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Abstract—Shared-memory chip-multiprocessor (CMP) archi-
tectures define memory consistency models that establish the
ordering rules for memory operations from multiple threads.
Validating the correctness of a CMP’s implementation of its
memory consistency model requires extensive monitoring and
analysis of memory accesses while multiple threads are executing
on the CMP. In this paper, we present a low overhead solution for
observing, recording and analyzing shared-memory interactions
for use in an emulation and/or post-silicon validation environ-
ment. Our approach leverages portions of the CMP’s own data
caches, augmented only by a small amount of hardware logic, to
log information relevant to memory accesses. After transferring
this information to a central memory location, we deploy our own
analysis algorithm to detect any possible memory consistency vio-
lations. We build on the property that a violation corresponds
to a cycle in an appropriately defined graph representing mem-
ory interactions. The solution we propose allows a designer to
choose where to run the analysis algorithm: 1) on the CMP itself;
2) on a separate processor residing on the validation platform; or
3) off-line on a separate host machine. Our experimental results
show an 83% bug detection rate, in our testbed CMP, over three
distinct memory consistency models, namely: relaxed-memory
order, total-store order, and sequential consistency. Finally, note
that our solution can be disabled in the final product, leading to
zero performance overhead and a per-core area overhead that is
smaller than the size of a physical integer register file in a modern
processor.

Index Terms—Cache memory, emulation, memory architec-
ture, multiprocessor interconnection, post-silicon validation.

I. INTRODUCTION

RECENT trends in processor design show an ever increas-
ing number of cores being integrated on a single chip.

All of today’s mainstream processors, from high-end servers
to mobile devices, are chip-multiprocessors (CMPs) whose
individual cores communicate with each other through a
shared-memory subsystem. For correct operation, a shared-
memory implementation must preserve system-level properties
as defined by its memory consistency model [1], i.e., read
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Fig. 1. System overview. Each core is modified to track memory accesses.
A portion of the L1 caches are temporarily reserved for logging memory
accesses. A store counter is attached to each cache line to track the order
of writes to the line. Finally, the analysis of the logged data is performed in
software, which can be carried out on a processor/host available for the task.

and write operations to shared-memory by multiple cores must
obey the ordering requirements of the consistency model.

Unfortunately, with increasing core count, verification of
shared-memory CMPs is becoming increasingly difficult,
mainly due to the growing complexity of the shared-memory
interactions. State-of-the-art out-of-order cores rely on aggres-
sive performance optimizations that reorder instructions,
resulting in subtle corner cases for shared-memory operations.
The shared-memory subsystem is typically realized through a
hierarchy of connected memory elements, which themselves
might reorder memory operations for increased performance.
Moreover, a system-level view of key events across a large
number of cycles and over multiple components is required
to validate complex memory interactions. Presilicon veri-
fication techniques are usually too slow to provide such
capabilities. Emulation and post-silicon validation, on the other
hand, are orders of magnitude faster, allowing for the execu-
tion of complex programs that can provide high validation
coverage.

We propose a post-silicon/emulation solution for detecting
memory consistency bugs that offers high bug detection capa-
bility, debugging support, low area overhead, and can be
deployed on a wide range of systems, spanning multiple mem-
ory consistency models. When using our solution, a portion
of the first-level data caches in the processor-under-verification
are claimed to record memory interactions during test program
execution. These memory access logs are then aggregated into
main memory and analyzed in software. This approach results
in a significantly smaller silicon area overhead than similar
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solutions proposed in the literature. Furthermore, our solution
is transparent to the end user as logging and analysis is dis-
abled and cache space is released upon product shipment. We
demonstrate our approach on a CMP with out-of-order cores,
each with private L1 caches.

II. SYSTEM OVERVIEW

Our solution partitions test program execution into multiple
epochs, each comprising three distinct phases, as illustrated in
Fig. 1. In the first phase, program execution progresses while
memory accesses are tracked in the background and logged
into a reserved portion of the processor’s L1 data caches.
A small amount of additional logic is required to perform
this task, but note that the additional hardware is off the crit-
ical computation paths. When the system exhausts logging
resources, program execution is temporarily suspended and
program state is saved, to be restored later at the start of a
new epoch. The system then transitions into the second phase,
where the memory access logs from all the caches are aggre-
gated into main memory. In the third phase, these logs are
analyzed by software that checks whether memory consistency
violations have occurred during program execution.

Our analysis algorithm builds a specialized directed graph
using the information in the memory access logs. Each vertex
in the graph represents a memory access, while directed edges
are generated between memory accesses based on the observed
order of the memory operations and on the requirements of
the memory consistency model. The presence of a cycle in
this graph indicates that a memory consistency violation has
occurred [2], [3]. The information in the memory access logs
and the architectural state at the end of each epoch provide
insight into the activity of the CMP during an epoch, which
can be used to find the root cause of a consistency violation.
This analysis can be carried out on- or off-chip, based on
available resources and validation strategy.

In Fig. 1, we outline the hardware modifications required to
implement our solution. Each core is augmented with a small
amount of logic to enable memory access tracking. All cache
lines are also augmented with a store counter for tracking the
order of writes to a cache line. When a cache line is transferred
to a different core, its store counter is also transferred with it.
In addition, the L1 cache controllers are modified to temporar-
ily reserve and utilize portions of the cores’ L1 data caches
for storing memory access logs. All of these modifications
applied to the processor-under-verification can be completely
disabled after validation, resulting in virtually no performance
and energy overheads to the customer.

