
Highly Fault-tolerant NoC Routing with
Application-aware Congestion Management

Doowon Lee, Ritesh Parikh and Valeria Bertacco
Department of Computer Science and Engineering, University of Michigan

{doowon, parikh, valeria}@umich.edu

Abstract—Silicon devices are becoming less reliable as technol-
ogy moves to smaller feature sizes. As a result, digital systems are
increasingly likely to experience permanent failures during their
lifetime. To overcome this problem, networks-on-chip (NoCs)
should be designed to, not only fulfill performance requirements,
but also be robust to many fault occurrences. This paper proposes
a fault- and application-aware routing framework called FATE: it
leverages the diversity of communication patterns in applications
for highly faulty NoCs to reduce congestion during execution. We
propose a set of novel route-enabling rules that greatly reduce
the search for deadlock-free, maximally-connected routes for any
faulty 2D mesh topology, by preventing early on the exploration
of routing configuration options that lead eventually to unviable
solutions. Our experimental results show a 33% improvement on
average saturation throughput for synthetic traffic patterns, and
a 59% improvement on average packet latency for SPLASH-2
benchmarks, over state-of-the-art fault-tolerant solutions.

I. INTRODUCTION

Advances in semiconductor fabrication technology have
enabled the design of modern chip multiprocessors (CMPs)
and systems-on-chip (SoCs) consisting of billions of transis-
tors. They deploy tens, or even hundreds, of communicating
components and, therefore, efficient on-chip communication is
increasingly becoming a critical design bottleneck. Networks-
on-chip (NoCs) are a promising interconnect solution because
they provide massively concurrent, scalable and power-efficient
communication. However, the increasing susceptibility to
faults of nano-scale semiconductor devices makes it extremely
challenging to maintain the correctness and low-latency char-
acteristics that are desired for NoCs. To make matters worse,
NoCs constitute a single-point-of-failure for the entire system.

Fault-tolerant NoC routing solutions [1,11,12] tackle this
challenge by leveraging their inherent routing flexibility. In
other words, the routing solutions react to faults by limiting
communication to flow only along fault-free paths. In this
context, topology-agnostic routing algorithms [6,13] offer
highly flexible routing, preserving network connectivity even
in the presence of many faults. Nonetheless, they often lead
to severe performance degradation after only a few faults,
making the continued deployment of the chip impractical. This
degradation is mainly due to increased traffic congestion on
the remaining healthy paths.

CMP applications [4,14] exhibit communication patterns [3]
where most packets flow among only a subset of the NoC nodes.
This aspect could be leveraged to focus the limited routing
options available towards high-traffic communication paths.
This is the key observation that led to our solution: if the high-
traffic communication patterns in a faulty NoC are known (or
can be estimated), then we can select the routing function
so as to provide both deadlock freedom and maximum

path diversity (and thus low congestion) among the high-
traffic nodes. Consequently, we can provide high-bandwidth,
low-latency communication even in faulty networks.

In this paper, we present FATE, Fault- and Application-
aware Turn model Extension. FATE improves the performance
of faulty 2D mesh networks by leveraging the application’s
communication patterns. We also demonstrate a method to
quickly prune the exploration of viable routes in faulty
networks, in order to consider only deadlock-free options,
and we reduce the number of routes evaluated by two orders
of magnitude over prior application-aware solutions.

II. RELATED WORK

Fault-tolerant routing. Fault-tolerant, deadlock-free routing
solutions have been extensively investigated in the past. Glass
and Ni propose three turn-models that provide adaptive, fault-
tolerant routing [7]. Note, however, that their fault-tolerance
is limited to only a few faults [12]. In contrast, Ariadne [1],
uDIREC [11] and CBCG [12] put no constraints on the number
and location of faults, and hence, they are more reliable. Similar
to the above on-chip solutions, in the off-chip network domain,
topology-agnostic routing algorithms [6,13] focus mostly on
placing routing restrictions using topological characteristics,
while ignoring traffic flow. None of the above take traffic flow
into consideration to optimize for throughput.
Application-aware routing. Application-aware routing solu-
tions tune the routing function to traffic flow. APSRA [10]
strives to meet the bandwidth requirement of an application,
while achieving deadlock freedom by breaking cyclic depen-
dencies. However, deploying this solution to identify optimal
routes in faulty networks has an extremely high computational
cost. In contrast, BSOR [9] selects load-balanced, oblivious
paths via either mixed integer linear programming (MILP) or
Dijkstra’s shortest path algorithm to approximate optimally
balanced paths. BSOR, however, suffers from low performance
as they do not manage runtime congestions well. Although all
of these application-aware solutions can be deployed in faulty
networks, they often require intractable computation.

