	��
 (3.5)

56 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

the first component is unbound and has support disjoint from all others. The component can be

replaced by an independent intermediate variable:

PS@k
� � p0 � p1 � p2 � g � p1 � p2 �	�

where

p0
� f � p � q � ; p1

� x; p2
� y

Consider now the more general situation:

S@k
� � f � p � q ��� f � p � q �`� x � y ��

The first and second component of S@k can be replaced by p0, p0 respectively.

Definition 3.4 partitions the set of unbound functions in S@k into equivalence classes. These

classes can be discovered in a single scan of the array S@k. If a value is assigned to all shared

variables, then the support of each equivalence class will contain only bound variables, so that each

class can be replaced by an independent parameter.

Example 3.4. Consider

S@k
� � x " y " z � x̄ȳz̄ � z̄w� z̄w ��

By assigning the shared variable z � 0, the components of S@k become:

S@k I z . 0
� � x " y � x " y � w� w �

A parametric representation of R � S@k � is then

PS@k
� � p0 � p0 � p1 � p1 � (3.6)

3.4. THE PARAMETERIZATION PHASE 57

where p0
� x " y and p1

� w.

Figure 3.8 shows the algorithm for finding shared variables. We first group the UNBOUND

state expressions into equivalence classes. Then, we consider each variable in the support of these

expressions, check if it belongs to one or more equivalence classes and tag it consequently.

find_shared_eqclasses(state_equations) �
Sh = EC = /0;
foreach (eq) in (state_equations) �

if (function_type(eq) == UNBOUND) �
class = find_or_make_new_class(eq, EC);
EC = EC 8 class;
foreach (x) in (support(eq)) �

if (tag(x) == empty) tag(x) = class;
else if (tag(x) �� class) tag(x) = shared;���

X foreach (class) in (EC) �
foreach (x) in (support(class)) �

if (tag(x) == shared) Sh = Sh 8a� x � ;��
return <Sh, EC>;�

Figure 3.8: Classifying shared variables - pseudocode

3.4.3 The remap function

remap generates the new parameters for PS@k based on the results of the previous two routines.

The first call remaps the variables in the simple set. Each of these variables is simply substituted by

a new parameter variable in the state expressions with a single traversal of each of the BDDs. The

second call remaps each equivalence class to a parameter. This operation is even simpler, since it just

requires to represent each state equation with a single parameter based on the equivalence class it

belongs to. The maximum numbers of parameters needed by the two calls is bounded by the number

58 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

of memory elements in the design to simulate. In fact, a new parameter is only assigned to Boolean

expressions that occur at least once as a complete state equation. Thus, after parameterization, for

each parameter, there is at least one equation whose expression is simply the parameter variable.

Example 3.5. Suppose you are given a system to simulate with ten memory elements and eight

inputs. After the first cycle of symbolic simulation, we obtain the following expressions for the state

equations, where each combinational input was assigned a distinct Boolean variable literal a to h:

s0
� a s3

� ab s6
� d " e " f s8

� f " g

s1
� a s4

� abc s7
� de f s9

� hg

s2
� b s5

� b " c

At first, all the equations are assigned the type UNBOUND. With the first pass through the state

equations, we detect the simple variables: a and b and we assign the type SIMPLE to s0, s1 and

s2. The second pass detects that s3 is also simple, and classifies variable c and equations s4 and s5

COMPLEX. After evaluating variable c to 0 and remapping the simple variables, we obtain:

s0
� p0 s3

� p0 p1 s6
� d " e " f s8

� f " g

s1
� p0 s4

� 0 s7
� de f s9

� hg

s2
� p1 s5

� p1

At this point, we need to identify the equivalence classes for the remaining unbound functions. We

find three equivalence classes: ε1
� � s6 � s7 � , ε2

� � s8 � , ε3
� � s9 � . Variables d and e are tagged

with ε1, h is tagged with ε2 and f and g are shared. Consequently, we need to evaluate these last

two variables to a constant value. We choose 0 for f and 1 for g. The set of equations at this point

is:

s0
� p0 s3

� p0 p1 s6
� d " e s8

� 1

s1
� p0 s4

� 0 s7
� de s9

� h

s2
� p1 s5

� p1

3.5. IMPLEMENTATION AND COMPLEXITY 59

and after remapping the unbound functions using one parameter for each equivalence class, we

obtain:

s0
� p0 s3

� p0 p1 s6
� p2 s8

� 1

s1
� p0 s4

� 0 s7
� p2 s9

� p3

s2
� p1 s5

� p1

Notice that the function in class ε2 was reduced to a constant, thus we did not need to use a pa-

rameter to remap it. This final set of equation is our new parameterized state vector. The PE@k

equations are:

p0
� a p1

� b p2
� d " e p3

� h

Note that the number of parameters that are needed during each parameterization is always b n

where n is the number of state elements in the design. This is easy to derive based on the fact that for

each parameter pi there is at least one parameterized state equation PS@k I j such that PS@k I j � pi.