Our solution allows the log analysis to be performed in
a range of time interleavings, as illustrated in Fig. 2. For
instance, if the only goal for a test is the verification of mem-
ory interactions, then it is reasonable to analyze the recorded
logs right after each execution phase and terminate the test if
a violation is detected. Here, the analysis may be serialized
as in Fig. 2(a) or overlapped with the next epoch’s execution
as in Fig. 2(b). The scenario in Fig. 2(a) would allow for the
analysis software to run on the same processor under veri-
fication. In cases where logs have to be transferred off the

(a)

(b)

(c)

Fig. 2. Timeline scenarios. When logging resources are exhausted, test pro-
gram execution is suspended and logs are aggregated for analysis. The analysis
may then be done (a) before beginning the execution phase of the next epoch,
(b) overlapped with the execution phase of the next epoch, and (c) at the end
of the test program execution.

validation platform for analysis on another host, it may be
more efficient to adopt the scenario in Fig. 2(c) to amortize
log transfer overheads. This latter setup is especially useful for
emulation-based validation flows, where it may be impracti-
cal to execute the analysis software on the processor being
emulated due to performance limitations.

III. BACKGROUND

The memory subsystem in a typical modern CMP con-
sists of two or three levels of caches and a main memory
that service memory requests from load-store units in out-of-
order cores. From the perspective of the programs running
on the processor, the memory subsystem has to appear as
if it were one monolithic structure that preserves the order-
ing properties specified by the memory consistency model.
Several consistency models have been proposed and adopted
over the years [1], [4], mainly driven by the need to allow high
performance CMP implementations. A consistency model for
a particular architecture specifies the acceptable orderings of
memory accesses that multithreaded shared-memory programs
should expect. Below is a brief description of the ordering
requirements for three representative models.

Sequential Consistency (SC) [5]: All memory operations
from each core must be performed in their respective program
order. In addition, there should exist a unique serialization of
all memory operations from all cores.

Total-Store Order (TSO) [6]: All memory operations from
each core must be performed in their respective program order,
except for when a store operation to a memory location is
followed by a load operation from another location. In such
cases, a core is allowed to execute the load early, before the
store completes. Finally, all cores should observe the same
unique serialization of all store operations in the system.

Relaxed-Memory Order (RMO) [6]: No implicit order-
ing requirements are enforced amongst memory operations
to distinct memory locations. The programmer can explicitly
enforce ordering by inserting fence (barrier) instructions.

Weak memory consistency models, such as RMO, rely
on fence instructions to explicitly order memory operations.
These fence instructions include a field to specify the order-
ing constraint being enforced by the instruction. For instance,
the SPARC V9 ISA [6] includes a MEMBAR instruction
with two mask fields—mmask (4 bits) and cmask (3 bits).
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Each mmask bit represents the possible combination of mem-
ory operations that cannot be reordered across the instruction
(bit 0: load→load, bit 1: store→load, bit 2: load→store,
bit 3: store→store)—if all four mmask bits are set, then no
memory operation reordering is allowed across the MEMBAR.
The cmask bits are used to specify ordering requirements
between memory operations and other preceding instruc-
tions. Here, we limit the scope of this paper to con-
sider ordering only with respect to other memory opera-
tions. Note that several consistency models can be modeled
using RMO with an appropriately masked fence instruction
inserted after each memory operation. For example, we could
model SC by inserting MEMBARs, with all mmask bits set,
after each memory operation. In addition, the most com-
monly used synchronization instructions (test-and-set,
exchange, compare-and-swap, load-linked, and
store-conditional) can be modeled as sequences of
reads, writes and fences.

Previous work has shown that bugs in an implementation
of a memory consistency model can be detected by construct-
ing a directed graph from observed memory operations and
then searching for cycles in the graph [2], [7]–[11]. The graph
should be acyclic if the execution satisfies the ordering rules
given by the consistency model. We present an example of
such a graph in Fig. 3 for a multithreaded execution on a sys-
tem based on the RMO consistency model. Fig. 3(a) shows
snippets of memory operations from three different cores for
a multithreaded program. Our mechanism tracks the ordering
requirements of the fence instructions and the data depen-
dencies between memory operations. Consider a case where
each core performs its memory accesses in program order
and accesses from multiple cores are arbitrarily interleaved.
Fig. 3(b) reports a graph obtained from such an execution.
The vertices in the graph represent memory accesses, the red
dashed edges are generated from the ordering requirements of
the fence instructions, and the solid black edges are generated
from the data dependencies observed during execution. A dif-
ferent execution may result in different data dependencies, and
hence a different graph. Assume core 0 executes LD A (load
from address A) before the preceding memory accesses com-
plete, violating the explicit ordering requirements of the two
fence instructions in its instruction stream. In this case, core 0
would load the value that is set in its store queue, written
by the ST A (store to address A) in its instruction stream,
instead of the value from core 1. This results in a different
graph as reported in Fig. 3(c). Note that violating the ordering
requirements of the fence instructions introduced a cycle in
the graph.

The main focus of this paper is the detection of memory
consistency bugs that may occur when multiple cores exe-
cute multiple threads. We assume that: 1) the system is a
cache-coherent CMP that enforces a single writer to a cache
line at a time, while allowing multiple readers; 2) the L1
caches implement a write-allocate (fetch-on-write) policy for
store misses; 3) the threads executing on the CMP interact
only through shared memory accesses; and 4) intrathread data
dependencies are handled correctly or there is an orthogo-
nal mechanism addressing this type of issues, possibly among

(a)

(b) (c)

Fig. 3. Memory access graph examples. (a) Sequence of memory opera-
tions and fence instructions from three processor cores. (b) Memory access
graph for an execution that abides RMO rules. Solid black edges represent
data dependencies, while dashed red edges represent fence-enforced order-
ings. (c) Core 0 executes LD A out of order, in violation of the fences in its
instruction stream. This violation manifests as a cycle in the resulting memory
access graph.

those listed in [12]. In developing our solution, we also make
use of the following observations.

