
ReDEEM: A Heterogeneous Distributed

Microarchitecture for Energy-Efficient Reliability

Abstract—Diminishing energy-efficiency returns and decreas-
ing transistor reliability are casting shadows on semiconductor
scaling. Prior research has been addressing processors’ energy-
efficiency and transistor reliability as orthogonal problems.
However, as embedded processors get more powerful and find
their way into more diverse applications, both high reliability
and energy-efficiency become critical. In this work, we propose
ReDEEM, a novel approach to design energy-efficient and reliable
miroarchitectures. Our proposed solution composes processor
pipelines at runtime from redundant but heterogeneous pipeline
components. Our pipeline components are loosely coupled and
the control logic is decentralized so as to enable fault isolation
and thereby eliminate single points of failure. We equip the
microarchitecture with the ability to adapt dynamically to varying
application phases by constructing energy-efficient pipelines best
suited for each phase. In addition, pipeline components have
power management capabilities that allow for greater energy
efficiency and flexibility. Our experimental evaluation shows that
our solution offers up to 60% in energy savings and can operate
about 1.8x longer, when subjected to the same fault rate as a
state-of-the-art reliable microarchitecture.

I. INTRODUCTION

Diminishing returns from transistor scaling have been
impacting microprocessor design trends [4]. The exponential
increases in leakage power resulting from scaling have been
dwarfing the performance benefits of deploying smaller transis-
tors. Hence, in order to operate within their limited power bud-
gets, modern processor designs can not utilize all transistors
available simultaneously. In addition, the smaller transistors
become, the less reliable they get, shortening the expected
lifetimes of our designs. The increased power dissipation that
we are experiencing due to scaling exacerbates the reliability
problem further: transistors that dissipate more power tend to
break down sooner.

Today, embedded electronic systems are becoming increas-
ingly widespread. A majority of them are deployed in appli-
cations that require them to operate reliably for years while
expending as little energy as possible. Automotive electronics,
medical implants, satellite electronics and sensor systems in
large public infrastructure (buildings, bridges, etc. ) are all
examples of systems with high requirements for both reliability
and energy-efficiency. In the future, we can only expect that the
demand for more computing power, better reliability and high
energy-efficiency will increase, as embedded system deploy-
ments pervade our lives further and further. The processors
we design for future embedded systems need to meet these
demands while addressing the fragility and inefficiency of
future technology nodes.

A few techniques have been proposed to design highly
reliable processors. These solutions break the tight cou-
pling within the microarchitectural components in a processor
pipeline and provide redundancy at a much finer granularity
[7], [18], [19]. However, the overheads introduced by these
approaches significantly limit their applicability in energy-
constrained environments. A few other researchers have been

crafting solutions that tune the energy consumption of their
processors to the demands of the applications they execute
[9], [12]; however, they don’t directly address reliability.

In this work, we specifically address this challenge by
proposing a microarchitecture that provides both reliability
and energy efficiency. We achieve this goal by leveraging
a distributed control subsystem in the processor and hetero-
geneity in the implementation of its redundant components.
The distributed control system and the redundant components
enhance the reliability of our system by eliminating single-
points-of-failure, while its heterogeneity enables our system to
dynamically fine-tune its energy consumption to the demands
of the applications it executes.

Contributions: In this work, we propose ReDEEM (Reliable,
Distributed, Energy-Efficient Microarchitecture) – a novel
microarchitecture for incorporating redundancy, heterogeneity
and runtime energy management in a highly decoupled de-
sign, with the intent of delivering energy-efficient reliability.
ReDEEM employs a distributed design where microarchitec-
tural components are distributed and connected via a flexible
interconnect. ReDEEM incorporates multiple instances of each
component, which we refer to as “execution resources”. While
execution resources can embody any microarchitectural com-
ponent, in this work execution resources correspond to pipeline
stages (e.g. : fetch unit, decode unit, etc. ). Our approach
is new in that we make available multiple variants of an
execution resource for each pipeline stage. Each variant differs
in performance and energy characteristics. We generate the
diversity in our variants by exploiting the performance and
energy diversity in standard cell libraries. In addition, each
execution resource is augmented with i) a fault manager that
can periodically monitor and detect hardware failures and ii)
an energy manager that controls the power state, operating
frequency and voltage of the execution resource. ReDEEM
composes execution pipelines at runtime from its pool of
fault-free execution resources. By composing pipelines with