3.5 Implementation and complexity

In implementing the algorithm we made some observations that made possible to use the Boolean

variables needed for the simulation efficiently. Since, in general, BDD packages can allow only a

limited number of variables, this has also an impact on how many steps of simulation we can run.

First, since we know that the number of parameters is bounded by the number of memory elements,

we simply reserved an equivalent number of variables in the BDD manager for parameterization.

Second, we noticed that at the end of each parameterization step, the state equations do not

depend on the combinational input variables any longer, but only on the parameters. Thus, we can

reuse the same set of Boolean variables for the combinational inputs at every step of simulation.

It follows that CBSS only needs a constant number of Boolean variables, equal to the number of

inputs plus the number of states of the design to simulate. In contrast, a basic symbolic simulator

60 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

requires a new Boolean variable for each combinational input signal needs at each simulation step.

Thus, a symbolic simulator needs a number of Boolean variables that depends on the length of the

simulation and is equal to the number of combinational input signals times the number of simulation

steps.

During simulation, the parametric equations PE at each step can be stored in BDD form. Since

the variables used for these equations are the same involved in the simulation, sharing among the

BDD nodes is possible and the additional memory required for these equations is not significant.

Moreover, while remapping the simple variables, we assign them in ascending variable order

and we choose the parameters to reflect the same order, so that corresponding BDDs do not need

to be recomputed, but can be simply duplicated and relabeled in a single pass. A more optimized

approach would simply dynamically classify which variables are inputs and which are parameters,

then, without modifying the BDDs at all, simple variables would just be reclassified as parameters

at the next step of simulation and an equivalent number of parameters would become input variables

to assign to the input signals.

The complexity of the algorithm can be computed considering each phase separately. We use

here n for the number of states in the design, and #BDD for the size of the BDDs of the state

equations:' simple variables can be identified in a single pass of the state equations - O � n � .' complex variables can be identified in another single pass of the state equations. We also

need to cofactor each state equation w.r.t. to the complex variables, this can be done with a

specialized cofactor routine that traverses each BDD once - O � n (#BDD � .' remapping simple variables as we mentioned above can be done with a single pass of the

state equations’ BDDs - O � #BDD � .' equivalence classes can again be identified in a single pass of the state equations - O � n � .

3.6. EXPERIMENTAL RESULTS 61

' shared variables require similar treatment than complex variables, leading to the same worst

case complexity - O � n (#BDD � .' remapping unbound functions requires only assigning the proper parameter variable to each

equivalence class - O � n � .
3.6 Experimental results

The CBSS algorithm was implemented in a C++ program and tested on the largest sequential cir-

cuits from the Logic Synthesis Benchmarks suite [68] and the ISCAS’89 Benchmark Circuits [16],

including their 1993 additions. Table 3.1 reports results on all but the smallest testbenches of the

two suites (we excluded from the table the circuits with less then 20 memory elements). The test-

benches are grouped by benchmark suite. The experiments were run on a Linux PC equipped with

a Pentium 4 processor running at 2.7Ghz and 2GB of memory and 512Kb of cache. As the underly-

ing ROBDD package we used the CUDD package by Somenzi, [29], for which we set a reordering

threshold of 200,000 nodes. We evaluated the simulator by running it for 5,000 symbolic simulation

cycles on each testbench: at the end of each symbolic simulation step we would run our parameteri-

zation algorithm to simplify the state functions and then proceed to the next step. For the purpose of

evaluating the performance of the approach, we chose a random Boolean value whenever we needed

to evaluate complex and shared variables to constant. However, in a real-world context it is possible

to choose the values based on the test stimulus, if one is available. For each circuit, the table reports

first a few relevant metrics: the number of inputs In, outputs Out, memory elements FF, and internal

network gates Gates.

The next three columns report the results of the parameterizations. The values are the average

over the 5,000 steps of simulation. Our objective is to evaluate how many symbolic parameters we

could find and the average number of states we could reach at each simulation step. To this end, the

first of this group of columns, Param, reports the average number of symbolic parameters that we

62 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

Parameterization Time (s) Efficiency Memory (KB)Circuit In Out FF Gates
Params Ass.d Symbols CBSS Logic ratio CBSS Logic

Logic Synthesis ‘91 - FSM tests

ex1 9 19 20 622 0 0 9 0.69 0.04 29.68 4647 312
s1423 17 5 74 830 1.04 12.91 5.14 2.04 0.06 1.04 5818 320
s838 35 2 32 596 0.57 1.52 34.04 0.93 0.04 7.62 c 10 d 4690 312
s953 16 23 29 658 1.15 6.1 11.05 1.36 0.04 62.19 5060 -

