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ABSTRACT
Post-silicon validation has become essential in catching hard-to-
detect, rarely-occurring bugs that have slipped through pre-silicon
verification. Post-silicon validation flows, however, are challenged
by limited signal observability, which impacts their ability of di-
agnosing and detecting bugs. Indeed, bug manifestations during
the execution of constrained-random tests may be masked and be
unobservable from the test’s outputs. The ability to evaluate the
bug-masking rate of a test provides great value in generating and/or
selecting effective tests for high coverage regressions.

To this end, we propose an efficient, static bug-masking analysis
solution, called BugMAPI. BugMAPI tracks the information flow
in a test program, and it estimates the probability that bugs go
undetected by the checking mechanisms in place in the post-silicon
platform. To achieve this goal, we leverage static code analysis and
a novel, lightweight, probability estimation algorithm. We evaluated
BugMAPI on a range of industrial constrained-random tests and a
range of bug injection models, and we found that it can estimate bug-
masking rates with an accuracy of 77% in 3 orders-of-magnitude
less time, compared to an ideal dynamic analysis solution.

CCS Concepts
•Hardware→ Bug detection, localization and diagnosis; Simu-
lation and emulation;
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1. INTRODUCTION
Advances in semiconductor technology enable us to integrate

billions of transistors in a single chip. This ever-growing complexity
poses a challenging problem for microprocessor design verifica-
tion: indeed, reaching coverage closure within reasonable time is
becoming extremely difficult [6]. High-end microprocessors often
include complex features (e.g., transactional memories, security en-
hancements and multiprocessor memory consistency) that are hard
to verify in the early stages of verification. Therefore, post-silicon
validation, that is, the validation effort carried out on the first silicon
prototypes, aims at catching all the remaining bugs that were not
detected in the pre-silicon stage [11]. One of the most difficult
aspects in the deployment of post-silicon validation, however, is
the extremely limited observability into the design’s internals. This
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Figure 1: Bug-masking problem in post-silicon random instruction tests.
In this example code, the results of instructions 1 and 3 are overwritten by
instructions 4 and 5, so that any bug occurring or propagating through the
former two instructions would not be detected at the end of the test.

aspect makes bug detection and diagnosis challenges of their own.
Even more importantly, bugs may manifest during a test’s execution,
but become masked and go unnoticed by the time the test completes.
The outcome in these situations is that the post-silicon test simply
wastes precious prototype’s execution cycles.

The types of tests deployed in post-silicon validation vary widely,
from application snippets, to compatibility tests, to constrained
random tests. These latter ones are particularly valuable in trying to
exercise corner-case scenarios, since a vast number of variants can
be generated with little designer’s effort [1,10,15]. One additional
benefit that they bring to the validation effort is that they can often
be generated directly in the microprocessor under verification (i.e.,
on-platform), enabling an efficient use of the usually scarce number
of platforms and prototypes available.

But even in light of this rich set of options for tests, bug masking
still remains a significant problem in post-silicon validation. Bug
masking occurs when, due to post-silicon’s limited observability, a
bug becomes undetectable after some amount of computation has
occurred past its manifestation. Indeed, in post-silicon validation, it
is often possible to only monitor architectural registers and memory,
usually only at the end of the test execution, while in pre-silicon
validation, more detailed information is available (e.g., cycle-based
micro-architectural state). An example of this problem is illustrated
in Figure 1, where the first instruction triggers a silicon bug, leading
to an incorrect value being written in register r3. However, the erro-
neous value in r3 is subsequently overwritten, and thus undetectable
by the time the test completes.

During the post-silicon validation process, identifying situations
that may lead to bug-masking provides great benefits in improving
the quality of the validation effort. For instance, as we demonstrate
in Section 7, it allows to guide the application of small perturba-
tions to tests (synthetic or from real-applications) so to minimize
masking effects, attaining higher coverage from a regression suite.
Other applications of a bug-masking evaluation include assessing
the quality of a test: tests to be included in key regressions can be
selected based on having a low bug-masking incidence. In addition,
in test generation, test-templates can be selected and designed to
limit the generation of sequences that are susceptible to masking.