multiple stages of 

execution resources

redundant 
heterogeneous 

exec. resources for 
each stage

flexible interconnect

faulty resource
energy manager

fault manager

dynamically configured execution pipeline

Fig. 1: ReDEEM overview. Several heterogeneous pipeline stages
(e.g. fetch, decode, etc. ) are connected via a flexible interconnect.
Fault managers independently detect and disable faulty execution re-
sources. Application-adaptive schedulers dynamically set up pipelines
that meet the performance goals of each application, while minimizing
energy and also routing around faulty resources. In collaboration with
the scheduling units, energy managers control the sleep state and
operating frequency of their execution resource.



execution resources that have certain performance and energy
characteristics, ReDEEM can tune the characteristics of its
execution pipelines. It can thus adapt efficiently to the needs
of the workloads it executes.

II. SYSTEM OVERVIEW

The high-level overview for our microarchitecture is shown
in Figure 1. ReDEEM is a distributed microarchitecture with
decentralized control that decouples and replicates a pipeline’s
scheduling and control logic within a single core. ReDEEM is
inspired by previously-proposed distributed microarchitectures,
such as StageNet [7], CCA [19] and Viper [18]. ReDEEM
constructs execution pipelines from a distributed pool of exe-
cution resources, which are typically made of pipeline stages
(fetch, decode, etc. ). Its distributed scheduling units organize
available execution resources into dynamic pipelines to exe-
cute an application’s instructions. Each execution resource is
augmented with a fault manager that can detect failures and
disable the execution resource. Since only the active, fault-
free resources advertise their availability to the scheduling
units, ReDEEM’s pipeline-construction logic avoids the faulty
components naturally. In the absence of faults, ReDEEM can
construct multiple pipelines to execute several applications in
parallel. This approach is particularly useful for multi-threaded
and multi-programmed workloads. As faults accumulate, Re-
DEEM keeps functioning as long as there are enough resources
to construct at least one execution pipeline.

Unlike previous distributed microarchitectures, the execu-
tion resources for each of ReDEEM’s pipeline stages are het-
erogeneous. Our novel approach for deploying this fine-grained
heterogeneity into a core utilizes microarchitecturally identical
execution resources for each pipeline stage, synthesized for
different performance and power goals. We provide diversity
in the implementation of our execution resources by targeting
multiple transistor types and voltage/frequency (VF) operating
points. For instance, fast transistor circuits operating at higher
frequency and lower threshold voltage can be used for high-
performance execution resources, while slower circuits that
consume less power can be used for low-power execution
resources. ReDEEM’s pipeline construction mechanism can
select any execution resource among the set of functionally
equivalent resources for a given pipeline stage. This flexi-
bility enables ReDEEM to construct execution pipelines that
are tailored to an application’s needs. Previous works on
heterogeneous multicores and networks-on-chip (NoCs) have
leveraged this type of performance-power heterogeneity to
implement coarse-grained, energy-efficient systems that adapt
to workload characteristics [5], [3], reporting up to 56% better
energy efficiency than state-of-the-art dynamic voltage and
frequency scaling (DVFS) approaches. While this work focuses
on heterogeneity achieved through diversified synthesis of
architecturally identical hardware blocks, it would be straight-
forward to also deploy architectural heterogeneity within the
ReDEEM substrate. For instance, a fast adder design can
be used in a high-performance execution resource whereas a
slower one can be used in a lower-performance resource. A
ReDEEM processor with architectural diversity alone would
in fact be simpler as it would not require some of the energy
management and resource selection features we propose; it
would allow full flexibility in composing pipelines and simply

rely on our performance monitors to gather information on the
specific performance of each resource.

