
Correct Runtime Operation for NoCs through

Adaptive-Region Protection
Rawan Abdel-Khalek and Valeria Bertacco

Computer Science and Engineering Department, University of Michigan

(rawanak,valeria)@umich.edu

Abstract—Networks-on-chip (NoCs) are increasingly being
adopted as the interconnect model for systems-on-chip and chip-
multiprocessors. As the only communication medium in these
designs, the NoC’s functional correctness is critical. In practice,
design-time verification of NoCs is always partial, due to their
large scale and the challenges that hinder verification efforts. As a
result, functional design bugs are bound to escape and potentially
manifest at runtime, compromising system functionality.

We propose REPAIR, a runtime solution to detect and
recover from functional design errors that have escaped in NoCs.
Existing runtime verification techniques incur significant area and
performance overheads to monitor and check the correctness of
every packet traversing the network. However, REPAIR relies
on a retransmission-based technique that adaptively determines
the subset of packets requiring protection by identifying dynamic
network regions where the specific runtime execution is likely to
expose functional design bugs. We achieve runtime correctness
at lower performance and area costs, relative to a traditional
solution: on average, we are able to achieve more than 50% better
overall performance with 2-3x fewer retransmission buffers.

I. INTRODUCTION

Network-on-chip (NoC) interconnects are the central
medium of communication in many current and future ho-
mogeneous and heterogeneous chip-multiprocessors (CMPs)
and systems-on-chip (SoCs). Therefore, the NoC’s functional
correctness is critical, and it requires extensive verification,
both as a stand-alone fabric and as part of the entire system.
Mainstream verification efforts initially target the correctness
of the router architecture. However, the correctness of the full
interconnect cannot be presupposed by verifying the operations
of just one router or a small subset of routers connected to-
gether. The network’s overall execution is the result of system-
level interactions that occur as responses to the traffic patterns
traversing the network. These interactions could span a small
region of the network or the entire network in some cases.
Moreover, the correctness of the routing and communication
protocols and their implementations can only be observed by
considering the network as whole. For example, some errors,
such as deadlocks and livelocks, can only manifest at the
network-level. Thus, the complete verification of the NoC
requires modeling the entire network.

The continuously increasing size and design complexity of
NoC interconnects poses significant challenges to design-time
verification efforts. Today’s CMPs include up to a 100 cores
that rely on an equally large NoC interconnect for communi-
cation. Moreover, aggressive interconnect designs are adopted
to provide enhanced performance and energy efficiency. This
growing complexity is evident when considering the expanding
repertoire of features that are incorporated into the archi-
tecture of routers, including intricate arbitration mechanisms,
speculation, and adaptive routing implementations. There is

also an additional layer of complexity due to the implemen-
tation of advanced routing protocols, power and application-
adaptive interconnects and complex overlaying communica-
tion protocols. This high design complexity creates a large
design state space, which cannot be thoroughly exercised and
validated during design-time verification, with the result that
interconnect designs may be released into the market with
corner-case bugs latent in those unverified executions. Those
bugs become problematic if the unverified functionality is
exercised at runtime, while the system is being utilized by the
user, and may compromise the entire system, the applications
running on it and the user’s data. Additionally, design houses
are then forced to release fixes, or in some cases recall the
product alltogether, all of which result in extensive monetary
losses. One technique to protect NoC interconnects from the
manifestation of latent bugs consists of equipping them with
mechanisms to detect and recover from erroneous behavior at
runtime.