III. OVERVIEW AND BACKGROUND

FATE is a software-based solution that generates a deadlock-
free routing function, while maximizing the number of distinct
paths available between nodes with high communication
requirements, for applications running on faulty 2D mesh
networks. Figure 1 shows how FATE operates: it is triggered
by a new fault occurrence or an application launch. It then
uses the CMP’s idle cores to compute a new routing function.
FATE’s efficient heuristic quickly discovers a near-optimal
routing function based on an iterative exploration, where turn
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Fig. 1: Overview of FATE.

restrictions are placed one at a time. After placing each turn
restriction, FATE deploys its turn-enabling rules (Section
IV) to enable turns that must be active in order to maintain
connectivity in light of the most recent turn-restriction choice.
Moreover, in choosing the location of each new turn restriction,
FATE leverages traffic load estimates that it derives from
the communication patterns extracted via application analysis
(Section V). Finally, the network’s routers are re-programmed
using the new routing function.

FATE assumes that information about the application’s
communication patterns is available: indeed, these can be
observed in CMP and SoC applications with runtime profiling,
and then modeled through Markov chains [2,3]. As in many
fault-tolerant routing solutions, we also assume that the NoC
is equipped with a fault diagnosis solution. In addition, we
assume that our solution is deployed in systems where the
OS is notified of new fault detections and can update routing
tables accordingly.
Deadlock avoidance. Deadlock situations can happen when
packets wait for each other in a cyclic manner. Such situations
can be avoided by breaking cyclic resource dependencies [5],
disabling at least one of the turns that contribute to the cycle.
This deadlock-avoidance technique has been proposed in the
past: for instance, the turn models [7] forbid certain turns in 2D
meshes to break every possible cycle. Similarly, FATE achieves
deadlock freedom by disabling turns, but it provides much more
flexibility in the turn restriction than the turn models.

IV. FATE’S TURN-ENABLING RULES

This section discusses the rules that determine which turns
must be enabled as a consequence of another turn being
disabled. These rules, grouped into basic and advanced, can
be applied in any order, and are illustrated in Figure 2. We
first describe how the rules operate in regular meshes, and
then extend them to faulty topologies. Note that our approach
minimizes the number of turn restrictions, and thus maximize
cumulative bandwidth to all destinations.

1) Basic rules identify which turns must be enabled because
of a turn restriction on the surrounding cycle, node and links,
and they are illustrated in Figure 2a.
Rule 1 (cycle) — Once a turn in a cycle is disabled, all other
turns in the same cycle should be enabled, so that all nodes
in the cycle can still communicate.
Rule 2 (node) — Once a turn in a node (router) is disabled,
all other turns insisting on the same node should be enabled.
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Fig. 2: FATE’s turn-enabling rules.

Rule 3 (link) — Once a turn adjacent to a link is disabled,
the turn to the same link, on the opposite side with respect to
this turn and not on the same router should be enabled.

Note that any violation of these rules would lead to a
superfluous number of turn disabling. For instance, if both
the turns 1-4-3 and 1-4-5 were disabled in the middle network
of Figure 2a, then the network would still allow a dependency
along the gray-arrow path in the figure.

2) Advanced rules force FATE to enable turns that are remote
with respect to the restricted turn. They allow to aggressively
prune the search space towards a solution with minimal disabled
turns. Figure 2b illustrates the two rules below.
Rule 4 (common link) — If a cycle has only two undecided
turns that share a common link, then all turns that are adjacent
to that link and lie outside the cycle, should be enabled. This
rule can be inferred from Rules 1 and 3.
Rule 5 (opposite-corner turn) — If two turns are located on
opposite nodes in a cycle, and the two turns are not adjacent
to any of the cycle’s links, then only one of them can be
disabled. The reasoning behind this rule can be understood
by considering the example on the right part of Figure 2b:
if we had disabled both the opposite-corner turns 1-5-4 and
11-10-14, then we could no longer avoid a deadlock situation
as an example shown in the figure.
Turn-enabling Rules in Faulty Topologies. Among the basic
rules, Rule 1 is the one that is most affected by faults:
cycles may become merged because of faults. Moreover, faulty
networks may have both concave and convex cycles, and Rule
1 must be appropriately applied by considering turns common
to both a concave cycle and a convex cycle as breaking only
one of these cycles, not both. Rules 2 and 3 remain unchanged
for faulty topologies. In addition, we limit the application
of Rule 4 to links contributing to cycles that have not been
affected by a fault. The reason we limit the application of
Rule 4 is because it could become complex to identify which
turns should be enabled when a link spans multiple routers.
Finally, we simply apply Rule 5 as we described for non-faulty
networks. However, some turns enabled are not necessarily
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Fig. 3: Link-load and turn-load estimation example.