Logic Synthesis ‘91 - Addition ‘93

bigkey 262 197 224 9211 0 228 34 163.49 0.55 5.78 c 10 e 38255 516
clma 382 82 33 24482 1 0 383 75.77 1.5 3.90 c 10 f+fhg 5078 836
dsip 228 197 224 3893 0 228 0 135.35 0.28 0 21289 404
mm9a 12 9 27 639 3.02 2 13.02 1.24 0.04 267.95 4658 -
mm9b 12 9 26 786 0 11.99 0.01 2.23 0.05 0.02 5339 -
mult16b 17 1 30 284 5.83 10.88 11.96 1.76 0.01 22.59 5563 308
mult32a 33 1 32 715 0.21 32.36 0.85 22.23 0.04 0 15980 -
s38417 28 106 1465 23771 47.5 19.66 55.83 190.55 1.67 5.62 c 10 fji 40613 956
s38584 38 304 1426 20281 7.48 25.71 19.77 488.99 1.35 2468.29 45244 864
s5378 35 49 163 3232 14.88 26.17 23.7 14.79 0.22 2.03 c 10 k 13859 384
s838 34 1 32 618 0.5 1 33.5 0.85 0.04 5.72 c 10 d 4690 -
s9234 36 39 135 3019 16.96 10.48 42.48 7.56 0.21 1.70 c 10 f+f 5093 372
sbc 40 56 27 1143 2.92 22.22 20.7 3.76 0.07 3.16 c 10 i 6066 324

ISCAS ‘89 - FSM tests

s13207.1 62 152 638 9539 56.52 15.12 103.4 48.95 0.69 1.89. c 10 l+m 24684 568
s13207 31 121 669 9539 14.75 4.66 41.09 41.59 0.69 3.88 c 10 fjn 9710 568
s1423 17 5 74 830 1.05 12.88 5.17 1.94 0.06 1.11 5834 -
s15850.1 77 150 534 11316 29.7 40.07 66.63 52.45 0.78 1.69 c 10 f d 35961 600
s15850 14 87 597 11316 4.39 2.78 15.61 35.69 0.74 1.03 c 10 g 9386 604
s35932 35 320 1728 23085 1 35 1 194.66 1.67 0.02 38938 968
s38417 28 106 1636 27648 48.27 19.81 56.46 190.75 1.94 1.01 c 10 f k 39558 1068
s38584.1 38 304 1426 24619 7.45 25.75 19.71 475.62 1.68 3025.16 49685 972
s38584 12 278 1452 24619 6.26 6 12.27 271.83 1.65 29.88 45271 968
s5378 35 49 179 3973 14.86 26.13 23.73 14.95 0.06 5.59 c 10 i 14226 -
s838 34 1 32 626 0.5 1 33.5 0.85 0.05 7.15 c 10 d 4690 -
s9234.1 36 39 211 6585 18.06 19.51 34.55 16.61 0.43 6.51 c 10 d 7965 464
s9234 19 22 228 6585 1.18 6.9 13.28 14.09 0.43 303.55 4964 464
s953 16 23 29 658 1.17 6.16 11.01 1.32 0.04 62.32 5029 312

ISCAS ‘89 - Addition ‘93

prolog 36 73 136 1845 29.13 24 41.13 10.04 0.03 7.20 c 10 m 9117 -
s1269 18 10 37 771 1.83 12.99 6.84 3.22 0.05 1.78 6019 312
s1512 29 21 57 990 9.85 5.93 32.92 2.29 0.06 2.13 c 10 d 4960 324
s3271 26 14 116 2166 6.3 26 6.3 18.73 0.15 0.63 8295 352
s3330 40 73 132 2020 29.11 24.33 44.79 12.01 0.13 3.28 c 10 f+f 9069 352
s3384 43 26 183 1734 53.32 17.99 78.33 10.6 0.14 5.02 c 10 l f 13529 352
s4863 49 16 104 2492 7.72 25.75 30.97 18 0.03 3.50 c 10 o 8812 -
s6669 83 55 239 3272 77.86 68.73 92.13 275.47 0.04 7.87 c 10 l g 47362 388
s938 34 1 32 626 0.5 1 33.5 0.89 0.05 6.82 c 10 d 4690 312
s967 16 23 29 677 1.25 6.13 11.12 1.41 0.05 78.98 5077 -