In this paper, we propose BugMAPI, Bug-Masking Analysis with
Probabilistic Information-flow. BugMAPI is a static code analysis
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Figure 2: BugMAPI overview. BugMAPI applies static instruction-flow
analysis to instruction test sequences by leveraging accurate, pre-computed
masking probabilities for each instruction, and by deriving overall test-
sequence masking rates using information-flow tracking.

for instruction test sequences. It allows to estimate the probability
that bugs go undetected by the checking mechanisms available on
the validation platform. It analyzes information-flow paths (i.e., use-
def chains in data-flow analysis) existing in the test-case, tracking
the exposure to information loss. BugMAPI is inspired by static
information-flow tracking analyses, and it improves on them by (1)
leveraging a process based on tailoring the bug-masking probability
to each specific instruction and by (2) developing a heuristic to
derive the bug-masking exposure of an instruction sequence from
the individual instruction probabilities. In summary, we make the
following contributions:
• We propose a novel, static bug-masking analysis solution

that provides high accuracy at low computational cost by
leveraging a heuristic masking-risk computation algorithm.
• We showcase an application of our analysis that greatly re-

duces the bug-masking incidence in constrained-random tests.

2. RELATED WORK
Test-case generation for microprocessor verification. Randomly
generated test-cases are often used to trigger any hard-to-find, un-
expected bugs in microprocessor validation [1,15]. For instance,
[1] creates random test-cases by leveraging designer-made test-
templates, each targeting a specific test scenario. The tests often
select high-quality instructions (i.e., those likely to discover bugs)
among those specified in the templates by solving constraint satisfac-
tion problems. Other approaches leverage formal models, often spec-
ified through architectural description languages [10]. Researchers
have also proposed solutions that create tests with self-checking
properties, so to overcome low observability in post-silicon valida-
tion without additional instrumentations (e.g., scan chain, design-for-
debug network) [7,9,16]. These self-checking approaches use either
reversing [16], equivalent [7], or repeated operations [9]; however,
they may not reflect realistic program sequences.
Information-flow analysis has been investigated extensively in the
computer security area [3,12,14]. The information flow occurs
when information is transferred among distinct program objects
(e.g., variables) [3]. To secure the program execution, access-control
policies enforce confidentiality throughout the program [14]. In this
context, taint analysis (e.g., [12]) takes a dynamic approach that
uses run-time information to detect confidentiality violations. Our
bug-masking analysis adopts the principle of information-flow from
the security area, but with a completely different goal: we aim at
identifying perturbations due to bug occurrences that may be erased
by the program’s subsequent computation. Moreover, in our case,
all instruction resources are potential sources of bugs, while in taint
analysis only data from untrusted devices is tracked. Information-
flow analysis has also been used in soft-error analysis [5], but with-
out leveraging an instruction’s unique characteristic to accurately
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Figure 3: Baseline information-flow analysis. Our baseline analysis prop-
agates information flow leveraging instructions’ inputs and outputs. In the
best case, checkers at the end of the test could reveal any bug that occurred
at instructions 2, 4, or 5. Bugs manifesting at instructions 1 or 3 are masked.

estimate the propagation probability. Finally, [4] shares with us
the deployment of information-flow analysis concepts to hardware
verification by annotating RTL designs to compute observability
coverage metrics.

3. BUGMAPI OVERVIEW
BugMAPI applies static code analysis to instruction test sequences.

The results of the analysis report which instructions in the sequence
are likely to mask potential bugs occurring during their execution.
To this end, we first introduce a basic approach in Section 4; we
then improve on it in Section 5 by taking into account the type of
instruction in the analysis.