1) If a thread does not share data with other threads,
the core executing it can reorder memory operations
compatibly with the correct enforcement of data depen-
dencies. In this case, the thread’s execution abides the
constraints of any consistency model.

2) If a thread shares data with other threads, it can
reorder its memory operations as long as no other
thread observes memory access orderings that violate
the system’s consistency model. If violations do occur,
they manifest as cycles in the corresponding memory
access graph, involving both interthread edges and edges
derived from the rules of the consistency model.

3) For a cache-coherent CMP, as we assume, a unique
serialization must exist for all stores to a cache line.

4) The interthread edges in the memory access graph can
only result from interthread data dependencies.

Observation 2 dictates that we collect information required
to construct the required edges to detect violations. In order
to construct the edges imposed by the consistency model,
our solution collects information about the relative ordering
of memory accesses as dictated by the memory consistency
model. To construct the interthread edges, we collect infor-
mation about data dependencies, utilizing the property in
observation 4. Observation 3 provides us with a mechanism to
keep track of data dependencies; by uniquely identifying each
store to a cache line, not only are we able to determine the
order of write accesses to a cache line, but also which store
operation produced a value for a subsequent load. We can
capture read-after-write (RAW), write-after-write (WAW), and
write-after-read (WAR) data dependency edges with this mech-
anism. The following sections describe in detail how this
information is collected and then used to construct memory
access graphs for the subsequent analysis.

IV. TRACKING MEMORY ACCESS ORDERINGS

Our solution tracks two types of ordering information:
1) implicit or explicit ordering enforced by the consistency
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model on memory accesses from the same thread (henceforth
referred to as consistency order) and 2) ordering observed
during execution due to data dependencies between mem-
ory accesses (henceforth referred to as dependence order). We
utilize some of the processor’s L1 data cache space to tem-
porarily store this information. We present the details of the
information collection mechanism below.

A. Capturing Consistency Order

Our solution tags each memory access with a sequence iden-
tifier that marks its position in consistency order, relative to
other memory accesses from the same thread. The generation
of sequence identifiers is dependent on the memory consis-
tency model under consideration. SC, for instance, requires
program order to be enforced between all memory accesses
(consistency order is the same as program order). Therefore,
unique and monotonically-increasing sequence identifiers are
required to capture the ordering requirements. These sequence
identifiers can be generated by using a simple per-thread
counter that is incremented on every memory access. On
the other hand, RMO does not impose any implicit ordering
constraints between memory accesses to different addresses.
A programmer can explicitly enforce ordering through the
MEMBAR fence instruction. Depending on the mmask field
of the instruction, loads and/or stores before the MEMBAR
are required to be ordered before loads and/or stores after.
For such a case, a sequence identifier needs to identify the
relative position of memory accesses with respect to fence
instructions. Since not all memory accesses are affected by a
particular fence instruction, the sequence identifier must also
encode the mmask fields of the MEMBAR instructions. The
sequence identifier for a memory access can thus be con-
structed from a {count, mask} tuple where the count is the
number of MEMBARs encountered before the memory access
instruction and the mask is the value in the mmask field of
the last MEMBAR preceding the memory access instruction.

We observe that a generic solution based on sequence iden-
tifiers for RMO can be extended for use with any other
consistency model. For instance, for SC and TSO, the count
field of the sequence identifier tuple is incremented after every
memory instruction, while the mask field is kept at a con-
stant value to reflect the restrictions on the types of memory
accesses that can be reordered—no reordering is allowed for
SC (i.e., seq_id.mask = \0xF) and loads are allowed to be
reordered with respect to previous stores for TSO, while every
other reordering is restricted (i.e., seq_id.mask = \0xD).
We can then model SC and TSO using RMO by assuming
the existence of MEMBARs with mmask \0xF and \0xD, respec-
tively, after each memory access instruction. We will use this
generic model to discuss our solution without delving into the
particulars of any memory consistency model.

We add a special sequence identifier register, with count
and mask fields, to each core. When a fence instruction is
dispatched, the count is incremented and the ordering con-
straints imposed by the fence instruction are stored in the mask
field. We also add a “retirement sequence identifier register”
which is updated in a similar fashion when a fence instruction

Fig. 4. Memory access tagging. Upon dispatch, each memory operation is
tagged with the value currently stored in the sequence identifier register. When
a fence instruction is encountered, the count field in the sequence identifier
register is incremented and the fence mask is copied to the mask field.

is retired. The precise (nonspeculative) value in this regis-
ter is copied into the actual sequence identifier register when
the pipeline is flushed. Upon dispatch, all memory accesses
are tagged with the value in the sequence identifier register.
Fig. 4 illustrates an example of the sequence identifier gener-
ation process. The first ST A access is tagged with a {count,
mask} tuple of {\0,\0x\0}, from the 0-initialized sequence iden-
tifier register. The fence instruction following the store causes
the sequence identifier register to be updated; the count is
incremented and the fence instruction’s mask is copied to the
mask field (mask = \0x2, i.e., loads can not be reordered with
respect to previous stores). All subsequent memory instruc-
tions are then tagged with the new sequence identifier, until a
new fence instruction updates the sequence identifier register.

