
MR.NITRO:
Distributed Accelerators for MapReduce on CMPs
Abraham Addisie†, Rawan Abdel-Khalek†, Ritesh Parikh‡, and Valeria Bertacco†

†University of Michigan ‡Intel Corporation
{abrahad, rawanak, valeria}@umich.edu parikh@intel.com

ABSTRACT
MapReduce is a commonly used programming model that
provides a simple and high-performance implementation of
data-intensive applications by separating the workload into
a map stage, where data is organized into a uniform key-
value pairs format, and a reduce stage, where these key-value
pairs are aggregated to generate the desired outcome. The
execution of MapReduce on chip multi-processors (CMP)
entails the use and management of complex data structures.
These data structures limit the performance benefits enabled
by the parallel architecture.

In this work, we propose to equip each core in the de-
sign with a hardware accelerator module that frees the core
from the frequent memory accesses and the hash function
computations required by the MapReduce framework. Our
experimental evaluation on a 64-core design indicates that
our solution provides over a 3 times speedup, averaged over
several applications, compared with a best-in-class software
implementation.

1. INTRODUCTION
MapReduce is a programming paradigm that facilitates

the parallel processing of large data sets and provides pro-
grammers with a simple abstraction to implement a wide
range of data-intensive applications. Today, MapReduce
frameworks are deployed in a wide range of performance-
critical applications, e.g.: image processing, web-search en-
gines, genomics, etc. In image processing, image recognition
is powered by MapReduce applications, with impact in do-
mains ranging from security to medicine and beyond. In
web-search applications, MapReduce is deployed in a wide
variety of algorithms that deliver the search speed and qual-
ity that we have come to expect today: finding search key-
words in pages, ranking pages when presenting search re-
sults, etc.

The goal of our work is to boost the performance of Map-
Reduce applications running on multi-core architectures by
leveraging a network of distributed hardware accelerators,
thus breaking the performance barriers that make some of
the problems above impractical.

MapReduce abstracts a workload through two basic prim-
itives: a map function that parses the input data and emits
it in the form of intermediate key-value (kv) pairs and a
reduce function that aggregates each set of intermediate kv-
pairs associated with the same key. In a CMP-based frame-
work, input data is allocated equally to each core, which
then applies both the map function on each input, and the
combine function, aggregating data locally as much as pos-
sible. The kv-pairs obtained are then partitioned among

Figure 1: Motivating study. The chart plots the execution
time’s breakdown for wordcount with a range of input dataset
sizes, running on the Phoenix++ framework [1] on an 8-core Intel
Core i7-4790K machine. Each stage was isolated by leveraging
the synchronization barrier and by executing multiple times with
distinct termination points. Note that, while we measure the
longest time among all cores, in practice the load is fairly balanced
and each core computes approximately for the same amount of
time in each stage. As it is evident form the plot, the combine
stage drastically dominates the overall execution. By eliminating
this stage alone, the overall execution time would be slashed by
over 2x.

the cores, so that each one is responsible for carrying out
the reduce function on some of the keys. The kv-pairs are
then shuffled through the interconnect and reduced in a
distributed fashion.
Motivating Study. As a motivating study, we analyzed
the execution of MapReduce on a wordcount application
over a range of input data sizes. Figure 1 plots the dis-
tribution of the execution time of each of the stages listed
above for each of the data sets considered. In this study
the application was implemented in the Phoenix++ frame-
work [1], a state-of-the-art framework for MapReduce on
chip multi-processors. We ran the experiment on an 8-core
Intel i7-4790K and we derived the time taken by each stage
by completing multiple runs, where we excluded all but one
stage (all but two in the case of shuffle & reduce). For in-
stance, to compute the execution time of the combine stage,
we first measured the time to reach the synchronization bar-
rier at the end of the combine stage. Then we executed the
framework again, but forced each core to execute only the
map stage. By subtracting the difference, we then derived
the time spent in the combine stage alone.

The findings of our study suggest that the greatest op-
portunity for improvement lies in eliminating the combine
stage, which accounts for over half of the total execution
time. Thus, the goal of our solution is to offload this stage
completely onto the hardware accelerators, so that it can be



Figure 2: MR.NITRO deployed in a CMP architecture.
Left side - MR.NITRO adds a local accelerator to each CMP’s
node to carry out MapReduce tasks. Right side - Each accelera-
tor is responsible for completing the combine stage, aggregating
kv-pairs emitted by the local core (source aggregation). Source-
aggregated kv-pairs are then transferred among the accelerators
through the CMP’s interconnect. At the destination node, accel-
erators execute the reduce stage, so that there is only one kv-pair
per key.

executed concurrently with the map stage running on the
cores. We further managed to offload the partition and re-
duce stages to the accelerators, bringing further performance
benefits to our solution.