In addition to this implementation diversity, ReDEEM’s ex-
ecution resources incorporate a low-overhead energy manager
to further extract static energy savings and enforce common-
frequency pipelines. When an energy manager detects that
its execution resource is idle, it sends it to sleep. The state
of the execution resource is communicated to the scheduling
units, which can then avoid including sleeping resources in
the pipelines they configure. If a sleeping resource must be
included in a pipeline, then the energy manager and scheduling
unit bring it back up while hiding the wake-up latency in
the pipeline configuration and execution latency. Moreover, in
presence of faults, a pipeline may need to be composed of
execution resources optimized for a mix of different operating
frequencies. In this case, the energy managers are responsible
for adjusting frequency appropriately so as to obtain a common
operating frequency for the entire pipeline.

III. MICROARCHITECTURE DESIGN

The major microarchitectural components in ReDEEM are
the execution resources, scheduling units and the interconnect
fabric, which are organized as in Figure 2. In this Section, we
describe each major component in detail.

scheduling unit

scheduling unit

scheduling unit

execution resource
execution resource

execution resource

in
te

rc
o

n
n

e
c

t
 (

am
on

g 
ex

ec
. r

es
ou

rc
es

)

execution block (EXB)

I/O buffers

energy 
manager

pipeline 
mgmt. block 

(PMB)

scheduling 
heuristic

pipeline 
constructor

fault 
manager

interconnect 
(between exec. resources & sched. units) 

Fig. 2: Organization of major components. Execution resources
and scheduling units communicate via fault-tolerant interconnects.
Execution resources are enhanced with energy and fault managers to
tolerate faults and offer energy-efficient execution.

A. Execution resources

Each execution resource in ReDEEM is organized as shown
in top half of Figure 2. The bulk of an execution resource
comprises two subunits: a pipeline management block (PMB)
and an execution block (EXB). The PMB interfaces with the
scheduling units and other resources to establish dynamic
pipelines, control the data transfers to/from other resources
and manage the state of the resource itself.

An execution resource that has just been included in a
pipeline initially awaits data from the resources in earlier
pipeline stages. Once the data becomes available in its input
buffer, the EXB processes it and makes it available in the
output buffer, so that it can be transferred to the next pipeline
stage. Under the control of the PMB, an energy manager
manages the voltage/frequency (VF) state of the EXB and the
I/O buffers. The details of the energy management mechanism



are discussed in Section IV-C. A fault manager monitors the
execution resource for permanent faults and disables it entirely
if it is found to be faulty. The detection of permanent faults
is a well-researched topic [10] and is not addressed in this
work. Note that the PMB of a disabled execution resource
stops interacting with the scheduling units and other resources.

B. Scheduling units

ReDEEM incorporates multiple scheduling units, each re-
sponsible for constructing and managing a pipeline to execute a
sequential block of instructions. The organization of a schedul-
ing unit is illustrated in the bottom half of Figure 2. Periodic
messages from execution resources inform a scheduling unit
about the state and capability of the execution resources. The
pipeline construction algorithm implemented in a scheduling
unit recruits execution resources to form a complete execution
pipeline. The decision to include certain execution resources
in a pipeline is influenced by a scheduling heuristic that
attempts to optimize for energy efficiency. The heuristic relies
on past application behavior to predict future performance and
energy consumption. To this end, the scheduling unit collects
performance statistics (e.g. , stall cycles and number of cache
misses) from the execution resources in its pipeline and earlier
scheduling units. The pipeline formation process is discussed
in detail in Section IV-C.

C. Interconnect fabric

ReDEEM deploys a robust interconnect fabric to connect
execution resources and schedulers. We segment this fabric
into two parts, with different requirements: i) for high reliabil-
ity, the connection among execution resources needs to offer
multiple paths between execution resources for consecutive
pipeline stages and ii) for fast pipeline formation and manage-
ment, a low latency connection is required among scheduling
units and between execution resources and scheduling units.
A mesh network topology for the former and a crossbar for
the latter, as utilized in [18], can meet these requirements.
However, ReDEEM’s execution mechanism is independent of
the chosen network topology.

