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ABSTRACT
Silicon devices are becoming less and less reliable as technology
moves to smaller feature sizes. As a result, digital systems are
increasingly likely to experience permanent failures during their life-
time. To overcome this problem, networks-on-chip (NoCs) should
be designed to, not only fulfill performance requirements, but also be
robust to many fault occurrences. This paper proposes a fault- and
application-aware routing framework called FATE: it leverages the
diversity of communication patterns in applications for highly faulty
NoCs to reduce congestion during execution. To this end, FATE esti-
mates routing demands in applications to balance traffic load among
the available resources. We propose a set of novel route-enabling
rules that greatly reduce the search for deadlock-free, maximally-
connected routes for any faulty 2D mesh topology, by preventing
early on the exploration of routing configuration options that lead
eventually to unviable solutions. Our experimental results show a
33% improvement on average saturation throughput for synthetic traf-
fic patterns, and a 59% improvement on average packet latency for
SPLASH-2 benchmarks, over state-of-the-art fault-tolerant solutions.
The FATE approach is also beneficial in the complete absence of
faults: indeed, it outperforms prior fully-adaptive routing techniques
by improving the saturation throughput by up to 33%.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiprocessors—Interconnec-
tion architectures; B.8.1 [Performance and Reliability]: Reliabil-
ity, Testing, and Fault-Tolerance

General Terms
Reliability, Performance, Algorithms, Design

Keywords
Network-on-Chip, Fault-Tolerance, Adaptive Routing

1. INTRODUCTION
Advances in semiconductor fabrication technology have enabled

the design of modern chip multiprocessors (CMPs) and systems-on-
chip (SoCs) consisting of billions of transistors. They deploy tens,
or even hundreds, of communicating components and, therefore,
efficient on-chip communication is increasingly becoming a critical
design bottleneck. Networks-on-chip (NoCs) are a promising inter-
connect solution because they provide massively concurrent, scalable
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Figure 1: Traffic-aware routing restrictions. (a) The normalized traffic
pattern for a portion of lu_con [25] shows that the largest fraction of traffic is
between nodes 0-4 and 8. (b) When selecting the routing function 1, which
forbids the north-east turns at node 3, 4, 6 and 7, there are only two allowed
turns to cross the mid-diagonal line. (c) In contrast, the placement of routing
restrictions as in the routing function 2 allows four distinct turns across the
mid-diagonal.

and power-efficient communication. However, the increasing suscep-
tibility to faults of nano-scale semiconductor devices [13] makes it
extremely challenging to maintain the correctness and low-latency
characteristics that are desired for NoCs. To make matters worse,
NoCs constitute a single-point-of-failure for the entire system.

Fault-tolerant NoC routing solutions [1,14,20,21] tackle this chal-
lenge by leveraging their inherent routing flexibility. In other words,
the routing solutions react to faults by limiting communication to flow
only along fault-free paths. In this context, topology-agnostic rout-
ing algorithms [10,22,23] offer highly flexible routing, preserving
network connectivity even in the presence of many faults. Nonethe-
less, they often lead to severe performance degradation after only a
few faults, making the continued deployment of the chip impracti-
cal. For example, in [20], the throughput of an 8×8 mesh network
drops by over 20% after only 10 faults. This steep loss is mainly
due to increased traffic congestion on the remaining healthy paths.
Thus, runtime-management of traffic flow has a critical impact on
the performance of faulty networks.

Adaptive routing techniques to manage traffic congestion have
been extensively investigated [2,12,17,19]. They mitigate interfer-
ence among packets by routing some of them through underutilized
network links. Prior adaptive routing solutions can be partitioned
in two main groups: one group includes those optimized for regular
topologies (e.g., mesh) [12,17], while the other targets very general,
topology-agnostic solutions [7,8,19]. Unfortunately, the former is in-
adequate to tackle faulty regular networks (which reduce to irregular
topologies), while the latter entails almost always extremely complex
and resource-demanding computations.

CMP applications [5,25] exhibit communication patterns [4] where
most packets flow among only a subset of the NoC nodes. This as-
pect could be leveraged to focus the limited routing options available
towards a handful of high-traffic communication paths. This is the
key observation that led to our solution: if the high-traffic communi-
cation patterns in a faulty NoC are known (or can be estimated), then
we can select the routing function so as to provide both deadlock



freedom and maximum path diversity (and thus low congestion)
among the high-traffic nodes. In other words, the routing function
eliminates only underutilized routes. Consequently, we can provide
high-bandwidth, low-latency communication even in faulty networks.
Consider, as an example, the traffic pattern shown for a portion of
the lu_con benchmark from SPLASH-2 [25] in Figure 1a, where the
majority of the packets are transferred between nodes 0-4 and node
8. Using the route restrictions shown in Figure 1b to break deadlock
cycles, there are only two turns that allow transferring traffic from
the upper-left region of the network to its lower-right region. In
contrast, the route restrictions shown in Figure 1c allow four distinct
turns. As a result, the routing solution of Figure 1c is less likely
to cause congestion. Application-aware solutions of this type have
been investigated in [7,8,16,19,24], but they often entail high routing
computation overheads.
Contributions. Our proposed solution is called FATE, Fault- and
Application-aware Turn model Extension. It manages congestion
in faulty networks by selecting routing restrictions appropriately.
Specifically, restriction placements are optimized to the application’s
network traffic. We attain this goal by introducing a set of turn-
enabling rules that allow to quickly prune the search of deadlock-
free routes in faulty network topologies. We leverage these rules to
provide adaptive, application-aware routes for packets flowing in the
network, maximizing the number of distinct available routing paths.
The rules can be applied to any irregular topology derived from a 2D
mesh network by injecting faults. Unlike previous topology-agnostic
routing solutions, FATE takes into consideration bandwidth demands,
in addition to fault locations, when placing the turn restrictions.
Moreover, it also keeps its computation lightweight, when compared
to existing application-aware solutions. In summary, we make the
following contributions:
•We present a novel, fault- and application-aware routing restriction
placement solution, called FATE. FATE improves the performance
of faulty 2D mesh networks by leveraging the application’s commu-
nication patterns.
•We demonstrate a method to quickly prune the exploration of viable
routes in faulty networks, in order to consider only deadlock-free
options, and we reduce the number of routes evaluated by two orders
of magnitude over prior application-aware solutions.