In an Intel P6-like microarchitecture, the sequence identi-
fiers for all in-flight memory instructions can be appended to
entries in the load and store queues. When a memory instruc-
tion is finally performed, the logging mechanism reads its
sequence identifier and stores it in the portion of the cache
temporarily reserved for our solution’s logging.

B. Capturing Dependence Order

A unique serialization of all stores to a cache line exists for
a program executing on a cache-coherent CMP. Our solution
leverages this property to track data dependencies. We attach
a store counter to each cache line, which is incremented upon
each write to an address in that line. To hold the store counter,
we repurpose the error-correcting code (ECC) bits of the cache
line. Note that the counter value is transferred along with the
cache data of the line to the cores and through the mem-
ory hierarchy. The ECC update mechanisms for all memory
elements in the hierarchy are repurposed to preserve the trans-
ferred ECC bits. Each memory access is tagged with the most
recent store counter value for the cache line it accesses. This
allows our solution to infer the relative order among shared-
memory operations to a given cache line, and thus to derive
RAW, WAR, and WAW dependency edges in the memory
access graph. In addition, these counters enable a straight-
forward mechanism for verifying the single-writer-at-a-time
requirement of a cache-coherent CMP—each write access to
a cache line must be tagged with a unique count. A mem-
ory operation that accesses multiple cache lines is split into
multiple log entries to preserve the store counter values for
all the accessed lines. During analysis, such accesses will be
merged and all the relative orders inferred from the multiple
store counters will be included.
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(a)

(b)

(c)

(d)

Fig. 5. Memory access logging example for the program snippet in Fig. 3(a).
(a) Core 0 performs its first store to line A, updating the store count for A to
1 and taking a snapshot. (b) Core 1 performs a store to A invalidating core 0’s
cache line. A is transferred to core 1 with an incremented store count of 2.
(c) Core 2 loads A, which is transported along with the store count of 2 from
core 1. (d) Final contents of the logs that generate the graph of Fig. 3(b).

Fig. 5 illustrates the store counting mechanism and mem-
ory access logging for 3 cores executing the program snippet
shown in Fig. 3(a). Assume that the cores perform one memory
access at a time in the following order: core 0, core 1, core 2,
core 2, core 1, core 0. This would result in the memory access
graph shown in Fig. 3(b). Note that all memory accesses are
tagged with appropriate sequence identifiers as discussed in
Section IV-A. When core 0’s ST A writes to core 0’s cache,
the store count for the written cache line is incremented to 1.
Fig. 5(a) shows the snapshot of this store count, the sequence
identifier tuple, the type of memory access and the address
logged in core 0’s log storage space. Core 1’s ST A instruc-
tion causes core 0’s corresponding cache line to be invalidated
and the store count to be shipped to core 1. The store count
is then incremented and its snapshot is stored in core 1’s log
storage space, along with the rest of the log entry, as shown
in Fig. 5(b). This updated store count is shipped to core 2,
along with the data for the corresponding cache line, when
core 2’s LD A is executed. The log entry for core 2’s LD A
access then contains a store count of 2 as shown in Fig. 5(c).
Fig. 5(d) shows the final state of the memory access logs after
all memory accesses have been performed.

Note that if core 0’s LD A had received its value forwarded
from core 0’s store queue, the store count associated with this
access would have been 1 and as a result, the memory access
graph shown in Fig. 3(c) would have been generated.

C. Logging Mechanism

We reserve some of the ways in a multiway, set-associative
L1 data cache for log storage. A single log entry holds
information about the type of memory access, the memory
address, the sequence identifier and a snapshot of the store
count for the cache line. For the type information, one bit is
used to indicate if the access was a load or a store and a sec-
ond bit is used to indicate whether it should be merged with
the preceding access during analysis. Merging is needed for
log entries of memory access that cross cache line boundaries.
The data arrays in the reserved cache ways are repurposed to
hold log entries, with each entry aligned to byte boundaries.

Fig. 6. Logging mechanism: the data arrays in the reserved cache ways
are used to store log entries. The tag arrays store address bits to direct the
log entries to their allocated space in memory during log aggregation. In the
figure, we report the tag computation for the case when only one way of each
cache is reserved for log storage.

After the execution phase of an epoch, the log entries from
all cores must be aggregated for analysis. A section of the
address space is allocated for storing the aggregated logs. We
utilize the existing cache line eviction mechanism to move the
log entries down the memory hierarchy. To enable this simple
transfer mechanism, the tag arrays in the cache ways reserved
for log storage are populated with the appropriate address bits
to direct the logs to the proper memory locations. Fig. 6 shows
the details of the logging mechanism.

D. Log-Delay Buffer

The logging of a memory access needs to be delayed for cer-
tain special cases. First, obtaining the store count values might
not be straightforward for load operations that obtain their val-
ues forwarded from stores in a load-store queue or a store
buffer. For such loads, the store count that needs to be asso-
ciated with the corresponding log entry can not be obtained
until the forwarding store accesses the cache and updates the
store count. Second, when multiple stores to a cache line are
coalesced in the store buffer, the store count updates corre-
sponding to each store must be applied, even though the cache
line is accessed only once. Third, a speculative memory access
should not be logged until the instruction that issued the access
has retired. Lastly, all available L1 write ports maybe in use
when our mechanism has an entry to write into the portion
of the L1 cache reserved for log storage. To handle these
cases, we incorporate a log-delay buffer for saving log entries
waiting to be written to the log storage space. Our logging
mechanism ensures that entries update their information and
leave the log-delay buffer whenever the event they are waiting
for occurs.