We propose REPAIR (Runtime Error Protection over
Adaptively Identified Regions), a solution to ensure commu-
nication correctness in NoC interconnects at runtime (after a
product’s release). REPAIR targets functional design bugs that
have escaped verification and that manifest at runtime in the
NoC. Such bugs tend to be well-hidden and are only exposed
when the runtime execution triggers a specific complex set of
events or corner-cases that were never tested or observed be-
fore the product’s release. At runtime, applications running on
CMPs and SoCs typically have spatially and temporally vary-
ing traffic patterns, such that not all portions of the network
encounter the same set of runtime operations, and through-
out an application’s execution, some regions exhibit runtime
conditions that are more likely to expose latent design bugs.
REPAIR dynamically identifies those regions and it employs a
detection and recovery mechanism to protect packets traversing
them. Before a packet enters an error-prone region, it is copied
into a retransmission buffer within the network interface of the
routers at the periphery of those target regions. This packet is
then marked as an acknowledgment required (ack required)
packet and is transferred forward, towards its destination. Upon
correct delivery to its final destination, an acknowledgment is
sent back to the intermediate node that created the copy and the
retransmission buffer is freed. If the intermediate node times-
out before receiving an acknowledgment, it initiates REPAIR’s
recovery scheme. During recovery, routers independently drop
all ack required in-flight packets and retransmit a copy of
them from the retransmission buffers, in which they are stored.
The manifestation of design bugs at runtime is an infrequent
occurrence, as bugs are only exposed during specific corner-
case execution scenarios that were not verified. By clearing
in-flight ack required packets and retransmitting them, the
network is extremely unlikely to encounter again those exact
same conditions that triggered the original bug. Figure 1

packet P1

ACK

REPAIR’s identified
error-prone region

packet P2

packet P2
delivered

peripheral router initiating
retransmission-based

protection for packet P2
P2 marked as
ack_required

Fig. 1. High-level overview of our runtime solution. REPAIR identifies
network regions exhibiting operations prone to exposing latent design bugs,
and protects packets traversing these regions from being affected by the bugs.

depicts a high-level overview of our solution. There, packet
P2 is traversing an identified error-prone network region, and
it is protected by REPAIR’s selective-retransmission.

Example. Consider the case of a deadlock occurring at runtime
in an error-prone region, due to a bug in the implementation
of the routing algorithm. For the deadlock to have happened,
it means that the runtime execution encountered a precise
sequence of events that allowed the deadlocked packets to
arrive to a specific set of congested routers and request
specific resources with the precise timing that caused the
cyclic dependency to form. This exact scenario is unlikely to
be easily replicated, otherwise this bug would probably have
been caught earlier during development-time verification. In a
network equipped with REPAIR, routers are instrumented with
timeout counters. In a deadlock situation, at least one counter
will timeout, causing its corresponding router to initiate RE-
PAIR’s recovery scheme. During recovery, routers drop in-
flight ack required packets, which clears the deadlock. Then,
each router independently retransmits a copy of the packets
residing in its retransmission buffers. The network conditions,
timing of packet injections and transfers, and the availability
of resources are likely to have changed upon retransmission,
highly reducing the chances of triggering the same corner-case
behavior that caused the deadlock to occur.

REPAIR’S acknowledgment-retransmission is inspired by
traditional retransmission solutions, where a copy of every
packet is stored at the source node, before the packet is
injected. However, there are several key differences in our
solution. First, copies are made for only a small subset of
packets, and any intermediate node along a packet’s path may
decide to be the one that initiates protection via a copy. Second,
traditional retransmission solutions recover by retransmitting
only the timed-out packets, and thus cannot overcome all
types of design bugs, such as deadlock-type bugs. In contrast,
REPAIR employs a network-level recovery scheme to clear the
effect of the bug before retransmitting all ack required packets.

A. Contributions

• We introduce a novel solution to ensure correct communi-
cation during runtime execution in the presence of a network-
on-chip interconnect with escaped design bugs.
• We adaptively identify dynamic network regions where the
runtime conditions are prone to exposing design bugs.
• We deploy a lightweight acknowledgment-retransmission
solution to protect packets traversing the identified error-prone
network regions. By applying acknowledgment-retransmission
to only a small subset of packets injected into the network, we
maintain a low area overhead and a lower performance impact,
relative to a traditional source-based retransmission solution.