IV. ENERGY EFFICIENCY AND RELIABILITY

A. Diversifying execution resources with heterogeneity

Modern circuit synthesis flows optimize designs for per-
formance and power goals through the selection of various
parameters, such as transistor size and threshold voltage [22].
We leverage this property to generate redundant heteroge-
neous execution resources for each stage. Chakraborty and
Roy [5] observe significant energy savings achievable through
this static optimization approach over a dynamic voltage and
frequency adjustment. They report up to 86% better energy
efficiency over DVFS for an arithmetic and logic unit (ALU)
synthesized at 45nm.

A finite set of VF operating points are chosen as synthesis
targets for all execution resources. While a large set of VF
operating points offers better diversity, it comes at the cost
of extra complexity in the voltage and frequency management
circuitry. For each pipeline stage, multiple execution resources
are synthesized with different VF targets. Each execution

resource is equipped with an energy manager that can dynam-
ically scale its operating frequency down to any of the lower
frequencies in the chosen set. To reduce design complexity,
this heterogeneity is introduced only to a resource’s EXB
and I/O buffers; the PMB remains homogeneous. In addition,
due to the negative effects of higher operating frequencies
on transistor lifetimes, the heterogeneity we introduce also
impacts ReDEEM’s reliability characteristics (see Section VI).

B. Power-gating idle resources

Redundant execution resources that are not part of an
active pipeline leak static energy without doing useful work.
In ReDEEM, the energy managers of the execution resources,
along with the scheduling mechanisms, enable the power-
gating of idle execution resources. Specifically, the EXB, I/O
buffers and related portions of the clock distribution networks
are enhanced with power-gating capability.

Initially, an execution resource is in an idle state where
the EXB is awake and the PMB advertises its availability to
the scheduling units. If the execution resource is not included
in a pipeline after a fixed number of tries, the PMB makes
the decision to send its EXB to sleep. A sleeping execution
resource must remain inactive for about 10 to 30 cycles to
recover the energy costs associated with power-gating. To this
end, the execution resource transitions into an inactive state
for a period of time that accounts for the power-gating latency
and the time required to recover the energy costs of power-
gating. While in this state, the EXB is asleep and the PMB
suspends the advertisement of the resource to the scheduling
units. At the end of this inactive period, the execution resource
transitions into a low-leakage waiting state, where the PMB
notifies the scheduling units of its availability but the EXB
remains asleep. If the execution resource is selected to be
included in a pipeline during this period, the EXB is awakened
and execution resumes. For execution resources deep in the
pipeline, the wakeup time can be overlapped with the time a
block of instructions takes to execute in the preceding stages
of the pipeline. Note that while selecting execution resources
to include in a pipeline, a scheduling unit always gives lower
priority to sleeping resources.

C. Dynamic execution pipelines

ReDEEM executes instructions in groups. We adopt a
sequential block grouping of instructions, similar to “bundles”
in Viper [18]. Since the sizes of these blocks determine how big
the input and output buffers at each execution resource need to
be, we limit a block’s size to 16 instructions. When an appli-
cation is first loaded for execution, the system assigns its first
block to one of the available scheduling units. The scheduling
unit collects advertisements from available execution resources
and forms the highest-performance execution pipeline that is
feasible. Upon finishing its task, each execution resource in
the pipeline sends a completion message to the scheduling
unit. The completion message includes information about the
application’s performance and any other relevant information.
The execution resource that fetches instructions, for instance,
informs the scheduling unit of the next address to be fetched
for a new block of instructions.

In addition to building and managing a pipeline for the
current block of instructions, a scheduling unit must also



assign another scheduling unit to manage the execution of
the next block of instructions. This assignment occurs once
the scheduling unit obtains the new block address from its
fetch stage. Similar to execution resources, scheduling units
advertise their availability to other scheduling units. Unlike
execution resources though, they do not differ in performance
or capability. Therefore, the first available scheduling unit can
be assigned immediately. Scheduling units are unavailable for
a new assignment for the entire duration of the execution of
their assigned block of instructions.