2. RELATED WORK
Fault-tolerant routing. Fault-tolerant, deadlock-free routing solu-
tions have been extensively investigated in the past. Glass and Ni
propose three turn-models that provide adaptive, fault-tolerant rout-
ing [11]. Note, however, that their fault-tolerance is limited to only a
few faults [21]. In contrast, Ariadne [1], uDIREC [20], CBCG [21]
and Hermes [14] put no constraints on the number and location of
faults, and hence, they are more reliable. While these latter works
provide deadlock-free, maximally-connected routes, none of them
take traffic flow into consideration to optimize for throughput.

Similar to the above on-chip solutions, in the off-chip network do-
main, topology-agnostic routing algorithms [10,22,23] focus mostly
on placing routing restrictions using topological characteristics, while
ignoring traffic flow during the placement. On the other hand, we
exploit communication patterns to find better routing restrictions.
Application-aware routing. Application-aware routing solutions
tune the routing function to traffic flow. APSRA [19] strives to meet
the bandwidth requirement of an application, while achieving dead-
lock freedom by breaking cyclic dependencies. However, deploying
this solution to identify optimal routes in faulty networks has an
extremely high computational cost. Addressing APSRA’s limitation,
ACES [8] investigates a quick application-aware routing heuristic in
irregular topologies by partitioning VCs to break cycles. LBDRx [7]
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Figure 2: Overview of FATE. FATE is triggered by either a new application
launch or a new fault occurrence. It leverages a traffic load estimator to
compute a deadlock-free routing function that minimizes congestion. The
new routing function is then stored at the routers.

develops a resource-mapping tool and a routing algorithm for SoC
applications, while reducing routing overheads by leveraging logic-
based routing instead of routing tables. Note that all of the above
solutions use adaptive routing to mitigate congestion. In contrast,
BSOR [16] selects load-balanced, oblivious paths via either mixed
integer linear programming (MILP) or Dijkstra’s shortest path algo-
rithm to approximate optimally balanced paths. Similarly, ETM [24]
reduces the computation requirements of the MILP problem with the
aid of a genetic algorithm. These latter two oblivious routing solu-
tions, however, suffer from low performance as they do not manage
runtime congestions well. Although all of these application-aware
solutions can be deployed in faulty networks, they often require
either intractable computation or extra hardware.

Application-aware routing techniques can manage congestion
more efficiently when employing runtime congestion monitoring.
Various monitoring schemes have been explored in 2D mesh NoCs.
For example, DyXY [17] observes buffer occupancy in adjacent
routers, and then favors forwarding packets to routers with more
vacancies. NoP [2] and RCA [12] extend this idea by monitoring
congestions in routers farther away. All such solutions are fully-
adaptive, and thus, require dedicated VCs to guarantee deadlock
freedom, a costly endevour in area- and power- constrained NoCs.

3. OVERVIEW AND BACKGROUND
FATE is a software-based solution that generates a deadlock-free

routing function, while maximizing the number of distinct paths
available between nodes with high communication requirements, for
applications running on faulty 2D mesh networks. Figure 2 shows
how FATE operates: it is triggered by a new fault occurrence or an
application launch. It then uses the CMP’s idle cores to compute
a new routing function. If no idle core is available, the start of the
application may be delayed to compute the routing function, or a
prior, possibly non-optimal, function may be used, until a core be-
comes available. While finding optimal, deadlock-free routes is an
intractable problem [8,16,24], FATE’s efficient heuristic quickly dis-
covers a near-optimal routing function: it first computes the minimal
number of turn restrictions that must be placed in the network. This
value can be easily derived from the total number of cycles in the
topology. The construction is then based on an iterative exploration,
where turn restrictions are placed one at a time. After placing each
turn restriction, FATE deploys its turn-enabling rules (Section 4)
to enable turns that must be active in order to maintain connectiv-
ity in light of the most recent turn-restriction choice. Moreover, in
choosing the location of each new turn restriction, FATE leverages
traffic load estimates that it derives from the communication patterns
extracted via application analysis (Section 5). If a deadlocked or
disconnected routing configuration is encountered during the explo-
ration, FATE uses backtracking to broaden the search until it finds a



satisfiable solution. Finally, the network’s routers are re-programmed
using the new routing function.