II. ERROR-PRONE NETWORK REGIONS

The design-time verification of NoC interconnects ini-
titally focuses on verifying the correctness of the NoC’s
most fundamental operations, which often occur when only
a small number of nodes are injecting traffic into the network,
consequently generating simpler network operations and inter-
actions. Once this initial verification is complete, additional
randomly-generated traffic patterns and application traffic are
run to exercise the more complex execution scenarios that
could occur in the network. In practice, the majority of design
bugs uncovered during the development of NoC-based designs
tend to manifest in complex behavior involving a large number
of simultaneous interactions between the design’s components
[1]. However, as the number of active nodes and the contention
among in-flight packets increase, more elaborate interactions
begin to occur between packets and within network compo-
nents. As a result, the design space spanned by all possible
NoC operations grows exponentially and becomes intractable.
Thus, design-time verification efforts focus on validating the
fraction of these executions that represents the most common
network behavior. The remaining susbet of complex executions
are not excercised nor validated, and it is precisely in those
scenarios that design bugs remain hidden.

Once the system is released, a large number of users
execute a vast spectrum of different applications, stimulating
the NoC much more thoroughly than it was possible during
development. Note that, during an application’s execution,
different regions of the network experience different patterns of
activity, depending on the application demands. Lightly loaded
network regions have a few packets traversing them, and hence
observe limited contention between in-flight traffic. Therefore,
the operational conditions in these regions are among those
simple execution scenarios that are well-verified. Whereas, net-
work regions with intense activity, involving a larger number
of contending packets and multiple injecting nodes exercise
some of the more complex operations, which may have not
been exhaustively verified. Therefore, the execution conditions
in those regions are prone to exposing latent design bugs.

Instead of deploying a costly runtime solution that is
active throughout execution and for all regions of the network,
we propose an adaptive scheme that identifies error-prone
regions and protects only the packets traversing these regions.
Since design bugs are likely to be hidden in more complex
executions, we seek to identify network regions with high
activity and intricate operations and we consider those regions
to be error-prone. To this end, we rely on congestion as an
indication of operational complexity. Congestion occurs due
to an increased traffic load in the network and, although it
does not imply a functional error, it directly relates to the
complexity of the execution. In particular, highly congested
network routers are traversed by a large number of packets that
are contending for the available resources. This contention and
the number of active input and output channels within these
routers create more intricate interactions within the routers
and across them. Therefore, while operating under this more
demanding stimuli, the congested routers are more likely to
encounter a corner-case execution that has not been verified.
Whereas, uncongested routers that are exhibiting simpler traffic
flows are more likely to be operating within the well-verified
subset of executions. Moreover, in some cases, congestion

Step1- Identify locally congested routers

local_cong link
in_cong_reg link

NoC link

>75% buffer
occupancy

=>congested

router marked locally congested

router marked non-congested

Step2 - Identify congested regions

2 neighbors
congested =>in

congested region

local_cong link flagged

Step3 – Identify peripheral routers

in_cong_region link flagged
router marked as peripheral

neighboring
congested region

threshold_upgrade

threshold_downgrade

bu
ffe

r
oc

cu
pa

nc
y

router locally
congested

execution time

deflagging_delay

Fig. 2. Identifying congested regions and peripheral routers.

introduces an additional layer of complexity to the network’s
operations. For example, CMPs and SoCs commonly employ
power management techniques that utilize various approaches,
such as injection throttling and frequency scaling, to limit
power dissipation when the network is heavily loaded. Finally,
congestion plays an important factor in many routing protocols,
adapting the routes followed by packets, as well as triggering
protocol-level deadlock recovery and congestion avoidance
measures. The interactions between such features and the
NoC’s regular operations can create unforseen and unverified
corner-cases that hide design bugs.

A. Identifying Congested Regions

REPAIR adaptively identifies error-prone network regions
by relying on a light-weight algorithm that delineates network
areas with high congestion, and hence complex runtime activ-
ity. Our 3-step algorithm, illustrated in Figure 2, is distributed
and iterative, allowing us to dynamically and adaptively clas-
sify congested regions. If the network congestion spreads, our
algorithm adapts and includes newly congested routers in the
classified congested regions. Similarly, as the network load is
throttled and congestion is reduced, the classified congested
regions move and change accordingly.