A newly assigned scheduling unit can either decide to build
a new execution pipeline or inherit the same pipeline from
the older scheduling unit. The former option is chosen upon
detection of a new fault in the pipeline that could have been
inherited, or if the scheduling unit detects that the application
is changing its activity profile – we call each portion where
an application performs activities exhibiting a similar set of
performance characteristics a “phase”. When composing a new
pipeline, a scheduling unit attempts to select resources that
best match the predicted performance of the application – as
indicated by the performance monitors of the prior scheduling
unit. The scheduling unit always prefers to compose a from
execution resources designed to operate at the same frequency.
When the system is fault-free, it is always possible to attain
this goal. However, as faults accumulate, a scheduling unit
may be forced to construct a pipeline from execution resources
synthesized for different operating frequencies. In such cases,
some of the execution resources will be dynamically scaled
down to operate at a common frequency in the pipeline.

In addition, a scheduling unit takes into account the sleep
state and proximity of the execution resources. The number of
hops between execution resources for two consecutive pipeline
stages impacts the overall execution performance, while the
longer an execution resource stays in a sleep state, the more
energy savings can be obtained. Finally, by considering only
execution resources that have advertised their availability, the
scheduling unit naturally avoids faulty execution resources
and those that are still recovering their power-gating costs. If
enough execution resources are available, each of ReDEEM’s
scheduling units can build and manage a pipeline independent
of other active pipelines. Thus, ReDEEM can support multiple
active pipelines that execute instruction blocks from multiple
threads concurrently. Many scheduling algorithms are well
suited for ReDEEM, such as those summarized in [23], but
we have left the specific design decisions for future work.

Figure 3 illustrates an interaction scenario between
scheduling units and execution resources during the lifetime
of a dynamic pipeline. Initially, scheduling unit-1 is assigned
to execute block-1. Idle execution resources advertise their
availability to all scheduling units. Based on its configuration
heuristic, scheduling unit-1 composes a pipeline and starts the
execution of block-1. Note that scheduling unit-1 assigns the
new block-2 to scheduling unit-2 after receiving the block’s ad-
dress from the fetch resource in its pipeline. It also transfers the
performance statistics for block-1 to scheduling unit-2 when
block-1 finishes executing. Execution resource-1 is included
in the pipeline, and thus performs its task as soon as the data
from earlier stages becomes available. Execution resource-2,
on the other hand, is not included in a pipeline and decides
to go to sleep. It first transitions to an inactive state where it

suspends its advertisements. It stays in this state long enough
to recover the power-gating costs and then transitions to an idle
state where the EXB is asleep and the PMB resumes sending
advertisements. When it is finally included in a pipeline, it
proceeds to wake itself up and resume execution.

assigned
(awake)

idle
(asleep)

inactive
(asleep)

busy idleassignedidle

execution
resource-1

(selected)

sched. unit-1
(to execute 

block-1)
other 

adverts

config. 
heuristic

data from 
earlier stages

address of block-2 
(from fetch) assign block-2 to 

sched. unit-2

block-1 
committed (from commit)

block-1 perf. to 
sched. unit-2

idle 
(awake)

 timeout period

execution
resource-2

(rejected)
time to 

break-even

sched. unit-2

Fig. 3: Interaction between execution resources and assigned
scheduling units. Execution resources and scheduling units collabo-
rate to ensure energy-efficient (and fault-tolerant) execution using an
advertisement-based process for available resources.

V. ENERGY EFFICIENCY EXPERIMENTS

We performed experiments to investigate the range of per-
formance/energy operating points that ReDEEM can achieve in
the absence of faults. We consider an ideal scheduler that can
always select the pipeline, for the next execution block, that
leads to one of the pareto-optimal performance/energy points
for the application. To this end, we built a detailed timing
simulation model for a 5-stage decentralized microarchitecture
using gem5 [2] and a power model using McPAT [14]. Each
stage in our design had 4 redundant heteregeneous execution
resources modeled with the frequency and device type combi-
nations shown in Table I, all at the 22nm technology node, for a
total of 20 resources in the system. We used SimPoint profiling
[20] to select 10,000,000 instructions each, from several SPEC
CPU2006 benchmarks and we allowed our model to only
consider a new pipeline formation every 1,000 instructions
(equivalent to executing a few hundreds of blocks). Because we
operate in a fault-free environment, the choice, when forming
a new pipeline, is among four different options, one for each
of the operating points in Table I.