Logging is performed in the background during program
execution until log resources are exhausted. A store count
reaching the maximum value, a data block in the reserved log
storage filling up, or the log-delay buffer running out of space
signal the end of an epoch. The log-delay buffer is designed
to handle at least as many entries as the combined sizes of the
store buffer and the load-store queue, to reduce the probability
of filling up. The fence counter field in the sequence identi-
fier is designed to count at least up to the maximum number
of memory operations that can be in flight at any given time.
This allows our analysis software to easily detect when the
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Fig. 7. Log analysis algorithm. The algorithm first creates sorted data
structures. The sorted memory accesses for each line address are checked
for valid store ordering. The graph construction algorithm infers all ordering
edges from the sorted memory access lists. The resulting graph is topologically
sorted to detect cycles.

counter has wrapped around for the log entries so that it
updates all entries thereafter with correctly increasing count
values.

V. LOG AGGREGATION AND ANALYSIS

At the end of the execution phase of an epoch, our system
makes a transition from normal program execution mode to
log aggregation mode by: 1) saving the architected state of the
processor to memory, much like how it is done during a con-
ventional context switch; 2) disabling the lower level caches
and portions of the L1 caches that were used for normal pro-
gram data; and 3) running software that triggers evictions for
the cache lines holding the logs. At the end of the log aggre-
gation phase, the logs of memory interactions and the final
architected state of the test program reside in main memory.
The analysis phase can then resume in one of three ways as
described below.

1) Analysis Leveraging the Processor Under Verification:
The tracking and logging mechanism is temporarily dis-
abled and the analysis software is loaded and executed.

2) Analysis on a Separate Processor Connected to the
Same Memory: The analysis software is executed on the
separate processor.

3) Analysis Using a Separate Host: The logs are first trans-
ferred from the memory connected to the processor
under verification to the memory of the separate host
machine. The analysis software is then executed on the
host.

Fig. 7 shows a high-level flowchart of our analysis algo-
rithm. This algorithm first creates two data structures that
provide easy access to the memory access logs—the core list
data structure (CL), which keeps each core’s memory accesses
in a list sorted by consistency order, and the address list data
structure (AL), which keeps each store to a cache line in a
list sorted by store count. These data structures, generated by
the “group and sort” process in the flowchart of Fig. 7, enable
efficient implementations of the store order checker, the graph
constructor and the cycle detector, which are discussed below.

A. Checking Order of Writes to Cache Line

For a cache-coherent CMP, there must exist a strictly
increasing sequence of store counts, per cache line, if only

(a)

(b)

(c)

Fig. 8. Coherence bug example. (a) Core 0 performs a store to line A.
(b) Core 1 gets line A from core 0 to perform a store, however, core 0’s
cache fails to downgrade its permission to line A. (c) Core 0’s store to line
A updates the store count, leading to a conflict detected by the store order
checker.

one writer is allowed to a cache line at a time. Fig. 8 shows
an example for a cache coherence bug that allows two stores
to write to a line simultaneously. Core 0 fails to downgrade
its permission (transition from modified to invalid, for a sim-
ple MSI protocol) to cache line A before core 1 upgrades its
permission. This violates the single-writer-at-a-time invariant,
enabling both cores to write to A at the same time. This vio-
lation manifests as two consecutive stores with the same store
count in the address list for line address A (AL[A]).

B. Graph Construction and Cycle Detection

The graph construction subroutine constructs a directed
graph from the observed memory accesses, their data depen-
dencies, and the ordering constraints imposed by the memory
consistency model. A vertex in the resulting graph represents
a memory access and an edge between two vertices represents
the order between the two accesses. Dependence order edges
are constructed using the store count snapshots. Every mem-
ory operation is placed in between two stores—one occurring
right before it and the other occurring right after, in depen-
dence order. The sequence identifier information attached with
each log entry is used to construct the consistency order edges.

Fig. 9 details our graph construction algorithm using the
example introduced in Fig. 3. Note that the logs shown in
Fig. 9(a) are from an execution where core 0’s LD A vio-
lates the ordering requirements and obtains its value early from
the ST A in its instruction stream. The memory access logs
are first organized into two lists as presented in Fig. 9(b).
For each core i, accesses are placed in CL[i] in increasing
order of their sequence identifiers. Stores to each cache line x
are placed in AL[x] in increasing order of their store count.
The graph construction algorithm walks through each access
in CL[i] and attempts to construct directed edges to and
from the access. First, dependence order edges are constructed
by identifying preceding and succeeding stores in dependence
order. This is easily achieved by directly indexing AL using
indices derived from the address and the store count of the
memory access. Next, for each preceding access in CL[i],
the algorithm checks if the effective ordering requirement
warrants an edge to the current access. The effective order-
ing requirement is obtained as a bitwise AND of all masks
in the sequence identifiers of the memory accesses appear-
ing between the two memory accesses in CL[i]. The edges
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(b)

(a)

(c)

(d)

Fig. 9. Graph construction example. (a) Memory access logs from the
example introduced in Section III. (b) Contents of CL and AL derived from
the logs. (c) Graph construction algorithm generates edges utilizing the entries
in CL and AL. (d) Cycle is identified in the resulting memory access graph.

derived by our algorithm and the resulting memory access
graph are shown in Fig. 9(c). The cycle due to the violation
of the ordering requirements is presented in Fig. 9(d).