Figure 2 outlines BugMAPI. Our solution considers a test se-
quence and applies three steps to it: the first step assigns a bug-
masking probability to each instruction in the test sequence, based
on its functionality (Section 5.1). The second step tracks data depen-
dencies between instructions and computes the probability that data
affected by a bug propagates to the end of the test, thus remaining
observable by end-of-test checkers. It also leverages an approxima-
tion technique to reduce the computational complexity of this step
(Section 5.2). The last step derives the bug-masking probability of
the overall test, from those computed for the individual instructions.

Our endeavor focuses on improving the accuracy of a typical
static analysis, by leveraging an accurate masking-probability com-
putation for each instruction. Note that, to be efficient, BugMAPI
does not take into account concrete values (e.g., operand values in
arithmetic instructions) in determining if a bug is masked by an
instruction. Overall, our static approach reduces computation re-
quirements by a few orders of magnitude, compared to a simulation-
based dynamic analysis. This benefit comes at the cost of lower
accuracy, due to lack of dynamic information.

4. BASELINE ANALYSIS
We first developed a simple information-flow tracking technique

that determines the observability of buggy values in registers and
memory, which we refer to as our baseline analysis. This analysis
is static, in contrast to popular taint-tracking solutions in the security
domain [3,12]. Our choice is driven by the need of post-silicon
validation environments to be efficient and keep a low-computation
profile, since the execution of the test itself is extremely fast.

Figure 3 illustrates an example of the baseline analysis, applied to
a 5-instruction sequence. For each instruction, we extract inputs and
outputs as per the ISA specification. Then, for each resource in the
test program (e.g., registers), we proceed instruction-by-instruction
and compute which instructions can propagate their taint status to it.
In other words, instruction X propagates the taint status to register
Y if a bug manifesting in instruction X could affect the value of
register Y [3]. For instance, after the first instruction, r3 has a taint
list containing instruction 1, while all other registers have empty
lists. Note that the third instruction uses the r3 value computed in
the first instruction and writes to register r5, so that the taint status
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Figure 4: Examples of input-output bug-masking probabilities.

of r5 becomes {1, 3}. At the end of the analysis (last line), the taint
status lists indicate which instructions’ results impact the status of
each register at the end of the test program. Thus, by computing the
union of all the taint lists, we find which instructions could expose
bugs that are not masked by the program.

Note that inaccuracies are possible because this baseline analysis
does not take into account the distinct operation of each instruction.
For instance, with reference to Figure 3, at the end of the program,
r3 should reveal bugs occurring during the execution of the second
instruction. However, if r2 = 0, any erroneous value stored in
r4 would be masked in the fourth instruction, clearing the taint
in r3. Consequently, our baseline analysis provides conservative
bug-masking results and false-negatives (i.e., bugs predicted as
detectable, but masked in reality) may indeed occur. In the next
section, we try to overcome precisely this limitation.

5. PROBABILISTIC MASKING ANALYSIS
BugMAPI refines the baseline analysis from the previous sec-

tion by taking into account the instruction type in computing bug-
masking probabilities. As an example, Figure 4 shows this refine-
ment for three instructions from the Power ISA [8] (add, and and
sld). For the sake of this example, let’s assume that bugs manifest
as single-bit flips in a source register (Sections 6.1 and 6.5 discuss
the actual bug-models used in our evaluation). The goal here is
to compute the probability that a single-bit flip in input registers
RA, RB or RS propagates to the output register value. In the case
of add, the bit flip propagates in all cases, except for overflow, so
masking probability is practically 0%. In the case of an and in-
struction (middle of Figure 4), there is a 50% chance that the bit
flip is masked by a 0-value in the corresponding bit position of the
other operand. For sld (shift left doubleword), we computed that the
bugs in the shift amount RB are masked 91% of the execution times
(because only the least significant bits are used by the instruction),
while the source register RS is masked 49% of the times. Note that
the baseline analysis is equivalent to assigning a 0% bug-masking
probability to all the input-output flow paths, hence it is clear that
the baseline analysis would lead to a much higher false-negative
rate.