Our implementation of the ideal scheduling algorithm
operates offline: it considers the performance/energy statistics
collected during the execution of each window of 1,000
instructions for all four distinct pipelines; it then chooses one
pipeline for each window of instructions so as to obtain a
pareto-optimal execution. Figure 4 plots our results from this
evaluation for several SPEC benchmarks. In order to limit the
amount of computation required for our evaluation, we rely on
a similar approach as in [15].

Name Frequency (MHz) Device Type

2000-hp 2,000 high-performance
1500-hp 1,500 high-performance
1200-hp 1,200 high-performance
900-lstp 900 low standby power

TABLE I: Target frequencies and device types. We modeled 4 types
of heterogeneous exeuction resources for our studies.



21 22 23 24 25 26
20

25

30

35

40

45

energy (mJ)

e
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

)

 

 

experimental data

fitted curve
(degree 4 polynomial)

(a) bzip2

18 20 22 24 26 28 30
25

30

35

40

energy (mJ)

e
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

)

 

 

experimental data

fitted curve
(sum of 2 exponentials)

(b) gobmk

19 19.5 20 20.5 21 21.5
15

20

25

30

35

40

energy (mJ)

e
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

)

 

 

experimental data

fitted curve
(degree 1 polynomial)

(c) libquantum

Fig. 4: Fault-free performance/energy pareto frontiers for SPEC CPU2006 benchmarks. The figures plot pareto-optimal performance/energy
points for a number of SPEC CPU2006 benchmarks running on ReDEEM, in the absence of faults. ReDEEM makes a wide range of operating
points possible that, in the best case (libquantum), trade off as high as a 32% energy savings for a 1.55x slowdown.

For the 11 SPEC SPU2006 programs we investigated, we
observe several operating points enabling a range of energy
savings with corresponding sacrifices in raw performance. On
average, we observe an 18% range in energy savings and a
2x range in performance. The gobmk benchmark exhibits a
best-case scenario of operating points with up to 32% energy
reduction and up to 1.55x slowdown while libquantum exhibits
the worst-case scenario of only up to 11% energy savings for at
most 2.22x slowdown. The range of available operating points
is expected to increase as the number and variety of execution
units increase. In addition, a non-ideal hardware scheduling
algorithm may generate operating points that are not on the
pareto frontier. Finally, in Table II, we present the total
energy savings, averaged across all benchmarks, obtained by
ReDEEM, over four equivalent homogeneous configurations.
For ReDEEM, we report the lowest-energy execution that takes
the same amount of time as the given homogeneous execution.
Leakage energy in the homogeneous systems accounts for most
of the savings we report.

homogeneous total energy (mJ)
savings(%)

technology homogeneous ReDEEM

2000-hp 68.02 28.03 58.79
1500-hp 84.67 33.50 60.43
1200-hp 101.54 39.05 61.54
900-lstp 23.32 22.86 1.98

TABLE II: Energy savings. Compared to a homogeneous decen-
tralized microarchitecture of similar capability, our solution offers
significant energy savings for fault-free single-threaded execution.

VI. RELIABILITY ANALYSIS

In this section, we study the reliability of ReDEEM com-
pared to a previous decentralized microarchitecture (Viper
[18]) and a homogeneous multicore system. Based on area
estimates from Viper, we assume that a decentralized reliable
design and a multicore one of the same area can sustain an
equal number of pipelines during fault free operation. We
therefore model ReDEEM and Viper to comprise 5 stages
of 12 redundant execution resources while our multicore
comprises 12, one-way, 5-stage pipelined cores. Both the
multicore and Viper are assumed to operate at 2GHz, while
the operating frequencies of ReDEEM’s redundant resources
are uniformly distributed among those shown in Table I. We
build technology-independent, comparative statistical models
of wearout-induced failure rates for all execution resources

based on the Weibull distribution [21]. For all systems, we
define random variables to estimate the number of active
pipelines that can be available at any given time. While deriv-
ing these Availability random variables, we keep the Weibull
shape parameter (β) constant for all execution resources and
vary the scale parameter (α) inversely with frequency to model
the effect of operating frequency on lifetime.