FATE assumes that information about the application’s communi-
cation patterns is available: indeed, these can be observed in CMP
and SoC applications using runtime profiling, and then modeled
through Markov chains [3,4]. As in many fault-tolerant routing solu-
tions, we also assume that the NoC is equipped with a fault diagnosis
solution (e.g., switch-to-switch detection [18]). In addition, we as-
sume that our solution is deployed in systems where the OS is notified
of new fault detections and can launch FATE’s routing computation
software, updating routing tables accordingly. This assumption may
not hold in some systems. For those systems, FATE can be adopted
by deploying a dedicated network manager. In this setup, FATE
calculates in advance optimized routing functions for representative
communication patterns, and stores them in memory. At runtime,
the network manager evaluates current traffic patterns, and chooses
the best routing function by comparing against the patterns of the
stored ones.

3.1 Avoiding Deadlock by Removing Cyclic Re-
source Dependencies

Deadlock situations can happen when packets wait for each other
in a cyclic manner. Such situations can be avoided by breaking cyclic
resource dependencies [9], disabling at least one of the turns that
contribute to the cycle [11]. For instance, Figure 1b forbids the turn
0-3-4 so that packets’ routes do not include the sequence 0→3→4
or 4→3→0. This turn restriction breaks the cycle along nodes 0, 1,
4 and 3. Note that FATE uses bidirectional turn restrictions.

This deadlock-avoidance technique has been proposed in the past:
for instance, the turn models [11] forbid certain turns in 2D meshes
to break every possible cycle. For instance, the west-first turn model
disallows all turns towards the west direction, so that packets can
only go west at the beginning of their routing path. However, this
baseline turn model often fails to provide either deadlock freedom or
maximal connectivity in the presence of many faults [1,21].

A class of topology-agnostic routing algorithms, however, can
ensure both deadlock freedom and connectivity in any topology,
providing strong fault-tolerance capabilities [1,10,21,22,23]. For
instance, the up*/down* routing algorithm [1,22,23] builds a span-
ning tree of links. Links towards the root node are marked as up
links, while links towards the leaves are marked as down links [20].
The routing algorithm then disallows down-up turns: once a packet
takes a down link, it is not allowed to turn onto an up link. While
this restriction rule can be applied to any up*/down* tree in gen-
eral, the routing algorithm usually spans the tree in a fixed manner
(e.g., breadth-first [1,23] or depth-first [22]). Consequently, these
topology-agnostic approaches often provide limited options in the
placement of turn restrictions.

Application-specific routing solutions aim at offering full flexi-
bility in the turn-restriction placement [7,8,19]. They analyze an
application’s communication paths, and selectively remove some of
those paths until no cyclic resource dependency exists. As discussed
in [8], however, this type of approaches (e.g., [19]) scales poorly
with network size. [8] tries to overcome this scalability issue in two
steps. It first minimizes the number of cyclic dependencies, and then
uses VCs to break the remaining cycles. However, using VCs to
avoid deadlock is a costly option in resource-constrained NoCs. In
contrast, our approach does not require VCs for deadlock freedom,
and VC resources can be entirely dedicated to prioritize traffic or
reduce congestion.

4. FATE’S TURN-ENABLING RULES
This section discusses the rules that determine which turns must
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Figure 3: FATE’s turn-enabling rules. Whenever FATE selects a new turn
restriction, it can infer a number of other turns that should be enabled at
other locations to obtain an optimal routing function (minimal number of
disabled turns) faster. Basic rules (a) enable turns in adjacent locations, while
advanced rules (b) impact remote turn locations. In the diagram for Rules 2
and 5, we show a deadlock cycle that we would obtain if we did not enable
the turns indicated.

be enabled as a consequence of another turn being disabled. These
rules, grouped into basic and advanced, can be applied in any order,
and are illustrated in Figure 3. We first describe how the rules operate
in regular meshes, and then extend them to faulty topologies. Note
that our approach minimizes the number of turn restrictions, and thus
maximize cumulative bandwidth to all destinations, but it does not
necessarily enable minimal-length routes.

1) Basic rules identify which turns must be enabled because of a
turn restriction on the surrounding cycle, node and links, and they
are illustrated in Figure 3a.
Rule 1 (cycle) — Once a turn in a cycle is disabled, all other turns
in the same cycle should be enabled, so that all nodes in the cycle
can still communicate.
Rule 2 (node) — Once a turn in a node (router) is disabled, all
other turns insisting on the same node should be enabled.
Rule 3 (link) — Once a turn adjacent to a link is disabled, the turn
to the same link, on the opposite side with respect to this turn and
not insisting on the same router should be enabled.

In a fault-free mesh network, there is only one turn that should
be enabled for each link affected by a disabled turn as a result of
Rule 3. Note that Rules 2 and 3 are not necessary to guarantee the
connectivity of the network, but any violation of these rules would
lead to a superfluous number of turn disabling. For instance, if both
the turns 1-4-3 and 1-4-5 were disabled in the middle network of
Figure 3a, then the network would still allow a dependency along the
path 0→1→2→5→4→3→0 as shown in the figure (gray arrows),
and we would need to include an additional turn restriction to break
it. Similarly, with reference to the right network in Figure 3a, if turn
4-1-2 were disabled, a cyclic dependency would exist along the path
0→1→2→5→4→3→0.