Step 1 - Identify locally congested routers. Routers de-
termine their local congestion status, based on their internal
buffer occupancy, similar to the scheme described in [2]. Each
router keeps track of the number of input buffer entries in-use
across all of its input buffers. If the number of occupied entries
exceeds a certain fraction, then the router flags congestion.
We refer to this occupancy threshold as threshold upgrade.
Once the congestion flag is set, it can only be deflagged when
the buffer occupancy falls and stays below another threshold
for a certain number of clock cycles. We refer to this second
occupancy threshold as threshold downgrade and the number
of clock cycles as deflagging delay.

Step 2 - Identify congested regions. Once the local congestion
flag is set at each router, it is passed to all of its direct
neighbors, through a 1-bit bi-directional link added between
all routers (local cong link). Then, each router determines
whether it belongs to a congested region, based on two criteria:

1) Is the router itself congested? or 2) Is it neighboring
two congested routers? The second criteria allows grouping
congested routers into more contiguous regions. The result of
this evaluation sets a new flag, in cong region, which is again
transmitted to all the first-hop neighboring routers, requiring
another 1-bit bidirectional link between each router.

Step 3 - Identify peripheral routers. Each router receives the
in cong region flags from its neighbors. If at least one of its
neighbors belongs to a congested region, the router determines
that it is a peripheral router.

III. ACHIEVING COMMUNICATION CORRECTNESS

When REPAIR identifies a congested network region,
routers at the periphery of the region, and routers within it,
initiate our acknowledgment-retransmission scheme to protect
packets traversing the congested region. We refer to these
routers as the initiating routers. As packets are injected
into the network, they are augmented with an error-detection
code that can be added to their header flits. At an initiat-
ing router, packets requiring protection are copied into the
router’s retransmission buffers. Such packets are marked as
ack required and upon delivery to their destination node,
an acknowledgment is sent back to the initiating router. If
the router times-out before receiving an acknowledgment, it
assumes that an error occurred and transmits a recovery signal
across the network through a 1-bit serial link that connects
all routers. Afterwards, each router independently starts the
recovery process by first dropping all ack required packets
traversing it and then retransmitting a copy of the packets
residing in its retransmission buffers. This recovery process
does not halt regular execution, as the network’s operations
proceed normally in conjunction with the retransmissions.

REPAIR can overcome a wide variety of functional design
bugs in the network. Independently of the exact bug, the
correctness of communication can only be compromised if the
bug corrupts in-flight packets or if it prevents their correct and
timely delivery to their destination. The latter case includes
deadlocks, livelocks, misroutes, and dropping of packets. In
REPAIR, the error-detection code that is added to every packet
and the timeout functionality at initiating routers are sufficient
to flag bugs causing packet corruption and incorrect packet
delivery. REPAIR’s recovery scheme can also overcome both
of these errors categories, even when the retransmitted packets
follow the same paths as the original ones. First, by dropping
all ack required packets, REPAIR ensures that the effects of
the detected bug are cleared from the network. Second, design
bugs during runtime operation manifest rarely and are exposed
only under specific execution conditions. During recovery,
when all ack required packets are retransmitted, they are likely
to encounter different operational conditions and timings that
will not trigger the same bug to re-manifest, allowing REPAIR
to side-step the design bug.

A. Creating Packet Copies at Initiating Routers

REPAIR maintains a congestion status table per router to
record which of the router’s output directions are congested.
We also assume that the retransmission buffers at each node re-
side in the corresponding network interface. Thus, when an ini-
tiating router decides to apply acknowledgment-retransmission

xbar

IPN OPN

OPE

OPS

OPW
IPE

IPW

cntr

cntr

cntr

cntr

failed copy-attempts
counter

IPS

OPW not cong.

OPE

OPN cong.

not cong.

not cong.OPS

local not cong.

congestion status
table

packet P1
marked as

ack_required

packet P2

retransmission buffers

network
interface

Fig. 3. Applying acknowledgment-retransmission at a peripheral router.
Since Packet P1 is heading to the North (entering a congested area), it is
protected by REPAIR. This peripheral router duplicates P1 and forwards a
copy to be stored in one of the retransmission buffers.

to a packet, it must duplicate it and eject a copy to its network
interface. The packet is then marked as ack required and no
other router will make another copy of it. If the initiating router
is itself in a congested region, it initiates REPAIR’s protection
for any previously unprotected packet traversing it and for
every packet it is injecting into the network. This situation may
arise because our congested regions vary during execution, and
a router may become marked as congested while packets reside
in its buffers. Figure 3 shows a peripheral router applying
acknowledgment-retransmission to packet P1.