causing deadlock in faulty networks, and thus they should not
be enabled. If the enabled turns should have been disabled,
our backtracking step would correct the situation.

V. FATE ROUTING

In this section, we propose FATE’s heuristic algorithm to
identify a routing function with deadlock-free routing and
minimal routing restrictions. FATE relies on the information
it receives about the application’s communication patterns to
strive to place turn restrictions on low-traffic links. When
the FATE algorithm begins, all turns are undecided. Turn
restrictions are then placed one at a time, starting from
the regions transferring the most traffic. Upon placing each
restriction, the turn-enabling rules are applied to enable the
related set of turns. This process is repeated until each turn is
either enabled or disabled.

A. Link, Turn and Cycle Load Estimates
To estimate the load on each network’s link, turn and

cycle, we consider one source-destination pair provided by
the application at a time. For each pair, we compute all the
possible paths that packets can take from source to destination,
and we then derive the fraction of traffic that would go through
each link. The computation of all the loads proceeds with the
four steps below (see Figure 3).
Step 1 — Compute path diversity. We calculate the number
of different routes (i.e., path diversity) to reach each link from
the source node.
Step 2 — Compute link-load estimates. We now use the
results of Step 1 to estimate the load on each link based on the
path diversity available. We calculate the total path diversity
at each hop from the source (as illustrated in Figure 3a), and
divide the link’s path diversity by the total diversity.
Step 3 — Compute turn-load estimates. To estimate the load
at each turn, we divide the input load from the source direction
of the turn by the number of output links allowed.
Step 4 — Compute cycle-load estimates. For each cycle, the
load is computed by simply summing the loads on all the turns
in the cycle.

B. FATE Route-calculation Algorithm
Once all load estimates have been computed, we can apply

the FATE routing algorithm, as illustrated in Figure 4. Note
that we weigh the load estimates by multiplying each estimate
by the traffic weight associated to its source-destination pair.
The algorithm starts by selecting a turn to disable, choosing the
turn with the lightest impact on the heaviest link load, among

1: repeat until there is no undecided turn
2: compute link,turn,cycle loads()
3: cycle = cycle with heaviest load()
4: disabled turn = turn with smallest link load increase(cycle)
5: enabled turns = apply turn enabling rules(disabled turn)
6: if( not (check deadlock() or check disconnected()) )
7: disable(disabled turn), enable(enabled turns)
8: else update conflict history(), backtrack()

Fig. 4: FATE routing algorithm

those in the highest-load cycle (lines 2-4). Once the turn to
be disabled is selected, we apply the turn-enabling rules to
enable as many other turns as possible (line 5). If the set of
turns enabled/disabled leads to a deadlock or a disconnected
network (line 6), we backtrack, and update the list of conflicting
selections (line 8).

VI. EXPERIMENTAL EVALUATION

We evaluated FATE with a cycle-accurate NoC simulator [8]
modeling an 8×8 2D mesh NoC. The network’s 3-stage routers
are input-buffered, and each input port within a router contains 2
VCs per protocol class, and 5 flits per VC. We deploy a minimal
adaptive routing approach and a local congestion monitoring
scheme, so that output channels towards non-congested input
buffers are favored. We analyzed FATE’s performance on faulty
2D mesh networks by injecting a varying number of link faults:
1 (1%), 3 (3%), 6 (5%), 11 (10%) and 17 (15%) faulty links.
We evaluated our testbed with both synthetic traffic [8] and
traces from the SPLASH-2 benchmark suite [14]. We used five
different synthetic patterns shown in Figure 5. Our synthetic
traffic consists of a mix of equal amounts of 1- and 5-flit
packets. The eleven SPLASH-2 traces were collected for 10
million cycles after spawning threads and initializing caches.
The traffic weights were calculated by counting the number of
flits per each source-destination pair.