In summary, MR.NITRO makes the following novel con-
tributions:

• A novel distributed-accelerator solution for MapRe-
duce, providing over a 3 times performance improve-
ment on average, compared to CMP frameworks.
• Our distributed accelerators partially reduce interme-

diate kv-pairs at their source nodes, saving significant
interconnect traffic by reducing transfers to the remote
accelerators.
• MR.NITRO is transparent to the MapReduce program-

ming interface, thus it preserves its simplicity to the
application’s developer.

2. RELATED WORK
The MapReduce programming model was originally in-

troduced by Google [2] to provide efficient execution of data-
intensive applications on a cluster of commodity-machines.
With the adoption of chip-multiprocessor (CMP) architec-
tures, several MapReduce frameworks have been proposed
targeting these systems [3, 1]. In particular, Phoenix++
[1] is an optimized implementation of MapReduce for multi-
core systems. It provides a simple programming interface for
users, while internally managing the execution of the Map-
Reduce tasks. However, for most applications, Phoenix++
relies on the use of complex data structures, limiting the
performance gains that can be attained on these distributed
architectures. MR.NITRO offloads the time-consuming and
complex data accesses, as well as the reduce function execu-
tion, to special-purpose accelerators.

Similarly, [4] offloads the reduce stage to a single, cen-
tralized FPGA-based accelerator. This accelerator receives
mapped kv-pairs from all cores. Then it performs in-hardware
aggregation and stores final results into its internal memory.
The main drawback of this solution is that it is not scalable
over a large number of cores. It also uses a cuckoo hash
function to implement key lookups. The function is applied
repetitively until a free entry in the scratchpad (organized

as a hashtable) is found. While this approach provides a
better usage of the bounded-size scratchpad, it potentially
leads to infinite loops of hash function computations [4]. On
the other hand, we provide a scalable and distributed accel-
erator solution, where each CMP core is augmented with an
accelerator module.

3. THE ACCELERATOR DESIGN
The focus of this work is to boost the performance of

MapReduce applications by leveraging hardware accelera-
tion. In general, CPU cores are most suitable in managing
data transfers and organization, while systematic data pro-
cessing can be completed more efficiently through a dedi-
cated hardware structure, as an accelerator. Consequently,
in our solution, the map stage of MapReduce is carried out
by CMP’s cores, which retrieve the input data from memory,
parse it, and emit kv-pairs directly to their local accelera-
tor. The accelerator then leverages its scratchpad memory
to aggregate the pairs’ values. Once all kv-pairs have been
received and combined by the source node’s accelerator, each
source accelerator computes independently the partitioning
of keys over the destination accelerators. It then proceeds
in transferring all of its kv-pairs to the correct destination
which, in turn, leverages its scratchpad memory to com-
plete the reduce stage. Note that the same hardware module
serves both the roles of source and destination accelerator
simultaneously. Figure 2 shows the deployment of our dis-
tributed accelerators in a CMP architecture.

Each MR.NITRO’s accelerator comprises a scratchpad
memory, organized into two partitions, one to serve kv-pairs
incoming from the local processor core (source scratchpad),
and one to serve kv-pairs incoming from the interconnect
(destination scratchpad). Each scratchpad is completed by
a small “victim scratchpad”, similar to a victim cache that
stores data recently evicted from the main scratchpad. The
accelerator also includes dedicated hardware to compute a
range of reduce functions, used both to aggregate data in
the source scratchpad and in the destination one. The hard-
ware logic to compute hash functions, both for indexing the
scratchpads and for partitioning kv-pairs over destination
nodes, completes the design.

Note that both source and destination scratchpad mem-
ories are of fixed size, and as a result it may not be always
possible for them to store all the kv-pairs that they receive.
When a source scratchpad cannot fit all the kv-pairs, it de-
fers their aggregation to the reduce stage, by transferring
them to the destination accelerator. When a destination
scratchpad encounters this problem, it transfers its kv-pairs
to main memory, and then lets the destination core be in
charge of carrying out the last few final steps of the reduce
function. Both scratchpads resort first to a small victim
scratchpad before folding into transferring out kv-pairs.

Figure 3 provides a schematic of the architecture de-
scribed. When an accelerator receives a kv-pair from either
its associated core or the network, it first processes the key
through its key hash unit and through the partition stage
unit. The purpose of the former is to generate a hash value
from the key, and use it to index the scratchpad memory.
The latter determines which destination node is responsible
for reducing this kv-pair: if the local node is also the desti-
nation node (node is dest), then we send the kv-pair to the
destination scratchpad, along with the hash index and an
enable signal, otherwise we send it to the source scratchpad.