2) Advanced rules force FATE to enable turns that are remote with
respect to the restricted turn. They allow to aggressively prune the
search space towards a solution with a minimal number of disabled
turns. Figure 3b illustrates the two rules below; we marked in red
the restricted turn, in teal the turns enabled by the basic rules, and in
purple the turns enabled by the advanced rule being illustrated.
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Figure 4: Extending turn-enabling rules to faulty topologies. The rules in
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For instance, (a) cycles must be recomputed in faulty regions, and (b) a turn
shared by convex- and concave-shaped cycles should be used to break only
one of the cycles. (c) A deadlock may occur when there is a path between
two nodes belonging to different cycles and both nodes are the one with the
disabled turn for its cycle.

Rule 4 (common link) — If a cycle has only two undecided turns
that share a common link, then all turns that are adjacent to that
link and lie outside the cycle, should be enabled. This rule can be
inferred from Rules 1 and 3. For a cycle with two undecided turns,
by Rule 1, one of the two should be disabled. If these two turns
are adjacent (i.e., sharing a link), disabling either of the two turns
will always involve the shared link. We apply Rule 3 to this link so
that we do not allow another cycle to also place its turn restriction
on this link. An example is shown on the left side of Figure 3b,
where the cycle 1-2-6-5 has two undecided turns after placing the
turn restriction at 1-5-4: the turns 1-2-6 and 2-6-5, sharing the link
2-6. This shared link is also adjacent to two other turns: 3-2-6 and
2-6-7 (both belong to the cycle 2-3-7-6), which should be enabled by
Rule 4. Note that Rule 4 can be applied to enable turns both on the
horizontal and vertical directions. Also, it can be applied iteratively,
to further reduce the disabled-turn-placement search space.
Rule 5 (opposite-corner turn) — If two turns are located on oppo-
site nodes in a cycle, and the two turns are not adjacent to any of the
cycle’s links, then only one of them can be disabled. We say that such
two turns are in opposite-corner locations. The reasoning behind this
rule can be understood by considering the example on the right part
of Figure 3b: if we had disabled both the opposite-corner turns 1-5-4
and 11-10-14, then we could no longer avoid a deadlock. Indeed, by
Rule 2, only two turns would remain undecided in the central cycle
(5-6-10-9): 5-6-10 and 5-9-10, and by Rule 1, we would have to
disable one of them. However, disabling either of these turns creates
a cyclic dependency that could lead to deadlock. As an example, the
figure shows the cyclic dependency we obtain if we disable turn 5-9-
10, as well as the two opposite-corner turns. Note that it is possible
to apply Rule 5 repeatedly by considering increasingly larger cycles.
For instance, the rule could be applied to the cycle 5-7-15-13, and
force the south-east turn on node 15 to be enabled (assuming that we
had a larger network where that turn existed).

4.1 Turn-enabling Rules in Faulty Topologies
Among the basic rules, Rule 1 is the one that is affected the most

by faults: cycles may become merged because of faults, as shown
in the example of Figure 4a (link 1-4 is faulty). In the figure, the
two cycles 0-1-4-3 and 1-2-5-4 no longer exist, and they are merged
in the cycle 0-1-2-5-4-3. Moreover, faulty networks may have both
concave and convex cycles (unlike fault-free mesh networks, which
have only convex cycles) and Rule 1 must be appropriately applied
in the case of concave cycles. When a turn is common to two cycles
(e.g., turn 3-4-1 in Figure 4b), then disabling that turn can only be
counted towards breaking one of the two cycles, not both.

Rules 2 and 3 remain unchanged for faulty topologies. Consider
link 3-4-5 in Figure 4a as an example: if we were to disable the turn
2-5-4, Rule 3 would require the turn 5-4-7 to be enabled.

In addition, we limit the application of Rule 4 to links contributing
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Figure 5: Link-load and turn-load estimation example. We compute traf-
fic load of links and turns using path diversity. (a) The path diversity is
calculated at each link considering fault locations and turn restrictions. (b)
The link load is computed by dividing its path diversity by the per-hop path
diversity. (c) The turn load is derived from the load of its input link and the
number of permissible outputs.

to cycles that have not been affected by faults. For instance, with
reference to the left network in Figure 3b, if the link 5-6 were to be
faulty, we would not apply Rule 4 to link 2-6, because it contributes
to a cycle that has been opened by a fault; but we would still apply
the rule to link 8-9. The reason we limit the application of Rule 4
is that it could become complex to identify which turns should be
enabled when a link spans multiple routers.

Finally, we simply apply Rule 5 as we described for regular
meshes. Applying this rule in faulty networks allows us to aggres-
sively prune the search for an optimal disabled-turn placement. How-
ever, some turns enabled are not necessarily causing deadlock in
faulty networks, and thus they should not be enabled. If the enabled
turns should have been disabled, our backtracking step (Section 5.3)
would correct the situation. To avoid the backtracking, it is also
possible to pre-emptively check whether a turn enabled via Rule
5 could lead to a deadlock configuration. Figure 4c shows how to
check deadlock for this purpose: when there are two distinct cycles
connected through a path starting at node 1 and ending at node 2,
we cannot disable both the turns indicated in the figure, because this
placement would enable the deadlock cycle shown in gray.

5. FATE ROUTING
In this section, we propose FATE’s heuristic algorithm to identify

a routing function with deadlock-free routing and minimal routing
restrictions. FATE relies on the information it receives about the ap-
plication’s communication patterns to strive to place turn restrictions
on low-traffic links. When the FATE algorithm begins, all turns are
undecided. Turn restrictions are then placed one at a time, starting
from the regions transferring the most traffic. Upon placing each
restriction, the turn-enabling rules are applied to enable the related
set of turns. This process is repeated until each turn is either enabled
or disabled.