In Figure 5, we present the expected values of Availability
for the three systems, each with the equivalent area of a 12-
core multicore system. Since the Weibull shape parameter (β)
is technology specific and usually reported for one type of
failure mechanism, we demonstrate our results over a range
of values for β. A value of β = 1 corresponds to a constant
failure rate, which is typically used to model random failures
during the expected lifetime of a device. The wearout-induced
failures we are interested in are characterized by values of
β > 1. Kauerauf, et al. [11] report values of β as high as 8 for
time-dependent dielectric breakdown of SiO2. For all values of
β we consider, as time progresses, faults accumulate resulting
in a decrease in the number of active pipelines that can be
sustained. We observe that ReDEEM offers better availability
than both a multicore system and a homogeneous decentralized
microarchitecture. For β = 3, ReDEEM sustains at least
one active pipeline for a duration 2.8x that of a multicore
system and 1.8x that of Viper. The improvement relative to
the multicore is due to the tight coupling in a conventional
core that causes an entire core to be decommissioned even
when only one pipeline stage fails. The improvement relative to
Viper is due to the reduced lifetime of its execution resources,
which operate at a uniformly high frequency.

VII. RELATED WORK

Distributed microarchitectures. Researchers have proposed
several microarchitectures incorporating execution resources
that can dynamically be composed to execute applications.
CCA [19], StageNet [7], Viper [18] utilize a distributed design
for improved reliability. CoreGenesis [8] enhances a reliable
microarchitecture [7] to offer improved efficiency via adaptive
pipeline widths. However, it lacks design- and run-time fine-
grained energy management techniques for tackling energy
consumption. Researchers have also proposed decoupled mul-
ticores such as MorphCore [12] and Core Fusion [9], which
adapt to exploit the ILP and TLP of their workloads by pooling
resources from multiple cores to compose pipelines. To the



0 1 2 3 4
0

2

4

6

8

10

12

time (units of α)

a
c

ti
v

e
 p

ip
e

li
n

e
s

 

 

multicore

Viper

ReDEEM

(a) β = 1 (constant failure rate)

0 1 2 3 4
0

2

4

6

8

10

12

time (units of α)

a
c

ti
v

e
 p

ip
e

li
n

e
s

 

 

multicore

Viper

ReDEEM

(b) β = 3 (gently increasing failure rate)

0 1 2 3 4
0

2

4

6

8

10

12

time (units of α)

a
c

ti
v

e
 p

ip
e

li
n

e
s

 

 

multicore

Viper

ReDEEM

(c) β = 8 (rapidly increasing failure rate)

Fig. 5: Expected Availability. We show the expected number of active pipelines as a function of time for a 12-core multicore system, a
homogeneous, distributed microarchitecture with 12 execution resources per stage and ReDEEM with 12 heterogeneous execution resources
per stage. We observe that ReDEEM always extends the lifetime of a processor in all the failure models shown.

best of our knowledge, ReDEEM is the first reliable distributed
microarchitecture that offers fine-grained performance/energy
heterogeneity and dynamic energy management.

Heterogeneous systems and DVFS. Heterogeneous multicore
systems that offer multiple architecturally-different cores, with
varied performance/energy characteristics, have been proposed
[13], [6]. A lot of prior research is dedicated to coarse-grained
DVFS techniques. Zhuravlev, et al. [23] have summarized
most of the research on coarse-grained heterogeneity and
DVFS. Finer-grained heterogeneous microarchitecture designs
[16], [1] and scheduling algorithms [17], [15] have also been
proposed. Recently, researchers have proposed systems that
are composed of multiple microarchitecturally homogeneous
designs synthesized for different voltage and frequency (VF)
domains [5], [3]. These systems were shown to exhibit signif-
icantly greater energy efficiency than DVFS techniques.

VIII. CONCLUSIONS

We proposed an approach for designing reliable proces-
sors that are energy efficient. Our solution introduces fine-
grained heterogeneity, application-adaptive scheduling, and
fine-grained power-gating into a decentralized microarchitec-
ture. We were able to show that our system offers several
performance/energy operating points per application, enabling
energy-efficient executions for given performance targets. In
addition, we used probabilistic analysis to show that our system
is more reliable than a conventional multicore and a previously
proposed decentralized microarchitecture.