VI. STRENGTHS AND LIMITATIONS

A. Debugging Support

The memory access logs, preserved architectural state and
the state of the memory at the end of each epoch can be
leveraged to identify the root cause of an error. We can further
enhance the debugging capability that our solution provides by
adding a slow debug mode where additional useful information
can be collected.

B. Low-Overhead Store Tracking

In [7], we found that using access vectors to track the
order of stores to an individual cache line resulted in an
efficient analysis algorithm. However, such a mechanism for
storing and transferring access vectors with each cache line
cannot scale well with increasing core count. Our single store
count can be piggy-backed on the ECC bits for a cache line,
obviating the need for extra storage and bandwidth. In addi-
tion, our improved graph construction algorithm eliminates the
inefficiencies that required the use of access vectors.

C. Configurable Granularity

Our solution can be easily configured to infer memory
access ordering at multiple granularities, trading off log stor-
age and analysis complexity for accuracy. Inferring at a
cache-line granularity is the natural choice, since we track
store counts per cache line. It also lets us handle multibyte
reads and writes that do not cross cache lines. This approach
might introduce extra dependence edges, potentially resulting
in false positives but no false negatives. Even while track-
ing store counts per cache line, we can infer memory access

ordering at a byte granularity by storing byte addresses in the
access logs along with the sizes of the accesses. The analy-
sis algorithm will then infer dependence edges only between
overlapping memory accesses.

D. Multithreaded Cores and Multilevel Cache Hierarchy

Our solution can be easily extended to handle multithreaded
cores by maintaining per-thread sequence identifiers in each
core and attaching a thread-identifier with each memory access
log entry. If there are multiple levels of private caches per core,
any of the caches can be utilized for logging.

E. No-Write-Allocate L1 Caches

Our solution can be extended with some effort to support L1
caches with a no-write-allocate policy. For such caches, current
store counts will not be available at the L1 for stores that miss
in the L1. We can work around this issue by moving the store
count update mechanism to the L2. This solution will, how-
ever, require a specialized, implementation-specific approach
to handle loads that forward their values from previous stores
that missed in the L1.

F. Test Quality

The detection capability of our solution depends on the
quality of the stimulus; hence, our solution can only discover
bugs exposed by the test programs running on the CMP. Even
though, we use constrained random test cases designed to
stress the memory subsystem and expose bugs, we do not
address the issue of test generation in this paper.

G. Out-of-Order Core Correctness

Even though a memory consistency model allows a core
to reorder memory operations from a single thread, the core
must enforce data dependence ordering between memory
operations. These may be direct dependencies between mem-
ory operations to the same address or indirect dependencies
between memory operations to different addresses through
other instructions in the thread. We notice that this requirement
is a subset of the fundamental requirement for an out-of-
order core to preserve the illusion of sequential execution
and, therefore, we believe its verification is a well researched
problem, orthogonal to the verification of shared-memory mul-
tiprocessor interactions. Our solution does not attempt to detect
violations in these requirements.

H. Execution Perturbation

Theoretically, the search for consistency violations should
be performed on a memory access graph constructed from the
entire execution of a program. Our solution, however, breaks
program execution into multiple epochs due to limited logging
resources. The cores in the system drain their pipelines and
complete all outstanding memory requests in between epochs.
Therefore, RAW data dependencies between an epoch and all
subsequent epochs cannot exist. i.e., a load in epoch i can
never read a value written in epoch i + 1. This perturbation
of program execution may hinder the sensitization of certain
functional errors.



IE
EE

Pr
oo

f

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

I. Graph Size

The analysis phase is dominated by the topological sort
algorithm for detecting cycles. The worst-case time complex-
ity of this algorithm is O(|V| + |E|), where |V| represents
the number of vertices and |E| the number of edges [13].
Previous works have demonstrated techniques that reduce
memory access graph size [2], [7], by recording only those
accesses that create interthread dependence edges and infer-
ring the transitive closure of intrathread edges. We can also
utilize these optimizations to reduce graph size.

J. Verifying Coherence

While our solution can identify coherence violations that
manifest as improper store serializations to a single cache line
or cycles in a memory access graph, it is not a complete
cache coherence verification solution. However, the mecha-
nisms used in our solution are similar to those utilized by
the CoSMa coherence verification solution [14]. Therefore,
an enhanced hybrid technique that also logs cache line states
and incorporates the CoSMa checking algorithm can provide
a more robust memory coherence verification solution, albeit
with some degradation in performance.

VII. EXPERIMENTAL EVALUATION

A. Experimental Framework

Our experimental framework is built upon the Ruby mem-
ory system simulator in the Wisconsin Multifacet GEMS
toolset [15]. We configured Ruby to simulate the memory
hierarchy for a 16 core CMP using the MOESI directory-
based cache coherence protocol with 32 kB, 8-way private L1
data caches, a single shared 8 MB L2 cache, and a 4 × 4 on-
chip mesh interconnect. Cache lines are 64 bytes in size. We
augmented the existing trace-based memory operation request
driver with support for fences and intracore memory operation
reordering windows. This gives us the ability to investigate the
effects of memory instruction reordering, fence instructions
and a range of memory consistency models. We implemented a
reordering window of 16 memory operations and a constrained
random reordering policy that respects the requirements of
the memory consistency model. We configured our solution to
track memory accesses at a cache-line granularity.