To identify which turn to disable next, we first estimate the traffic
load on each link, turn and cycle. We then disable the turn that mini-
mally worsens the heaviest load-transferring link, choosing among
turns on the heaviest load-transferring cycle. The intuition behind
this choice is that we want to resolve the routing function first around
the regions (i.e., cycles) transferring the most traffic, so that we have
plenty of flexibility in our choices. Within each region, we want to
disable the turn that minimally affects the congestion in the hotspot.

5.1 Link, Turn and Cycle Load Estimates
To estimate the load on each network’s link, turn and cycle, we

consider one source-destination pair provided by the application at a
time. For each pair, we compute all the possible paths that packets
can take from source to destination, and we then derive the fraction
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pairs. (a) Computation of turn loads. (b) Communication weights and cycle loads indicate that 10-9-13 is the most promising turn-disabling location. (c) Eight
turns are then enabled by our turn-enabling rules. (d) Loads computation for the second iteration.

of traffic that would go through each link. The computation of all
the loads proceeds with the four steps below (see Figure 5).
Step 1 — Compute path diversity. We calculate the number of
different routes (i.e., path diversity) to reach each link from the
source node. For instance, in Figure 5a, the east link of node 9 can
be used by two different routes from the node 12: 12→8→9 and
12→13→9, while only one route can use the north link of node 9:
12→13→9. In this process, we only allow minimal-length routes
within the limits of the turn restrictions that are already in place.
Step 2 — Compute link-load estimates. We now use the results of
Step 1 to estimate the load on each link based on the path diversity
available. We calculate the total path diversity at each hop from
the source (as illustrated in Figure 5a), and divide the link’s path
diversity by the total diversity. Figure 5b shows the computation for
all the links associated with node 9.
Step 3 — Compute turn-load estimates. To estimate the load at
each turn, we divide the input load from the source direction of the
turn by the number of output links allowed for that source. Figure 5c
shows the computation for all the turns at node 9.
Step 4 — Compute cycle-load estimates. For each cycle, the load
is computed by simply summing the loads on all the turns in the
cycle.

5.2 FATE Route-calculation Algorithm
Once all load estimates have been computed, we can apply the

FATE routing algorithm, as illustrated in Figure 6. Note that we
weigh the load estimates by multiplying each estimate by the traffic
weight associated to its source-destination pair. The algorithm starts
by selecting a turn to disable, choosing the turn with the lightest
impact on the heaviest link load, among those in the highest-load
cycle (lines 2-4). Once the turn to be disabled is selected, we apply
the turn-enabling rules to enable as many other turns as possible
(line 5). If the set of turns enabled/disabled leads to a deadlock
or a disconnected network (line 6), we backtrack, and update the
list of conflicting selections (line 8). Our backtracking algorithm is
discussed in more detail in the next subsection.

In designing our routing algorithm, we evaluated a few other
strategies to select the next turn to be disabled: beside the one just

1: repeat until there is no undecided turn
2: compute_link,turn,cycle_loads()
3: cycle = cycle_with_heaviest_load()
4: disabled_turn = turn_with_smallest_link_load_increase(cycle)
5: enabled_turns = apply_turn_enabling_rules(disabled_turn)
6: if( not (check_deadlock() or check_disconnected()) )
7: disable(disabled_turn), enable(enabled_turns)
8: else update_conflict_history(), backtrack()

Figure 6: FATE routing algorithm

described, we also tried (1) the turn with the absolute lowest load
in the network, (2) the turn with the lowest load among those in the
highest-load cycle, and (3) the turn connected with the highest-load
link in the highest-load cycle. Experimentally, we found that those
strategies performed slightly worse than the one we described.

Figure 7 illustrates the algorithm with an example. The application
provided two communication pairs: 0→15 (shown in orange), with a
weight of 8, and 12→3 (shown in blue), with a weight of 20. We first
compute link and turn loads, as shown in Figure 7a. Then we apply
the weights and compute cycle loads in Figure 7b. Cycle 9-10-14-13
is the one with the highest load. By analyzing each turn, one at a
time, we find that the one that entails the smallest link-load increase
is 10-9-13, so we disable it. Figure 7c shows the network after the
application of the FATE’s turn-enabling rules. At this point, 21 turns
are left undecided, thus we start a second iteration by updating the
link, turn and cycle load estimates as shown in Figure 7d.

5.3 Avoiding Illegal Routing Function (Back-
tracking)

As mentioned earlier, the FATE routing algorithm may require
backtracking if the set of turn restrictions in place allows for deadlock
(usually along a complex cycle) or disconnects the network. These
issues may arise because the FATE’s rules do not take into account all
the implications of a turn restriction, but only the simpler ones, so that
their application is computationally cheap. When these situations
occurs, we record the location of all restrictions and we add the
current set of turn-disabling placements to a conflict history, which
we use to avoid repeating the same configurations. While the majority
of topologies and communication patterns in our experiments have
successfully completed with only a small amount of backtracking,
we found a few cases (less than 1%) that result in more than 1,000
iterations to finish. We believe these situations occurred because of
our simplistic backtracking model that rolls back to the most recent
decision, instead of a more intricate model that selects a promising
roll-back point. This limitation is partially contained by a random
restart technique that we implemented, similar to that in some SAT
solvers. Upon a restart trigger, previous decisions are forgotten, and
a new initial turn location is selected. We set the restart threshold to
1,000 backtracking events in our experiments.