In a typical wormhole router, packets undergo four main
steps: route computation (RC), virtual channel allocation
(VCA), switch allocation (SA) and crossbar traversal. Once
a packet’s output direction is known after the RC step, a look
up in the congestion status table allows REPAIR to classify
whether this packet requires protection. If the packet requires
protection, then, in the VCA step, it must request a virtual
channel in its assigned output port and in the ejection port.
The packet completes VCA only if both virtual channels have
been granted. If all retransmission buffers are full, the packet
must stall. REPAIR utilizes a separate virtual channel to eject
packet copies to the retransmission buffers, as we discuss
in Section III-B. During the SA step, the flits of the packet
requiring protection must simultaneously request two crossbar
connections, one to its desired output port and another to the
ejection port. When both connections are granted, the original
flits proceed to their destination output port, and a copy of
each flit is ejected to be stored in a retransmission buffer.

B. Cyclic Dependencies and Deadlock Avoidance

In REPAIR, we can categorize in-flight traffic as
ack required packets, acknowledgment packets (ACKs), or
regular packets. We can further group regular packets into
those that are about to be ejected from the network to their des-
tination (ejecting packets) and packets that are still traversing
the network to their destination (traversing packets). Cyclic
dependencies can arise between ack required packets and the
other three types of traffic. In this section, we discuss the
situations where these dependencies can lead to deadlocks and
we provide mechanisms to overcome them.

ACKs vs. ack required packets: To prevent the blockage
of in-flight ACKs behind stalled packets waiting for available
retransmission buffers, we utilize a separate virtual channel
for ACKs. This virtual channel can be designed with fewer
buffering resources than the regular virtual channels of the

network, as ACKs are only 1-flit long. The separation of
acknowledgment packets from the remaining traffic is common
in acknowledgment-based solutions and it is also typical for
NoCs to have separate virtual networks for different types of
traffic to eliminate message-dependent deadlocks.

Ejecting packets vs. ack required packets: At an initiating
router, an ack required packet traverses the VCA and SA steps
only when the ejection and its desired output ports are both
available. Such a packet can acquire a virtual channel in both
ports, but then stall during SA, impeding other packets from
being ejected. Thus, we add another ejection virtual channel
to be used only for ejecting packet copies to retransmission
buffers. The separation of ejection resources ensures that all
packets can eventually be drained at their destination.

Traversing packets vs. ack required packets: Packets
stalled waiting for a free retransmission buffer can block other
in-flight packets, including those packets whose copies are
occupying the retransmission buffers. If those packets cannot
reach their destination, ACK packets cannot be sent back to
release the retransmission buffers and resolve the blockage. To
prevent the occurrence of a deadlock, we allow a fixed number
of attempts in acquiring a retransmission buffer. If the packet
fails all the attempts, we override the decision to copy the
packet and we allow it to proceed to the downstream router. In
our experimental setup, we set the maximum stalling duration
to 256 cycles and found that this countermeasure affects
very few packets. In all 15 workloads, REPAIR successfully
protects >99% of packets traversing congested regions.