BugMAPI computes the bug-masking probabilities for each in-
struction of a processor’s ISA using the process discussed below in
Section 5.1. This computation is only carried out once per ISA. It
then considers the test-case under analysis, applies the individual
probabilities to each instruction and computes how they propagate
to the end of the test program, similarly to our baseline analysis
(details are in Section 5.2). Finally it can compute the masking prob-
ability of the entire program, for instance, as an average masking
rate over the individual contributions of the instructions in the pro-
gram. Note that the last step can be tailored to the specific validation
goal. For example, when computing the average, the contribution of
specific instructions can be weighted to tilt the criticality of masking
to certain units of the processor (e.g., floating point), or certain
high-interest program constructs.

5.1 Masking through an Instruction
When computing the masking probability of an instruction, we

consider each input and output (i/o) pair and compute the proba-
bility independently for each pair. Note that it is possible that the
probabilities through multiple i/o pairs are correlated. For instance,
the addo instruction in Power ISA sets the overflow flag when appro-
priate. Thus a single buggy input operand may affect both the target
register and the overflow flag. However, to keep our computation
manageable, we disregard these second-order effects.

We developed two approaches to compute masking probabilities
of instructions. The first is an analytical approach, where we in-
vestigate the ISA specification (e.g., [8]) to understand the specific
functionality of each instruction, and compute the masking proba-
bility for each i/o pair mathematically. We used this model mostly
for branch and load/store instructions.

The second is an experimental approach whereby we execute the
instruction in an instruction-set simulator (e.g., gem5 [2]) with 1,000
sets of random input values. For each i/o pair, we run each input
set twice, one with the random input generated and the other with
a buggy version of the input set, and then we compare the output
to determine if the bug was masked. Based on the overall findings,
we can derive the masking probability with high confidence. To
attain efficiency in this process, we develop assembly programs that
encapsulate the input generation, the repeated executions and the
probability computation, all together. Developing those programs is
the only part of this approach that requires engineering effort.

Both solutions have their own advantages. The experimental
approach can be more accurate, and it can be easily adapted to a
new bug model. The analytical one is beneficial when developing
the assembly program is too time-consuming, and for instructions
whose masking probabilities tend to be unaffected by the specifics
of the bug model.

5.2 Masking over an Instruction Sequence
The goal of this step is to compute, for each instruction in a

sequence, the likelihood that a bug manifesting at the instruction
propagates to the end of the sequence, revealing an incorrect test
outcome. Computing this likelihood accurately is computationally
intensive: a simulation-based dynamic analysis would have to con-
sider a vast number of executions to properly randomize all the input
sources for all the instructions in the sequence. A static analysis
could be very involved because of how a buggy instruction can have
a large fanout, impacting many other registers and resources over the
test execution, all of which would have to be tracked to determine if
they eventually become masked.

Because of the high cost of an accurate analysis, we chose to
design a high-quality approximation for it. The calculation makes
three simplifying assumptions, which we discuss below and illus-
trate with an example in Figure 5. Note that for sake of simplicity,
we perform the analysis using bug-propagation probabilities, which
are the complement of bug-masking ones.

Assumption 1 — Instructions are independent among each other.
As a result, we can calculate the bug-detection probability through
multiple instructions, by simply calculating the product of each
instruction’s probability of propagating an erroneous value. As
shown in Figure 5 (dark orange region), a bug in r0 propagates to
r4 through instructions 1 and 2. Consequently, the probability that
a bug manifests in r4 through r0 is the product of the probability
of having a bug in r0 before the program starts, times the two
instructions’ bug-propagation probability.