A. Performance on Faulty Networks

We compared our solution against fault-tolerant, application-
oblivious routing solutions that are based on the construction
of spanning trees: up*/down* with breadth-first search (BFS)
[1], and up*/down* with depth-first search (DFS) [13]. We also
compared our solution against two application-aware routing
solutions: Application-Specific Routing Algorithm (APSRA)
[10] and Bandwidth-Sensitive Oblivious Routing (BSOR) [9].

Figure 5 reports the average saturation throughput across
various fault rates and traffic patterns. In the left half of the
figure, we observe that the performance of our scheme degrades
more gracefully than both application-oblivious spanning-tree
solutions (BFS and DFS) as faults increase. FATE achieves
a 10% improvement over BFS when there is only one faulty
link. FATE’s improvement over BFS increases to 33% when
15% of the links are faulty. FATE also achieves consistently
higher throughput at all fault rates than both APSRA and
BSOR. FATE provides a 9% higher throughput at the 15%
faulty-link rate. Finally, BSOR provides lower throughput than
both APSRA and FATE. FATE also performs better than others
across various traffic patterns at the 15% faulty-link rates, as
shown in the right half of Figure 5. We observe that traffic
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Fig. 5: Saturation throughput for synthetic traffic patterns over
various fault rates and traffic patterns.
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patterns where packets utilize a few turns more frequently
(e.g., transpose and bitrev) are those that benefit the most from
FATE.

Figure 6 reports the average packet latency from our trace-
driven SPLASH-2 simulations across various fault rates and
benchmarks. As shown in the left half of the figure, FATE
experiences negligible latency increase up to the 5% faulty-link
rate, while the latency increase is more significant beyond that
point. In addition, FATE attains lower latency than APSRA and
BSOR at almost all fault rates except one faulty link. Finally, we
show results for five selected benchmarks at the 15% faulty-
link rate on the right side of the figure. FATE consistently
provides much lower latency than BFS and DFS. For instance,
when running fft, each node accesses frequently memory nodes
located at the corners of the mesh, and communicates with a
few other nodes. As a result, FATE enables more routes among
these frequently communicating nodes.

B. Overheads

Software computation overhead. We evaluated the overhead
of computing the routing function compared against APSRA
[10]. Table I reports the average computation time to derive a
routing function, for both FATE and APSRA. Execution times
were measured on an Intel Xeon E5520. Overall, FATE is a
significantly faster solution than APSRA. In the right portion of
the table, we also compare the average number of attempts of
turn-disabling placement. Note that FATE’s number of attempts
is minuscule compared to APSRA: we owe this result to the
turn-enabling rules, which greatly prune the search space for
an optimal set of turn-disabling placements. We capped those
algorithm’s runs at 200,000 placement attempts and we report
the fraction of occurrences where we reached the cap value.
Area overhead. We evaluated the area overhead of routing
tables and route-computation logic, targeting the Nangate

45nm library using Synopsys DC at an operating frequency of
400MHz. With this configuration, our routing computation adds
approximately 6% area overhead, mostly for the routing table.
Note that the other fault-tolerant, adaptive routing solutions
we compared against (BFS, DFS and APSRA) entail similar
overhead, as they utilize similar routing intrastructures as FATE.

TABLE I: computation overhead for FATE and APSRA
average time average number of % runs reaching

(sec) placements attempted 200k cap
APSRA FATE APSRA FATE APSRA FATE

fault-free

>500

3.61 71,321 117 19% 0%
1 fault 3.27 94,639 107 31% 0%

3% faults 3.29 107,956 107 41% 0%
5% faults 3.21 120,877 105 48% 0%
10% faults 3.62 151,802 118 69% 0%
15% faults 2.93 159,667 96 74% 0%

VII. CONCLUSIONS

We proposed FATE, a high-performing, adaptive routing
solution for faulty networks-on-chip, that leverages the knowl-
edge of an application’s communication patterns. We developed
turn-enabling rules to quickly determine the optimal set of turns
that should be disabled to break all deadlocks. Our application-
aware heuristic balances load evenly among network resources
using our novel load-estimation metrics, and chooses the most
promising turn-restriction locations. Experimental results show
improvements in throughput (up to 33%) and latency (up to
59%) for synthetic traffic patterns and SPLASH-2 benchmark
traces over state-of-the-art solutions. Finally, FATE keeps a
low cost profile (6% area overhead).
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