IV. EXPERIMENTAL EVALUATION

We modeled an 8x8 mesh interconnect using the cycle
accurate Booksim simulator [3] and implemented REPAIR.
We also generated directed random traffic workloads to model
communication patterns of applications running on CMPs
and SoCs where, depending on the type and scheduling
of applications, some nodes communicate more than others.
Moreover, the rates and the frequency of communication,
and the nodes involved might change throughout execution,
creating different execution phases. In this section, we show
results for 15 distinct traffic workloads, each consisting of three
execution phases. The first and third phases are periods of low
network activity and the second phase models a more active
communication period, where a certain number of randomly
chosen node-pairs communicate more frequently than others.
The length of the high activity phase is set to 400,000 cycles
and that of the low activity phases to 100,000 cycles each.
In the workloads labeled mc, we set 6 high-communication
node-pairs, chosen at random, to send traffic at an injection
rate of 0.5 flits/cycle/node, while other nodes inject uniform
traffic at a much lower rate of 0.1 flits/cycle/node. The set of
chosen node-pairs remains the same throughout each workload.
As such, the generated mc workloads model traffic patterns
with small to medium sized congested regions, and we observe
regions spanning 7 to 20 routers, on average. In the remaining
workloads, labeled hc, we assume 10 randomly chosen high-
communication node-pairs that inject traffic at a rate of 0.3
flits/cycle/node, while other nodes inject uniform traffic at a
rate of 0.2 flits/node/cycle. We utilize different random seeds
to generate 5 variations of this type of workload. The hc
workloads create larger congested regions, consisting of 16

up to 35 routers, on average. In the low activity phases, the
injection rate of each node is 0.05 flits/cycle/node.

A. Error Detection and Recovery

Our solution targets functional bugs in the interconnect
design or implementation, and it does not address functional
errors in the overlaying communication protocols, such as the
cache coherence protocol. Moreover, REPAIR is independent
of the exact source of the bug and its location within the
network logic. Instead, REPAIR aims to detect and recover
whenever these bugs affect the correctness of packet trans-
fer. To evaluate REPAIR’s error detection and recovery, we
modeled 5 bugs, each triggered when routers encounter a
different set of conditions, due to several contending packets
traversing it (Table I). As soon as the conditions are met, the
corresponding router drops one of its packets. Our injected
bugs serve to model any incorrect packet delivery, and not a
particular bug in the interconnect design. Note that we are not
restricted to packet-drop type errors, indeed our model can also
emulate the effects of incorrect packet delivery and incorrect
destination delivery, which spans a wide range of errors such
as livelocks, deadlocks, packet corruptions, etc. We ran our 15
workloads and observed the total number of times each bug
manifested across all workloads and the number of workloads
that were affected by the bug. Being representatives of design
bugs that occur at runtime, our bugs are only triggered in
corner-case executions and do not manifest very frequently or
in all workloads, as shown in Table II. In all cases, REPAIR
detects and recovers from the bug, as these complex corner-
case conditions arise, as expected, in high-traffic regions,
where packets are protected by REPAIR’s acknowledgment-
retransmission. Thus, a copy of each erroneous packets is
retransmitted and delivered correctly to its destination.

B. Network Performance

We also evaluated the network performance when using
REPAIR. Since source-based retransmission is traditionally
adopted to ensure correct communication in the presence of
serveral types of errors, such as dropped packets, packet
corruption and misrouting, we also compared REPAIR against
source-based retransmission. Figure 4 shows the execution
time of our workloads when using REPAIR and source-
based retransmission, normalized to the execution time of a
baseline system that is not equipped with any retransmission
capabilities. In both source-based and REPAIR, we assume
two retransmission buffers per node. A network equipped
with REPAIR can achieve communication correctness with
58% faster execution times than source-based retransmission.
Although REPAIR is operating under the same network load
as the source-based retransmission solution, REPAIR subjects
only 25% of packets, on average, to acknowledgment re-
transmission. Thus, in REPAIR, there is less contention for
the retransmission buffers, which accounts for the improved
performance. Whereas, in source-based retransmission, there
are many packets stalled at injection waiting for retransmis-
sion buffers, which causes, on average, a 75% slowdown.
We further evaluated the performance trade-offs by varying
the number of retransmission buffers utilized in source-based
retransmission, and compared it against the execution time of
a REPAIR implementation that utilizes only 2 retransmission

Bug Description

Bug A
AB = 6, AI = 3, ≥ 10 flits in E,W,L ports

sw req = W − S, vc req = E.0 − N.0, E.1 − N.1, W.0 − E.0

Bug B
AB = 7, AI = 4, ≥ 16 flits in E,S ports, ≥ 8 flits in W,L prorts

sw req = W − S,vc req = E.0 − N.0, E.1 − N.1, W.0 − E.0

Bug C
AB = 7, AI = 4, ≥ 10 flits in E,L ports

sw req = L − S, E − W , vc req = E.0 − W.0, N.0 − L.0

Bug D
AB = 6, ≥ 10 flits in L ports

sw req = N − S, W − E, E − L, vc req = S.1 − L.0

Bug E

AB = 7, ≥ 16 flits in E, S ports, ≥ 10 flits in L port.

sw req = E − W, W − E, N − L

vc req = S.0 − N.0, S.1 − N.1, E.1 − W.0

AB: # active buffers. AI: # active input ports.