Assumption 2 — Inputs of an instruction are independent among
each other. Because of this assumption, we derive the bug propaga-
tion likelihood to an output as the complement of the probability that
both i/o pairs are masked. With reference to the example in Figure 5
(yellow area), the probability that a bug propagates from either r2
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Figure 5: Example of bug-propagation analysis over an instruction se-
quence. Initially, only r0 carries a buggy value with a 50% probability.
Through the execution of instructions 1–3, the buggy value may propagate
also to r2, r4 and r5. We derive the propagation probabilities on the right
table by leveraging our three simplifying assumptions.

or r4 to r5 is: P ((r2 → r5) ∪ (r4 → r5)) = 1 − P ((r2 →
r5)c ∩ (r4 → r5)c) = 1 − (1 − P (r2 → r5)) × (1 − P (r4 →
r5)) = 1−[1−P (r2)×P (RA→ RT )]×[1−P (r4)×P (RB →
RT )] = 1− (1− 0.255× 0.51)× (1− 0.13× 0.09) = 14%.

Assumption 3 — Resources are independent among each other.
This assumption is useful in calculating the final bug-propagation
probability from an instruction through an entire sequence. It al-
lows to compute the overall bug-propagation probability from the
probability that the bug had propagated to any of the monitored
resources (e.g., registers). With reference to the example, in the blue
region of the figure, we indicate that the final resources available are
r0, r2, r4 and r5. r0 is included because it is the only register that
propagated the bug until before instruction 1. By the end of the code
snippet, bugs in r0 may be reflected in erroneous values in r0 or
any of the other registers in the blue area. Using the independence
assumption, and a similar calculation as in the previous paragraph,
the probability that the bug manifests at the end of the sequence
is: P (r0 ∪ r2 ∪ r4 ∪ r5) = 1 − P (r0c ∩ r2c ∩ r4c ∩ r5c) =
1− (1−P (r0))× (1−P (r2))× (1−P (r4))× (1−P (r5)) =
1− (1− 0.5)× (1− 0.255)× (1− 0.13)× (1− 0.14) = 72.1%.

6. EXPERIMENTAL EVALUATION
In this section, we first discuss our bug models (Section 6.1) and

computational cost (Section 6.2). We then present BugMAPI’s char-
acterization (Section 6.3) and accuracy (Section 6.4) by comparing
against a dynamic analysis, and conclude with a brief discussion
(Section 6.5).

BugMAPI is implemented in Python, and it is evaluated with
test-cases generated for two ISAs: IBM Power and DEC Alpha.
For IBM Power, we generated bug-masking probabilities for ap-
proximately 4,000 i/o pairs corresponding to all instructions for the
POWER8 processor. Note that our implementation for Power does
not accurately take into account memory address disambiguation,
and it assumes that store operations have no overlapping addresses.
For DEC Alpha, however, we did implement a simple disambigua-
tion mechanism by dedicating a pool of registers only to load/store
base addresses. We only included a subset of 118 instructions and
218 i/o pairs in our Alpha ISA evaluation.

We used Threadmill [1] to generate IBM Power tests, and a simple
in-house test-generator for Alpha ISA tests. Note that BugMAPI
is not yet capable of handling multi-threaded tests, analyzing only
one thread at a time. We discuss multi-thread related issues in
multi-threaded tests in Section 6.5.

6.1 Bug Models
The goal of our bug model is to capture many corner-case func-

tional bugs, representative of those often detected in post-silicon
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Figure 6: Bug-masking rate for individual program instructions, sorted
by increasing distance from the end of the test program. Each data point is
obtained by averaging over all instructions in the distance window and over
30 distinct randomly-generated tests.

validation. To this end, we inject bugs that slightly alter the ar-
chitectural state (i.e., registers and memory locations). Note that
this model mimics micro-architectural bugs that ultimately mod-
ify the architectural state. For instance, a malfunctioning cache
will be eventually revealed when its incorrect data is read by a
load operation. However, purely micro-architectural bugs that lead
to execution delays or bugs that are usually detected by system’s
hangs cannot be detected by BugMAPI and thus our models are not
concerned with capturing them.