We developed a constrained-random test suite of ten mul-
tithreaded traces consisting of memory requests and fence
instructions. Each test in our suite contained 1.6 million load,
store and fence instructions (100 000 per thread) tuned to
exhibit various data sharing characteristics as summarized in
Table I. We generate special synchronization sequences that
maximize sharing between the threads with the probability
shown in the sync column. When such a sequence is not gen-
erated, load, store and fence instructions are produced with the
percentages in the %ld, %st and %fc columns. We also con-
trol the size of our address pool and introduce false sharing
in some of our tests. In addition, we modeled and probabilis-
tically injected a total of 10 bug manifestations, described in
Table II, to investigate the ability of our solution to detect bugs.
The local bugs were injected in the instruction scheduling

TABLE I
CHARACTERISTICS OF THE EVALUATION TEST SUITE.

Fig. 10. Bug detections. We configured CMPs with RMO, TSO, and SC
consistency models. We ran our experiments by injecting one bug at a time
in each configuration and running our ten tests. We report the number of tests
where the injected bug was detected. The store order checker detects bugs
that manifest as incorrect store serializations. The cycle detector constructs a
memory access graph and detects bugs that manifest as cycles.

TABLE II
INJECTED BUGS.

logic while the global bugs were injected in the memory
subsystem.

B. Evaluating Bug Detection Capability

We investigated the capability of our mechanism to detect a
sample set of local and global ordering violations. In Fig. 10,
we show a summary of bug detection results for all the bugs
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(a) (b) (c)

Fig. 11. Effect of increasing log storage size. (a) Number of epochs required to complete execution decreases with increasing storage. This also reduces
the total execution slowdown caused by the reduced cache capacity and the phase switching overheads. (b) Sizes of the constructed access graphs appear to
increase linearly with increasing log storage size. (c) Total graph analysis times (sums of analysis times for each epoch) are minimally affected by increasing
log size.

and memory consistency models investigated. In these exper-
iments, our solution was configured to use 16 kB per core for
log storage. Each bar in the graph indicates the number of tests,
out of a total of 10, that exposed a bug manifestation which
was detected either as an illegal store ordering (shown in light
blue) or as a cycle in the memory access graph (shown in pur-
ple). Red cross marks are used for bugs that were not detected
by our solution. Note that our solution constructs a graph and
performs cycle detection only if a bug is not detected by the
store order checker, as illustrated in Fig. 7.

We observe that, with the exception of two bugs, our solu-
tion detects the injected bugs for more than 80% of the test
cases. For the bad-fence-timing bug to manifest, a memory
operation must be dispatched on the same cycle as a fence
instruction restricting its ordering. This bug is a rarely occur-
ring event in our RMO configurations. Our TSO and SC
configurations are not affected, since ordering rules are implic-
itly enforced without the need for fence instructions. Note that
the bad-order-* bugs affect both the implicit ordering con-
straints in TSO and SC, and the explicit fence constraints
in RMO. As discussed in Section VI, our solution does not
address local data dependency violations. Therefore, the data-
dep-violated bug, which affects intrathread data dependencies,
is never detected by our system. For the remaining cases, the
bug manifestation did not create a cycle in the memory access
graph for some of the test cases. This situation arises when
none of the other cores execute memory instructions that allow
them to observe the wrong ordering in the affected core.

Our store order checker is able to detect global ordering
violations that result in illegal serialization of stores to a sin-
gle cache line. It, therefore, misses the nonatomic-store and
silent-owner bugs that do not manifest as incorrect store seri-
alizations. However, these bugs still produce cycles in the
memory access graph.

C. Evaluating Log Storage Sizes

We designed our system so that a single log entry for a
memory operation requires 10 bytes (16 bits for the store
counter, 20 bits for the sequence identifier, 2 bits for the
request type, 42 bits for the physical line address). This config-
uration was found to be more than sufficient even for our most

demanding tests. To study the impact of log storage size, we
created 8 L1 data cache configurations, simulating 1–8 ways
dedicated for log storage. The data arrays for a single cache
way provide us with up to 4 kB storage, allowing us to store up
to 409 entries per cache way. For each configuration, test-case
and consistency model combination, we ran two experiments
allowing us to investigate log sizes ranging from 2 to 16 kB
per core. The logs collected were then analyzed by our single-
threaded analysis algorithm running on a host with a 2.80 GHz
Intel Core i7-930 CPU and a 1066 MHz DDR3 memory.

Fig. 11 summarizes the impacts and computation demands
of our solution as a function of log storage size, for our RMO
configurations. In Fig. 11(a), we observe the impact of log
storage size on the total test execution time, for the test case
exhibiting the worst-case execution time. Note that the total
execution time here is the sum of the test program execution
times for all epochs and does not account for the time required
to aggregate and analyze the logs. We present the slowdown
in execution time relative to test execution on a configuration
where our solution is completely disabled. This slowdown is
due to the following reasons: 1) by reserving a portion of
the L1 data caches for log storage, we reduce the effective
cache capacity that the test program can utilize, potentially
resulting in increased L1 capacity misses. We do not observe
any significant changes in miss rates for the test programs in
our experiments and 2) at the end of each program execution
phase in an epoch, the system waits for all pending operations
to drain before proceeding to the next phase. This per-epoch
drain time is an overhead that is independent of log storage
size and thus remains almost constant across all epochs and
configurations. The total overhead for an execution is the sum
of these drain times and increases with increasing number of
epochs. Note that the number of epochs is a function of log
storage size—the larger our log storage size, the fewer our
epochs.