REFERENCES

[1] D. Albonesi, R. Balasubramonian, S. Dropsbo, S. Dwarkadas, E. Fried-
man, M. Huang, V. Kursun, G. Magklis, M. Scott, G. Semeraro, P. Bose,
A. Buyuktosunoglu, P. Cook, and S. Schuster. Dynamically tuning
processor resources with adaptive processing. Computer, 36(12), 2003.

[2] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. Hill, and D. Wood. The gem5 simulator.
ACM SIGARCH Computer Architecture News, 39(2), 2011.

[3] H. Bokhari, H. Javaid, M. Shafique, J. Henkel, and S. Parameswaran.
darknoc: Designing energy-efficient network-on-chip with multi-vt cells
for dark silicon. In Proc. DAC, 2014.

[4] S. Borkar and A. Chien. The future of microprocessors. Communica-

tions of the ACM, 54(5), 2011.

[5] K. Chakraborty and S. Roy. Architecturally homogeneous power-
performance heterogeneous multicore systems. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 21(4), 2013.

[6] P. Greenhalgh. Big.LITTLE processing with ARM Cortex-15 & Cortex-
a7, 2011.

[7] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke. The StageNet
fabric for constructing resilient multicore systems. In Proc. MICRO,
2008.

[8] S. Gupta, S. Feng, A. Ansari, and S. Mahlke. Erasing core boundaries
for robust and configurable performance. In Proc. MICRO, 2010.

[9] E. Ipek, M. Kirman, N. Kirman, and J. Martinez. Core fusion:
Accommodating software diversity in chip multiprocessors. In Proc.

ISCA, 2007.

[10] R. Kalayappan and S. Sarangi. A survey of checker architectures. ACM

Comput. Surv., 45(4), 2013.

[11] T. Kauerauf, R. Degraeve, E. Cartier, C. Soens, and G. Groeseneken.
Low weibull slope of breakdown distributions in high-k layers. Electron

Device Letters, IEEE, 23(4), 2002.

[12] K. Khubaib, M. Suleman, M. Hashemi, C. Wilkerson, and Y. Patt.
Morphcore: An energy-efficient microarchitecture for high performance
ilp and high throughput tlp. In Proc. MICRO, 2012.

[13] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen. Single-
isa heterogeneous multi-core architectures: the potential for processor
power reduction. In Proc. MICRO, 2003.

[14] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi.
McPAT: An integrated power, area, and timing modeling framework for
multicore and manycore architectures. In Proc. MICRO, 2009.

[15] A. Lukefahr, S. Padmanabha, R. Das, R. Dreslinski, Jr., T. F. Wenisch,
and S. Mahlke. Heterogeneous microarchitectures trump voltage scaling
for low-power cores. In Proc. PACT, 2014.

[16] A. Lukefahr, S. Padmanabha, R. Das, F. Sleiman, R. Dreslinski,
T. Wenisch, and S. Mahlke. Composite cores: Pushing heterogeneity
into a core. In Proc. MICRO, 2012.

[17] S. Padmanabha, A. Lukefahr, R. Das, and S. Mahlke. Trace based phase
prediction for tightly-coupled heterogeneous cores. In Proc. MICRO,
2013.

[18] A. Pellegrini, J. Greathouse, and V. Bertacco. Viper: Virtual pipelines
for enhanced reliability. In Proc. ISCA, 2012.

[19] B. Romanescu and D. Sorin. Core cannibalization architecture: Improv-
ing lifetime chip performance for multicore processors in the presence
of hard faults. In Proc. PACT, 2008.

[20] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. 2002.

[21] R. L. Smith. Weibull regression models for reliability data. Reliability

Engineering and System Safety, 34(1), 1991.

[22] N. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems

Perspective. Addison Wesley, 4th edition, 2011.

[23] S. Zhuravlev, J. Saez, S. Blagodurov, A. Fedorova, and M. Prieto.
Survey of energy-cognizant scheduling techniques. IEEE Trans. on

Parallel and Distributed Systems, 24(7), 2013.