Figure 3: MR.NITRO’s accelerator architecture. Each accelerator includes two separate scratchpad memories, organized as
hashtables, to aggregate kv-pairs incoming from the local core or the interconnect. The scratchpad memories are organized as 2-way
associative caches, augmented with a small victim scratchpad. The aggregate units are responsible for aggregating values for kv-pairs
stored in the scratchpads. The frequency/collision update units enforce our novel kv-pair replacement policy. Finally, each accelerator
includes a key hash unit to compute a hash value for each incoming key, and a partition stage unit, responsible for deriving the destination
node ID in charge of applying the reduce function to each unique key. Note that kv-pairs evicted from the scratchpad memories are
transferred out to either their destination node or memory, so that the destination node can complete the reduce stage.

Note that all kv-pairs incoming from the network will be
aggregated at the destination scratchpad. In addition, some
of the pairs incoming from the local core may also be aggre-
gated at the destination scratchpad if the local core is both
the source and the destination for that pair. Each scratch-
pad is internally organized as a 2-way cache augmented with
a small victim cache. Associated with each scratchpad is an
aggregate unit, responsible for deploying the specified reduce
function to combine two kv-pairs with the same key. Each
scratchpad is also equipped with a dedicated unit, called
frequency/collision update unit, to keep up to date the re-
placement policy information. Finally, note that, when a
kv-pair is spilled from a scratchpad, it is transferred out
through the network, either to another compute node or to
memory. kv-pair may be spilled because it is evicted from
the victim scratchpad or because it collided with another
entry in the scratchpad and did not qualify to replace it.

4. SYSTEM INTEGRATION
In our solution, each accelerator is tightly coupled with

its local core. At the beginning of the execution, each core
sends a start command to its accelerator and, based on the
type of MapReduce application, it configures the accelerator
to use one of the two hash functions we provide in the key
hash unit (this setup could be easily extended to encompass
a broad set of hash functions). The core also sends the
initial address of a memory region that the accelerator shall
use to store the reduced kv-pairs. The core can then begin to
transmit mapped kv-pairs to its accelerator. It then waits
for a completion signal from the accelerator, in the form
of an interrupt (IPC), upon which it can retrieve the final,
reduced kv-pairs from the shared memory region.

Note that the memory region that the core shares with
the accelerator is also used as temporary storage for kv-pairs
spilled from the destination scratchpad. When this situation
arises, the processor core is responsible for completing the
reduce function by aggregating the results from the acceler-
ator with the spilled kv-pairs.

System configuration Accelerator configuration

64 cores, 1GHz maximum key size: 64 bits

L1 D & D cache size: 16KB maximum value size: 32 bits

L1 D and I cache lat.: 1ns scratchpads: 2-way set assoc.

L2 cache size: 128KB # entries per scratchpad: 256

L2 cache latency: 12ns scratchpad size = 18KB

memory type: ddr3 1600 # freq/coll counters: 8 bits

Table 1: Characteristics of our architecture setup.

If the accelerator requires additional temporary storage,
it requests it to the processor core via an interrupt. All com-
munication from a core to its local accelerator is carried out
through store instructions to a set of memory-mapped regis-
ters within the accelerators, while accelerators communicate
to the core via interrupts. Each accelerator is also directly
connected to the network interface to send/receive kv-pairs
to/from the other accelerators and the memory.

5. EXPERIMENTAL EVALUATION
To evaluate MR.NITRO, we developed two experimental

setups: one for a baseline CMP architecture, and one for a
CMP architecture augmented with MR.NITRO’s hardware
accelerators. To cope with the unreasonable amount of time
and resources required to simulate big data workloads on
cycle-accurate simulators, we developed a specialized exper-
imental setup for our architectures. We modeled the baseline
CMP solution as a 64-node CMP in an 8×8 mesh topology,
with 64 cores and 4 memory nodes at the corners of the
mesh. We created this design in the Gem5 simulation in-
frastructure. We ported the Phoenix++ framework [1] to
Gem5 using “m5threads”.

For our proposed solution, we still leveraged the Gem5
infrastructure. In addition, we modeled MR.NITRO’s ac-
celerators separately using Python. Our accelerator model
is capable of providing a cycle-accurate simulation, track-
ing the state of the scratchpad memories, and the times
of spilling events. It is used to simulate both the com-



bine/partition stages and the reduce stage. Finally, we used
BookSim, a cycle-accurate network simulator to simulate the
shuffle stage, matching the network configuration. Details of
the architecture for both experimental setups are reported
in Table 1.