For each test program, we identified the largest observed
graph size under the different log storage configurations; graph
size is the sum of the number of vertices and edges. We
observed that the worst-case graph size increases roughly lin-
early with increasing log storage size for all test programs. The
synch40 test program exhibits the maximum worst-case graph
size for all log storage sizes while the low-sharing test program
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TABLE III
MEMORY ACCESS GRAPH CASE STUDY.

exhibits the minimum. Fig. 11(b) presents the results for the
average of all test cases, synch40 and low-sharing. It is worth
noting that the per-epoch graph size is also dependent on the
consistency model, the frequency of fence instructions (if any),
and the amount of data sharing between the multiple interact-
ing threads. These results are from multiple synthetic tests
of varying characteristics running on a configuration with the
RMO consistency model. Real-world applications would gen-
erate far smaller graphs due to limited interthread interactions
and far fewer fence instructions.

Fig. 11(c) summarizes the sum of per-epoch graph analysis
times for synch40, low-sharing, and the average of all test
programs. Even though a larger log storage size results in
larger graphs—hence larger graph analysis times per epoch—
there are fewer epochs to analyze. Therefore, the total analysis
time changes fairly slowly with increasing log storage size. In
fact, the maximum increase we observe for an 800% increase
in per-core log storage size (from 2 to 16 kB) is 55% for the
low-sharing test program.

Table III provides a detailed look into a memory access
graph constructed from one execution epoch of the synch40
test program. The system was configured with the RMO con-
sistency model, 16 kB of per-core log storage and had the
bad-order-LD bug injected. The resulting graph had a total of
26 563 vertices and 316 271 edges. The bug manifested as a
cycle in this graph spanning only four memory accesses from
two cores, reading and writing to two memory locations.

D. Hardware Overheads

Our solution adds a modest amount of hardware overhead.
This overhead is mainly due to the extra storage required to
track information for in-flight memory operations. A 20 bit
sequence identifier register and its associated retirement reg-
ister are added to each core. Each entry in the load and store
queues is increased by 20 bits to hold the sequence identi-
fier for in-flight memory operations. Assuming a size of 32
entries for both the load and store queues, the total overhead
due to this augmentation becomes 160 bytes. The log-delay
buffer needs to buffer 10 bytes of information per entry. If
we design our log-delay buffer to hold as many entries as
the load queue, the store queue, and the post-retirement store
buffer (assumed to be 16 entries), we have an overhead of
800 bytes. The overall per-core storage overhead of our solu-
tion is then 965 bytes, which is less than 72% of the size of
the Intel Haswell physical register file [16].

The hardware modifications we introduce are not on the
critical computation paths, as all of the control logic we add
operates in parallel with the normal processor paths. Each
of our additions interferes with normal processor paths in
two places: 1) when sampling signals from the normal paths
and 2) when driving multiplexers that choose between our
control/data and normal processor control/data. For the lat-
ter, we would add at most two NAND gates (approximately a
50 ps delay at 22 nm) to the normal processor path, which is
hardly sufficient to make a noncritical path critical. The former
can increase capacitive loading on the outputs of some gates.
However, we can use sleep transistors to disconnect our solu-
tion from the power rails, effectively eliminating the capacitive
load during normal operation.

VIII. RELATED WORK

When verifying a shared-memory multiprocessor, a pre-
cise understanding of its consistency model is required.
Lamport formalized SC in [5]. Since then, several consistency
models have been proposed with the intention of allowing
optimized hardware implementations and/or improving the
programmability of shared-memory multiprocessors [4], [17].
Several works attempt to analyze and formalize various
memory consistency models implemented by modern shared-
memory multiprocessors [10], [18]–[20]. Special programs
known as “litmus tests” have been used to systematically
compare and contrast between multiple memory consistency
models [21], [22].

A directed graph constructed from the dynamic instruction
instances in a multithreaded execution can be used to ana-
lyze the performance and correctness of executions [3], [9].
Researchers have proposed verification solutions that leverage
the property that an ordering violation manifests as a cycle in
such a graph. TSOtool [8] is a software-based approach that
constructs a graph from program order and data dependen-
cies captured from pseudo-randomly generated test programs.
To capture data dependencies, these programs are gener-
ated with unique store values and special code to observe
loaded values. Roy et al. [11] used an approach similar to
TSOtool. Chen et al. [2] augmented a shared-memory mul-
tiprocessor with hardware to capture and validate memory
operation ordering. DACOTA [7] is post-silicon solution that
captures memory operation ordering in hardware by repurpos-
ing existing resources and performs graph construction and
analysis using software running on the multiprocessor under
verification.

Other researchers have proposed solutions that do not rely
on graph analysis to verify the correctness of shared-memory
multiprocessors. Lin et al. [23] inserted operations in multi-
threaded test programs that check the correctness of values
loaded from memory. Meixner and Sorin [24] conquered the
memory consistency verification challenge by identifying three
invariants and designing hardware checkers for each.

IX. CONCLUSION

This paper presents a novel shared-memory interaction
verification solution for accelerated (emulated) simulation
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and post-silicon validation. When enabled, our solution
tracks information about issued memory operations and fence
instructions in hardware, periodically aggregating this infor-
mation to perform a software-based analysis. The analysis
algorithm is implemented purely in software and can be run
anywhere, giving the verification team the flexibility of choos-
ing the most efficient alternative. In addition to its effectiveness
in detecting subtle shared-memory interaction ordering viola-
tions, our solution can enhance the debugging effort through
the information it collects. The hardware components of our
solution can be completely disabled before shipment, leaving
no impact on the end user.
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