In our reference dynamic analysis, we inject bugs by modifying a
register value, or a memory location, right after it has been updated.
We considered five types of modifications that could be forced by
the bug, each corresponding to a distinct bug model, as we discuss in
Section 6.5. After a preliminary analysis, we settled for the random-
value option because we believe that it resembles more closely what
occurs in practice. With this model, a register value or a memory
location affected by a bug is replaced by a random value. Note
that when injecting bugs into memory locations, we are careful to
generate a value matching the original bit-width. For instructions
that trigger multiple updates, we only inject a bug in one output
value at a time.

6.2 Performance Analysis
We evaluated BugMAPI’s execution time on a dual Intel Xeon sys-

tem. To analyze 100 instances of the longest Alpha test (the last bar
of Figure 7), BugMAPI took approximately 11.3 seconds. The dy-
namic analysis for the same tests took 61 minutes of ISS simulations
using 7 cores (one simulation per each bug injection, running one
core per simulation). From these values, we estimate that BugMAPI
provides a 3-orders-of-magnitude speedup over a dynamic analysis.
In addition, the probability computation described in Section 5.1
took approximately 2 minutes for the subset of instructions of the
Alpha ISA and less than one hour for all the instructions of the
POWER8 ISA. Note that this step is only required once per ISA,
and is easily absorbed over the large number of tests evaluated.

6.3 Bug-Masking Characterization
In Figure 6, we plot the bug-masking rate of an instruction as a

function of its distance from the end of the test program for IBM
Power ISA. This evaluation was carried out to gather a sense of
how much program length affects masking probabilities, and to
place the accuracy of BugMAPI with respect to a dynamic analysis
and a baseline static analysis. Each data point is obtained as the
average of the bug-masking rate over all instructions in the windows
indicated: for example, the first data point on the left averages the
last 10 instructions of the test, while the rightmost one averages the
instructions that are between 241 and 250 instructions before the
end of the test. Moreover, each data point is obtained by averaging
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Figure 7: Classification of masked bugs. Masked bugs are classified based
on the ability of our baseline analysis and BugMAPI to identify the masking.

over 30 distinct test programs.
The diagram compares three solutions: a dynamic analysis (where

bugs are detected by comparing against an equivalent execution with
no bug injection), the static baseline analysis, and BugMAPI. As
expected, the bug-masking rate is higher for instructions further
away from the end of the test where the checking occurs. However,
it is encouraging to notice the quantitative values of this trend: even
after 200 instructions, the average bug has only a masking probabil-
ity of 40–50%, based on BugMAPI’s and the dynamic simulation’s
estimates. Note that BugMAPI’s analysis is only 21% less accurate
(by comparing fitting curve equations) than the dynamic one, while
achieving a 3-orders-of-magnitude speedup.

6.4 Accuracy
To evaluate BugMAPI’s accuracy, we deployed a perfectly ac-

curate dynamic analysis for a number of test programs and then
classified each bug that this analysis found to be masked, based
on BugMAPI’s analysis of that same test. The tests we considered
are 11 industry-strength tests for Power ISA and 3 fully random
tests for Alpha ISA. Five of the Power ISA tests were generated
using templates that select instructions randomly from a given set:
arith uses only arithmetic fixed-point instructions, while arith_mem
selects from loads and stores as well as arithmetic ones. vector_mem
and fp_mem choose instructions from vector and floating-point in-
structions, respectively. The remaining six tests target the memory
subsystem including memory consistency and address translation.
One test program has been generated for each template, varying
in length from 26 instructions (test D) to 917 instructions (all).
For the Alpha ISA, we report average results over 100 tests with
the specified characteristics. For example, in the tests “without
memory disambiguation,” memory addresses are always treated as
non-overlapping.