Table 3.1: Cycle Based Symbolic Simulation results

3.6. EXPERIMENTAL RESULTS 63

generate during a parameterization phase. For our second objective, we used the following reason-

ing: if we never evaluated a variable to constant, the number of symbols we had at each step would

be given by the number of inputs symbols plus the number of parameters. However, since at every

step some variables maybe be assigned to constant, we need to keep this into account by subtracting

this amount from the number of live symbols that we carry across simulation steps. The average

number of states that we reach at each step is then given by 2 to the power of this value, since, af-

ter parameterization each symbol doubles the number of states spanned by the parameterized state

functions. The table shows the results we obtained with this evaluation: the second column of the

group indicates the average number of symbolic variables that we assigned to a constant because

they were classified as complex or shared variables, and the third column counts the number of

live symbols as just described: Symbols = Param + IN - Ass.d. The actual size of the average state

set visited at every step is 2Symbols. This latter value also represents the average number of logic

simulation equivalent traces that we carry on in parallel at every step.

The reminder of the table compares the results we obtained with CBSS to the performance

of a compiled-level logic simulator. We built a logic simulator as described in Section 2.5 and

we simulated again each of the testbenches for 5,000 cycles, providing a random stimuli to each

circuit’s inputs at each step. The two columns labeled Time compare the execution time for the

CBSS simulation to the one for the logic simulator. We did not take into account the time spent

compiling the circuit’s netlist into assembly code for logic simulation. However, we measured

this time and it was not transcurable: above 200s for the seven biggest benchmarks and above 1s

for most of the testbenches. As the table indicates, once the compilation was completed, logic

simulation could execute quite fast. As for the CBSS execution times, we point out that variable

reordering was only triggered by the test s6669 of the ISCAS suite, and thus it was not a factor for all

the other benchmarks. Column Efficiency compares the performance of CBSS to logic simulation in

terms of traces simulated per second of execution. Its value is computed as the ratio 2Symbols � (Time-

logic p Time-CBSS). It represents the number of traces visited by CBSS in the time of executing one

logic simulation trace. A value of 1 in this column indicates that CBSS is providing the same

64 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

performance as a compiled-level logic simulator; when the value is less than 1, the logic simulator

is more efficient; otherwise CBSS is providing “Efficiency” times better performance than a logic

simulator. Note that most of the testbenches show an efficiency of 10-20 orders of magnitude over

logic simulation, and this is particularly true for the most complex designs. Our intuition is that the

more complex designs have more inputs and more memory elements that increase the possibility of

discovering good parameterizations for the state vectors. For instance, the two variations of s13207

in the ISCAS suite, provide very different efficiency results: the second one, having only half the

inputs, can generate many fewer Symbols on average and thus it achieves lower efficiency. When

the parameterization can only produce a small number of Symbols because of the high percentage of

complex and shared variables, the extra time spent by CBSS in manipulating Boolean expressions

makes this approach less attractive compared to logic simulation. This is the case mostly for the

smaller designs, because of their limited potential for parameterizations.

Finally, the last two columns compare the memory profile of the two approaches. Even the

smallest designs require a minumum of 4-5 KB to start the CUDD package in CBSS. However, the

memory profiles are only moderately sensitive to the size of the design. As for the logic simulation

memory column, we were able to collect the memory profile of the simulator only for the medium to

large designs of the suites, and we report a ‘-’ for the testbenches for which we could not gather this

data. This last column can be used to gain an insight on the impact of design size over the memory

profile of logic simulation, which can then be compared to the corresponding one for CBSS.

Overall we see that a high average number Symbols is key to a high efficiency over logic simu-

lation. In general, testbenches that contain highly sequential components (such as counters) have a

lower potential for good parameterizations: if the state bits of a counter take constant value at some

point in time, that is, they are represented by constants, then they will be represented by constants

also at the next clock tick. On the other hand, other circuits are more data-path intensive, they con-

tain several large data-transfer or arithmetic operations, and in this cases it is easier to assign state

bits independently, hence the larger number of parameter variables.

3.7. CONCLUSION 65

3.7 Conclusion

CBSS was published in [10]. This algorithm has shown to improve the scalability of symbolic simu-

lation by providing a quick and memory friendly parameterization technique for the state equations.

It can find quickly a large subset of the frontier set which can be represented very efficiently. The

experimental results shows that in most cases we can achieve 10-20 orders of magnitude or more

better efficiency over a compiled logic simulator.

However, in a few cases we noticed that many variables in the support of the state vector are

complex or shared and need to be evaluated to constant. In those cases the performance is no longer

competitive with logic simulation and the breadth of the state exploration is limited. In order to

improve on the quality of the parameterization, we need to explore better techniques to represent

the state vector through parameters. To this end, the next chapter introduces the theory of disjoint

support decomposition of Boolean functions. This theory will be exploited in Chapter 6 to present

an algorithm that can perform an exact parameterization of the state vector, thus guaranteeing to

achieve the same maximal search breadth of symbolic simulation.

66 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