Our MR.NITRO setup carries out each stage of MapRe-
duce separately: first we simulate the map stage of each in-
dividual core using Gem5. We track these transfer events in
simulation and generate a timed trace of kv-pairs emissions
from the cores. Then we invoke our accelerator models to
carry out the combine stage: we simulate all updates to the
scratchpads and track all collisions and the times of kv-pair
spilling events to the interconnect. We apply this simulation
individually to each accelerator. We then simulate the inter-
connect exchanges during the combine (because of spilling)
and the shuffle stages in BookSim. Finally, our accelerator
model is used again to simulate the reduce stage and deter-
mine if there is any spilling to memory. In case of kv-pair
spilling to memory, the last stage of aggregation is handled
by the cores. Consequently, we determine the amount of
time it takes to aggregate the spilled kv-pairs with those
produced by the accelerators by simulating in Gem5 one
more time.
Workload Characteristics. Table [2] provides informa-
tion on all the workloads we considered in our evaluation.

name description #keys

hist histogram: computes a histogram. Input
data: an RGB bit image

768

lr linear regression: linear data fitting. In-
put data: bidimensional points

5

wc wordcount : counts the frequency of
words. Input data: multiple documents.

68152-
257225

pvc page view count : counts the frequency
of web page views. Input data: random
page list.

10529

minmax min/max : finds min/max. Input data:
temperatures for all locations in a region

28514

avg average: finds average. Input data: tem-
peratures for all locations in a region

28514

Table 2: Experimental workloads. We selected these work-
loads because they represent a wide range of MapReduce appli-
cations.

Performance Evaluation. Figure 4 reports the speedup of
MR.NITRO against the baseline CMP running Phoenix++.
We report both the speedup that we could achieve with an
infinitely large scratchpad, and that of the actual 256-entries
scratchpad of our model. While the actual speedup varies
with the application, ranging from 150% to 550%, the aver-
age speedup over all applications we studied is 320%.
histogram and linear regression: In the baseline solution
without accelerators, these two applications do not use hash
function computations because the number of their unique
keys is small and known a priori, so a fixed-size array can
carry out the combine stage. This optimization improves the
performance of the baseline execution, reducing our room for
speedup. The speedup of linear regression is relatively bet-
ter because this application is less memory-intensive than
histogram.
page view count : the speedup of this application is limited
by the execution time of the map stage, which requires rel-
atively more parsing than other applications.

A number of applications have speedups that are fairly

Figure 4: MR.NITRO performance speedup for a range of
workloads. The chart plots the speedups over a baseline CMP
execution of MapReduce, for our 256-entry scratchpad design and
for an unbounded-size scratchpad design.

unaffected by the size of the scratchpads. However, a few,
namely wordcount, min/max and average suffer from their
limited size of the scratchpads, which leads to a lot of kv-pair
spilling into the interconnect, thus overloading the reduce
stage with additional aggregation and leveraging the slow
processor cores for some of the reduce stage computation.
This aspect is most pronounced in wordcount, which has the
largest number of unique keys among all of our applications,
sometimes by several orders of magnitude.
Area Overhead. The largest components of our acceler-
ators are the two scratchpads. We modeled those and the
cores’s caches in Cacti and found that the area overhead of
the accelerators’ storage accounts only for 9.2% of the total
storage.

6. CONCLUSIONS
MR.NITRO is a novel distributed hardware accelerator

solution, capable of offloading the compute-intensive portion
of MapReduce-based applications from the cores of a CMP
to their local accelerators. The system is highly scalable
with the number of cores. We found experimentally that
our solution provides over a 3 times speedup on average
over a pure CMP-based solution. We estimated the silicon
footprint of MR.NITRO to account for less than 10% of the
local cache storage.

7. ACKNOWLEDGEMENT
This work is sponsored in part by C-FAR, a funded

center of STARnet, a Semiconductor Research Corporation
(SRC) program sponsored by MARCO and DARPA.

8. REFERENCES
[1] J. Talbot, R. M. Yoo, and C. Kozyrakis, “Phoenix++:

Modular MapReduce for shared-memory systems,” in
Proceedings of the Second International Workshop on
MapReduce and Its Applications, 2011.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified
data processing on large clusters,” in Proceedings of the
6th Conference on Symposium on Opearting Systems
Design & Implementation, 2004.

[3] M. Lu et al, “Optimizing the MapReduce framework on
Intel Xeon Phi coprocessor,” in Big Data, 2013 IEEE
International Conference on, 2013.

[4] C. Kachris, G. Sirakoulis, and D. Soudris, “A
reconfigurable MapReduce accelerator for multi-core
all-programmable SoCs,” in System-on-Chip (SoC),
2014 International Symposium on, 2014.


	Introduction
	Related Work
	The Accelerator Design
	System Integration
	Experimental Evaluation
	Conclusions
	Acknowledgement
	References