Our classification provides the following categories:
1. baseline static: Bug found masked by the baseline static analysis.
2. BugMAPI – 100%: Bug found masked by BugMAPI with 100%

probability, but not included in the previous group.
3. BugMAPI – <100%: Bug found masked by BugMAPI with less

than 100% probability.
4. BugMAPI – 0%: Bug found NOT masked by BugMAPI.
5. store instruction: Bug injected in store instructions or other

instructions affecting a store instruction. This corresponds to the
accuracy penalty due to lack of memory address disambiguation.

Figure 7 reports the findings of our analysis. For instance, we
injected 269 bugs in test arith, one for each of its instructions.
Among those, 171 were found masked by the dynamic analysis. Our
classification found that 107 of the 171 were already masked by our
baseline static analysis, an additional 40 were flagged by BugMAPI
as possibly masked (<100%) and 24 went undetected by it (0%).

Overall, the baseline static analysis was able to detect, on aver-
age, only 62% of the masked bugs in the Power ISA tests, while
BugMAPI improves the detection by an additional 15% (100% and
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Figure 8: BugMAPI’s accuracy on various bug models.

<100% categories) for a total of 77% masked bug identification
overall. Note that BugMAPI accuracy varies greatly with the con-
tents of the test: it is very high for compute-intensive tests (first five
in the plot), but less in memory-intensive tests (letter-named tests).
Moreover, as we pointed out in Section 6.2, our Power ISA analysis
has no memory disambiguation capabilities, which contributes to
some low-accuracy results, e.g., test E. Another type of limitation is
highlighted by test A, where 11% of the instructions led to execution
failures in dynamic analysis (e.g., due to stores with misaligned
address). However, BugMAPI cannot recognize these situations
because of its static nature.

The portion of Figure 7 related to the Alpha ISA focuses on
investigating the impact of memory disambiguation. The first two
test-programs in this group differ only on that aspect. Note that
disambiguation provides a slight improvement for the baseline static
analysis, which is an improvement that BugMAPI benefits from.
Finally, the last two test-programs evaluate the accuracy impact due
to test length: note that the accuracy of bug-masking assessment
remains stable even though the length is increased by five times.
Sources of inaccuracy. BugMAPI strives to keep the computation
lightweight at the cost of some accuracy. We have identified a few
sources of inaccuracy. First, our solution tracks information flow at a
coarse granularity: a whole register or memory location except for a
few special-purpose registers, whose fields are treated independently
(e.g., FPSCR in Power ISA). While a finer-granularity analysis
(e.g., bit-level) would lead to a more accurate estimate, it would
be much more computation-heavy. Our simplifying assumptions
(Section 5.2) also contribute to inaccurate estimates, because they
ignore correlations between instructions, inputs and resources. We
observed a minimal fraction of unmasked bugs that are reported
masked by our baseline analysis; 1 out of 998 unmasked bugs for
Power ISA tests, and 35 out of 4,105 unmasked bugs for Alpha ISA
tests.

Finally, BugMAPI fails to recognize correlations between instruc-
tions due to test-template structures. For instance, when computing
a memory address, multiple instructions are involved that are NOT
independent from each other. To address this limitation, it would be
possible for BugMAPI to analyze the instruction block as a single
instruction with several i/o pairs, and then use those probabilities in
the sequence where the block is embedded.

6.5 Discussions
Accuracy sensitivity on bug models. We performed additional

experiments to measure the sensitivity of BugMAPI to other bug
models, using five different types of bug manifestations: random
value overwrite, single-bit flip, binary complementation, missing
update and spurious update. Bugs in the first three types are mani-
fested as an incorrect value in the correct target register or memory
location. In the fourth type, the target maintains its previous value,
ignoring its new value. Lastly, spurious update updates a random
target other than the correct one. Figure 8 shows the accuracy for
each bug model. As shown in the bottom of each bar, 38–43% of
the bugs are unmasked and detected at the end of tests. Among
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Figure 9: Mask-preventing code instrumentation. BugMAPI can identify
masking instructions so that mask-preventing instructions can be inserted.

masked bugs, our baseline analysis identifies 53–81% of them, and
BugMAPI adds 6–13% on top of the baseline analysis. While false
positives remain minimal for the first four bug models (less than
1%), we find a 15% false positive rate with spurious update. This is
because our analysis does not track a buggy value manifesting at a
random register or memory location other than the correct target.