6. EXPERIMENTAL EVALUATION
We evaluated FATE with a cycle-accurate NoC simulator [15]

modeling an 8×8 2D mesh NoC. The network’s 3-stage routers are
capable of look-ahead routing and speculative switch allocation (i.e.,
switch allocation is concurrent with VC allocation). Each input port
within a router contains 2 VCs per protocol class, and 5 flits per VC,
unless otherwise noted. We utilized 3 protocol classes to support the



MESI cache coherence protocol when running SPLASH-2 bench-
marks, and a single protocol class when evaluating synthetic traffic
patterns. We apply the FATE algorithm to place turn restrictions, then
deploy a minimal adaptive routing approach where packets choose at
each router which direction to take among those enabled. In addition,
we deploy a local congestion monitoring scheme based on the credit
count, so that output channels towards non-congested input buffers
are favored.

We analyzed FATE’s performance both on fault-free and faulty 2D
mesh networks, injecting a varying number of link faults in the latter
scenario. Specifically, we experimented with configurations contain-
ing 1 (1%), 3 (3%), 6 (5%), 11 (10%) and 17 (15%) faulty links, and
averaged the results over 10 different random sets of fault placements
for each data point. Note that we do not consider configurations that
lead to disconnected nodes, as this situation would require thread mi-
gration support when running parallel benchmarks. This requirement,
in turn, would make it difficult to reason about performance scaling
due to a different number of active cores in different configurations.
Even though we model only link failures, FATE is equally effective
in tackling routers’ logic failures by mapping such failures to one
or more links connected to the failed routers [20]. Please note that
we evaluated our solution under various corner-case topologies to
take into account unpredictability of fault locations. These random
topologies include, for instance, nodes with only a single surviving
link, cycles consisting of more than 10 nodes, etc.

We evaluated our testbed with both synthetic traffic [15] and traces
from the SPLASH-2 benchmark suite [25]. We used 5 different
synthetic patterns: bit complement (bitcomp), bit reversal (bitrev),
shuffle (shuffle), transpose (transpose) and uniform random (uni-
form). Our synthetic traffic consists of a mix of equal amounts of
1- and 5-flit packets. The 11 SPLASH-2 traces we experimented
with, on the other hand, were obtained from full-system simulation
using gem5 [6] in the syscall emulation mode. Our gem5 model was
configured as shown in Table 1. The traces were collected for 10
million cycles after spawning threads and initializing caches. The
traffic weights were calculated by counting the number of flits per
each source-destination pair. The latency values were capped at
1,000 cycles during the trace-based simulation to avoid extremely
large latencies due to network saturation. We did not evaluate FATE
with the PARSEC benchmark suite, because PARSEC is known to
underutilize the network, and its traffic is more evenly-distributed
than SPLASH-2. We expect PARSEC to yield results similar to those
of uniform.

Table 1: gem5 configuration for SPLASH-2 traces
core 64 cores, x86 ISA, 2GHz, out-of-order, 8-wide issue

cache coherence MESI, CMP directory, 64-byte block
network 8×8 mesh, 3 classes/port, 2 VCs/class, 5 flits/VC
L1 cache private, 16KB inst. + 16KB data, 4-way set, 3-cycle lat.
L2 cache shared, distributed, 256KB/node, 16-way set, 15-cycle lat.
memory 1GB/controller; 1 controller at each mesh corner

6.1 Performance on Faulty Networks
We compared our solution against fault-tolerant, application-oblivious

routing solutions that are based on the construction of spanning trees:
up*/down* with breadth-first search (BFS) [1,23], and up*/down*
with depth-first search (DFS) [22]. For BFS, we experimented with
4 different configurations: each configuration placed the root node
at a different corner of the mesh. Then we calculated the geometric
mean of the results obtained over all four configurations. For DFS,
we implemented the two heuristics from [22]: Ht1 for selecting the
root node, and Fv for choosing a tree-spanning direction.

We also compared our solution against two existing application-
aware routing solutions: Application-Specific Routing Algorithm
(APSRA) [19] and Bandwidth-Sensitive Oblivious Routing (BSOR)
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Figure 8: Saturation throughput for synthetic traffic patterns over vari-
ous fault rates and traffic patterns. FATE provides 10%-33% better satu-
ration throughput over BFS, and up to 9% better throughput over APSRA.

[16]. Both algorithms are modified for distributed routing. For
APSRA, we applied APSRA’s turn cost calculation instead of our
load estimation method in Section 5.1. For BSOR, we first placed
turn restrictions according to the negative-first turn model, then
applied the Dijkstra’s shortest path algorithm. We tried four different
turn restrictions, each with four rotations. The algorithm is then
applied iteratively by reducing the link capacity to aggressively
optimize for congested links, as shown in [16].