N,S,E,W,L: North, South, East, West and Local ports.

sw reqs: switch allocator requests. vc reqs: virtual channel allocator requests.

e.g. W-S: packet in the West port is requesting the South port.

E.0-N.0: packet in VC=0 of the East port is requesting VC=0 of the North port.

TABLE I. DESCRIPTION OF MODELED BUGS.

Bug
times # affected # times

manifested workloads recovered

Bug A 6 3 out of 15 6

Bug B 2 1 out of 15 2

Bug C 7 5 out of 15 7

Bug D 3 3 out of 15 3

Bug E 3 2 out of 15 3

TABLE II. REPAIR’S BUG RECOVERY.

buffers per node (Figure 5). The results are normalized to the
execution time of a source-based retransmission solution using
8 buffers. As shown in this figure, REPAIR achieves better
performance with 2-3x fewer buffer resources than traditionl
source-based solutions.

C. Limitations and Discussion

1) Packet latency: Despite providing better network
throughput, packet latencies may increase when using RE-
PAIR. In the absence of free retransmission buffers at initiating
routers, packets needing to be copied will stall, contributing to
the increased average packet latency. The average latency of
packet traversal through the network when using REPAIR, with
2 retransmission buffers, is up to twice that of a throughput-
equivalent source-based retransmission solution. In contrast,
in source-based retransmission, the lack of free buffers causes
packets to stall at injection, leading to a reduction in through-
put, but once packets are in-flight, no additional stalling occurs.

2) Implementation overhead: Assuming routers with 5
ports, 2 virtual channels per port and 8-flit buffers, REPAIR’s
congestion detection requires three 7-bit registers per router
to hold each of the occupancy counter, the upgrade threshold
and the downgrade threshold. We set the downgrade delay
to 10 bits, allowing a maximum delay of 1,024 cycles before
toggling the local congestion flag. The congestion status table
consists of 1 entry to store the router’s local congestion and
4 entries to store the congestion statuses of its neighbors. The
congestion status itself is encoded with 1 bit. To implement
REPAIR’s protection scheme, a failed copy attempts counter
is needed per input buffer to monitor the number of times a
packet fails to acquire a retransmission buffer at an initiating
router. We set this counter to 8 bits, capping the waiting-time
to 256 cycles. Thus, the total storage overhead of REPAIR
is 116 bits per router, less than a one-flit entry of a router’s
input buffer, which is typically at least 128 bits. As for the
control logic to update these counters, its area overhead is
minimal (<0.1%). Lastly, to instrument routers to create copies
of in-flight packets, we require an additional output virtual
channel in the ejection port and modifications to the virtual

0

0.2

0.4

0.6

0.8

1

1.2

n
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

ti

m
e

baseline network with no retransmisson

REPAIR src-based retransmission

Fig. 4. Execution time of each workload, comparing REPAIR to a tradi-
tional source-based retransmission. Results are normalized to the execution
time of a baseline NoC, without any retransmission capabilities. REPAIR’s
performance is 58% better, on average, than source-based retransmission.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

n
o

rm
al

iz
ed

 p
er

fo
rm

an
ce src - 4 retrans. buffers

src - 2 retrans. buffers
src - 6 retrans. buffers

REPAIR- 2 retrans. buffers

src - 8 retrans. buffers

Fig. 5. Buffering requirements of REPAIR vs. source-based retransmis-
sion. Execution time is normalized to source-based retransmission utilizing
8 retransmission buffers per node. On average, REPAIR achieves better
performance, even with 2-3x fewer retransmission buffers.

channel allocator to account for it. This additional virtual
channel does not require adding another port to the router
and has minimal effects on the router logic. We modeled and
synthesized a baseline router using Synopsys Design Compiler
with a 45nm target library and found that the area overhead
for implementing this functionality is 0.86%. The total area
overhead of REPAIR is <1% (0.86% + 116 bits).