Applying BugMAPI to multi-threaded programs. Analyzing
multi-threaded programs can be challenging because of the difficulty
in characterizing interactions among threads [13]. In these programs,
for instance, inter-thread data dependency may arise through mem-
ory accesses to shared memory regions. To extend our analysis to
these programs, we can mark inter-thread load and store instructions,
applying inter-thread analysis to them. A major challenge comes
from non-deterministic execution in multi-threaded programs: inter-
thread data dependency may change time to time. One solution for
this challenge is to profile the frequency of each data-dependency
path, then compute a weighted average across all paths. This ap-
proximation may not accurately predict bug-masking occurrences
for a specific execution of a program, but it can at least estimate the
overall bug-masking likelihood of the program.

7. APPLICATION: MASKING REDUCTION
The results of BugMAPI’s static analysis can be used in vari-

ous ways to expedite post-silicon validation. In this section, we
showcase a BugMAPI’s application that reduces bug-masking oc-
currences in random instruction tests, as illustrated in Figure 9. In
this application, we first run BugMAPI to collect all instructions that
possibly expunge the results of any prior instruction by overwriting
its target register. We then instrument mask-preventing instructions
that use the value to be overwritten as a source operand, so that
any buggy value in the operand can be delivered to a propagated
(non-overwritten) register.

We implement a simplistic mask-preventing code instrumenta-
tion that inserts xor instructions before mask-causing instructions
identified by our analysis. In the random test shown in the left side
of Figure 9, instruction 5 is identified as a mask-causing instruction
because it expunges the results from instructions 1 and 3. We then
insert an xor instruction using the operands of instruction 5: the
target register (r5) and one of the source registers (r4), as shown in
the right side of Figure 9. Note that this register selection does not
require additional registers to be reserved for inserted instructions.
Also note that the xor instruction itself does not mask any buggy
value from its source operands, because its bug-masking probability
is 0%. We ignore mask-causing store instructions in order to not
perturb memory access patterns, limiting our mask-prevention capa-
bility to some degree. While not implemented here, a pair of load
and xor instructions can further reduce such masking occurrences.

Table 1 shows the number of bugs that are classified as either
unmasked or masked, throughout our dynamic analysis experiments.
We used Alpha ISA with 100 instructions per test, and generated
100 different instruction sequences (10,000 instructions in total),
using the random-value bug model and injecting a single bug to each
instruction in the tests, including the instructions that we added to
reduced the masking rate. As shown in the table, 57% of activated
bugs in our original random tests end up being masked. However,

Table 1: Number of bugs masked/unmasked by dynamic analysis for
our enhanced tests

test-case number of activated bugs
unmasked masked total

original tests 4,138 (43%) 5,486 (57%) 9,624
mask-reduced tests 8,893 (72%) 3,384 (28%) 12,277

this bug masking rate is significantly lowered by our mask-reduction
technique, to 28%. Note that our code instrumentation increases the
length of each test, due to inserted xor instructions.

Our instrumentation does not eliminate all masking occurrences
because of two limitations: lack of patches for mask-causing store
instructions, and false negatives in our analysis, as discussed in
Section 6.4.

8. CONCLUSIONS
We proposed BugMAPI, a probabilistic bug-masking analysis

solution for post-silicon microprocessor validation. BugMAPI is a
static information-flow analysis for test programs. It estimates the
probability that bugs go undetected by the checkers at the end of the
test program. It leverages a novel and highly accurate bug-masking
calculation for individual instructions, and a low-cost heuristic to
combine those findings into instruction sequences. Experimentally
we have found that BugMAPI provides 77% of the accuracy of a
dynamic simulation, at a fraction of its computation costs.
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