Figure 8 reports the average saturation throughput (i.e., when
latency reaches 3 times the zero-load latency) across various fault
rates and traffic patterns. In the left half of the figure, we observe
that the performance of our scheme degrades more gracefully than
both application-oblivious spanning-tree solutions (BFS and DFS) as
faults increase. FATE achieves a 10% improvement over BFS when
there is only one faulty link. Although the network at this low fault
rate maintains an almost-regular topology, FATE still offers a better
throughput than BFS by leveraging distinct traffic patterns. FATE’s
improvement over BFS increases to 33% when 15% of the links are
faulty. At this high fault rate, the spanning-tree solutions often fail
to ensure minimal routing restrictions, leading to high performance
loss.

FATE also achieves consistently higher throughput at all fault rates
than both APSRA and BSOR. While it shows comparable throughput
with APSRA at low fault rates, FATE provides a 9% higher through-
put at the 15% faulty-link rate. We believe that this is because
APSRA’s traffic estimation becomes inaccurate at high fault rates,
as the estimation relies on the path diversity between sources and
destinations using source routing. In contrast, FATE estimates traffic
load by considering hop-by-hop routing-decision using distributed
routing. Finally, BSOR provides lower throughput than both APSRA
and FATE, most probably because it lacks a dynamic approach to
congestion management.

FATE also performs better than BFS across various traffic patterns
at the 15% faulty-link rates, as shown in the right half of Figure 8.
We observe that traffic patterns where packets utilize a few turns
more frequently (e.g., transpose and bitrev) are those that benefit the
most from FATE. Our solution provides at least at-par performance
in the patterns where turns are used evenly (e.g., uniform).

Figure 9 reports the average packet latency from our trace-driven
SPLASH-2 simulations across various fault rates and benchmarks.
As shown in the left half of the figure, FATE experiences negligible
latency increase up to the 5% faulty-link rate. Beyond that point,
the latency increase is more significant. However, note that how the
latency increase begins at lower fault rates: it is much steeper in
BFS and DFS routing. This dramatic increase comes from the earlier
saturation effect in resource-constrained faulty networks. Note also
that in networks with only one faulty link, FATE performs worse
than other solutions. This result is due to the high-impact contribu-
tion to the average by ocean_con, which exhibits phases with very
high injection rates for short time periods. These phases are not
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Figure 9: Packet latency for SPLASH-2 traces over various fault rates
and benchmarks. Except for the 1-fault case, FATE shows 18%-59% im-
provements in packet latency over BFS, and up to a 13% improvement over
APSRA.

representative of the entire benchmark execution, and hence our solu-
tion is unable to optimize for them. In addition, FATE attains lower
latency than APSRA at all fault rates except one faulty link. The two
solutions show comparable latency until the 5% faulty-link rate. At
the 15% rate, however, FATE shows 13% lower packet latency than
APSRA. FATE also outperforms BSOR at all fault rates.

Finally, we show results for five selected benchmarks at the 15%
faulty-link rate on the right side of Figure 9. FATE consistently
provides much lower latency than BFS and DFS. For instance, when
running fft, each node accesses frequently memory nodes located
at the corners of the mesh, and communicates with a few other
nodes. As a result, FATE enables more routes among these frequently
communicating nodes. On the other hand, both BFS and DFS are
application-oblivious, so their disabled-turn placements are not so
favorable to those nodes.

6.2 Performance on Fault-free Networks
We compared FATE’s fault-free operation and congestion man-

agement capabilities against 3 fully-adaptive routing techniques:
DyXY [17], NoP [2] and RCA1D [12]. For those solutions, we
implemented deadlock detection based on timeout, and reserved one
VC for deadlock recovery. We also considered prior fault-tolerant
solutions and application-aware solutions for fault-free networks.

Figure 10 shows the average saturation throughput of FATE against
all the solutions above across 3 different VC settings (3, 4 and 6
VCs), and synthetic traffic patterns. As shown in the left part of the
figure, FATE outperforms DOR: FATE achieves a 4.5% improvement
when using 3 VCs, and up to 23% with 6 VCs. FATE’s advantage
grows with the number of VCs since it manages resources more
efficiently than oblivious routing techniques.

However, the reverse trend holds when FATE is compared against
fully-adaptive solutions, i.e., DyXY, NoP and RCA1D. FATE’s
improvement over the fully-adaptive solutions diminishes as the
number of VCs increases, because the cost of reserved VCs in the
fully-adaptive solutions is amortized when more VCs per class are
available. For networks with only 3 VCs, FATE shows a 33% im-
provement over DyXY and a 21% improvement over RCA1D. This
advantage is lost at 4 VCs, while at 6 VCs FATE provides 13% lower
throughput than RCA1D. In the area- and power-constrained on-chip
environment, NoCs with fewer VCs are more prominent, and hence
our solution is widely applicable.

We further analyze FATE’s fault-free performance by considering
various synthetic traffic patterns. The right part of Figure 10 shows
the average saturation throughput for networks with 3 VCs under
various traffic patterns. Our solution outperforms the fully-adaptive
solutions for most patterns in this setting: the exceptions are bitcomp
and uniform, where DOR is the best performer. Considering the
benefits of FATE for faulty networks (Section 6.1), we believe that a
slight performance loss on fault-free networks for rare adverse traffic
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Figure 10: Saturation throughput for synthetic traffic patterns over a
varying number of VCs and traffic patterns.

patterns is acceptable.
Note that in our experiments, FATE leverages local congestion

information to adaptively choose better routes at runtime. However,
it has been shown in prior research [2,12] that global network-level
congestion monitoring schemes deliver superior performance. In
future work, we plan to evaluate the benefits of applying some of
these schemes to FATE.

6.3 Overheads
Routing-function computation overhead. We evaluated the over-
head of computing the routing function, and compared our findings
against APSRA [19]. Table 2 reports the average computation time
to derive a routing function, for both FATE and APSRA. In eval-
uating computation time, we only included the total time spent in
estimating traffic load (Section 5.1 for FATE), since that is by far
the major contributor to the algorithm’s computation time, for both
ASPRA and FATE. The other activities contributing to the routing
function computation (e.g., backtracking, deadlock checking, etc.)
are minor contributors and identical for both solutions. Execution
times were measured by averaging over 5 executions for each routing
function computation on an Intel Xeon E5520. Overall, it can be
noted that FATE is a significantly faster solution than APSRA.

In the right portion of Table 2, we also compare the number of at-
tempts of turn-disabling placement, averaged over 10 different faulty
topologies and 16 traffic weights (5 synthetic traffic patterns and
11 SPLASH-2 benchmark traces) at each fault rate, in order to gain
insights on the gap between the computation of FATE and APSRA.
This value is the cumulative sum of each turn-disabling placement
attempt, including all the placements that had to be removed be-
cause they led to a conflict or deadlock. Note that FATE’s number
of attempts is minuscule compared to APSRA: this result comes
from our turn-enabling rules, which greatly prune the search space
for an optimal set of turn-disabling placements. In many situations,
APSRA’s routing algorithm made extremely large turn-disabling
placement attempts before reaching a stable solution. We capped
those algorithm’s runs at 200,000 placement attempts and we report
the fraction of occurrences where we reached the cap value. Note
that FATE never had a case that required 200k placement attempts,
while APSRA had a noticeable fraction of algorithm’s runs that went
over the limit.

Table 2: computation overhead for FATE and APSRA
average time average number of % runs reaching

(sec) placements attempted 200k cap
APSRA FATE APSRA FATE APSRA FATE

fault-free

>500

3.61 71,321 117 19% 0%
1 fault 3.27 94,639 107 31% 0%

3% faults 3.29 107,956 107 41% 0%
5% faults 3.21 120,877 105 48% 0%

10% faults 3.62 151,802 118 69% 0%
15% faults 2.93 159,667 96 74% 0%



Although FATE requires much less computation than existing
application-aware routing, it may still not be sufficiently fast because
of its software-based computation. In those situations where recovery
performance is of essence, alternative hardware-only solutions (e.g.
retransmission [18] and BFS-based routing [1]) can be deployed
concurrently with FATE, while it executes in software. Upon FATE’s
completion, its solution can replace the interim recovery solution.
Area and power overhead. FATE requires a reconfigurable routing
infrastructure (e.g., routing tables) to recompute the routing function
at runtime. We deploy routing tables as shown in [1,16], one for
each router. Each table contains N entries where N is the number of
nodes, and each entry contains four directional 2-bit fields (8 bits per
entry). The 2-bit fields are used to prioritize valid output directions
by using the number of hops to the destination. In addition, we
utilize four routing-restriction bits (similar to [7]) to avoid making
invalid decisions at each router. Thus, to store the computed routing
function in memory, we require N×(N×8+4) bits per application of
the FATE algorithm. Moreover, we use the number of used credits as
our congestion metric: this is often already available in routers and
comes at no extra cost.

We evaluated the area overhead of routing tables and route-computation
logic, targeting the Nangate 45nm library using Synopsys DC. The
micro-architecture of a baseline router is configured as specified in
Table 1 with an operating frequency of 400MHz. With this configura-
tion, our routing computation adds approximately 6% area overhead,
mostly for the routing table. Note that the other fault-tolerant, adap-
tive routing solutions we compared against (BFS, DFS and APSRA)
entail similar overhead, as they utilize similar routing intrastructures
as FATE.

While we have not evaluated FATE’s power overhead, we provide
here a qualitative comparison. Our solution entails significantly less
computation than APSRA while, at the same time, producing routing
functions that lead to lower packet latency. Thus we believe FATE
would consume less power than APSRA. When comparing to BSOR,
BFS and DFS, the two trends are in opposition: we do attain lower
packet latency, at the cost of higher computation time for the routing
function. Thus we only provide an overall power gain if we can
absorb the additional power cost of the computation over the benefits
in packet latency.

7. CONCLUSIONS
Maintaining high-throughput and low-latency after faults have

occurred is critical to the continuous deployment of NoCs on un-
reliable silicon substrates. We proposed FATE, a high-performing,
adaptive routing solution for faulty networks-on-chip, that leverages
the knowledge of an application’s communication patterns. We de-
veloped turn-enabling rules to quickly determine the optimal set
of turns that should be disabled to break all deadlocks, while still
providing connectivity in faulty 2D meshes. Our application-aware
heuristic balances load evenly among network resources using our
novel load-estimation metrics, and chooses the most promising turn-
restriction locations. Experimental results show improvements in
throughput and latency for synthetic traffic patterns and SPLASH-2
benchmark traces over state-of-the-art fault-tolerant and application-
aware routing solutions. Finally, FATE keeps a low cost profile (6%
area overhead), while providing a better routing performance than
prior application-aware routing. We also showed that our solution
is a viable, low-cost, adaptive-routing alternative even for fault-free
networks when compared to fully-adaptive routing solutions.
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