V. RELATED WORK

Ensuring the runtime correctness of communication in
NoCs is a widely explored topic. However, many solu-
tions focus on correctness in the face of transient or per-
manent faults in the NoC hardware. [4] is a recent sur-
vey of common fault-tolerance techniques. Source-based
acknowledgment-retransmission mechanisms are among those
that are most relevant to our work [5]. However, we show
that relying on source-based retransmission for detecting and
recovering from escaped design bugs is prohibitively costly
and ineffective to resolve design bugs. We propose a differ-
ent acknowledgment-retransmission approach that successfully
protects only the packets that are susceptible to design bugs.

Several works have proposed runtime approaches that tar-
get functional design errors in processors and memory systems
[6]–[9], whereas a few focus on NoCs, [10], [11]. The authors
of [10] use a combination of formal verification and runtime
checkers to ensure correct NoC operations. [11] is solely based
on a runtime solution, but fails to protect the network from
some of types of errors. Both approaches rely on augmenting
the baseline network with a checker network, introducing
significant area overheads (>9%). In contrast, REPAIR uses an
extremely lightweight technique that can successfully protect
network communication, independently of the types of errors
encountered, while incurring (<1%) area overhead.

Many previous works, [2], [12]–[15], have explored con-
gestion detection in NoCs and they rely on a variety of

metrics including crossbar demand, free virtual channels, free
buffer space, output port contention, etc. Local congestion is
then propagated through the network, by aggregation, [12], or
through a separate subnetwork [13], [14]. In these solutions,
congestion detection is used for providing better performance,
routing algorithms, or congestion control mechanisms [15],
[16], often requiring an accurate global view of congestion.
However, in REPAIR, we aim to detect congested regions for
the purpose of identifying areas with complex activity, thus we
resort to a simpler, yet effective, estimate of congestion.

VI. CONCLUSIONS

We introduced REPAIR, a runtime solution that protects
on-chip networks from the manifestation of design bugs.
Complex execution scenarios are often encountered in high-
traffic network regions, making these regions susceptible to
the manifestation of latent design bugs. REPAIR identifies
congested regions and protects packets traversing them with
an acknowledgment-retransmission scheme. Unlike common
source-based retransmission techniques, acknowledgment-
retransmission is selectively utilized only for a small subset
of packets, while allowing REPAIR to successfully detect and
recover from errors that manifest in congested regions.

Acknowledgments. This work was supported in part by C-
FAR, one of the six SRC STARnet Centers, sponsored by
MARCO and DARPA, and NSF grant #1217764.

REFERENCES

[1] S. Chatterjee, M. Kishinevsky, and U. Ogras, “xMAS: Quick formal
modeling of communication fabrics to enable verification,” Design Test

of Computers, IEEE, vol. 29, no. 3, 2012.

[2] R. Das, S. Narayanasamy, S. K. Satpathy, and R. G. Dreslinski, “Catnap:
Energy proportional multiple network-on-chip,” in Proc. ISCA, 2013.

[3] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2003.

[4] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch, “Methods for fault
tolerance in networks-on-chip,” ACM Computer Survey, 2013.

[5] S. Murali, T. Theocharides, L. Benini, G. D. Micheli, N. Vijaykrishnan,
and M. J. Irwin, “Analysis of error recovery schemes for networks on
chips,” IEEE Design & Test, 2005.

[6] T. M. Austin, “DIVA: A reliable substrate for deep submicron microar-
chitecture design,” in Proc. MICRO, 1999.

[7] A. Meixner, M. E. Bauer, and D. Sorin, “Argus: Low-cost, comprehen-
sive error detection in simple cores,” in Proc. MICRO, 2007.

[8] I. Wagner and V. Bertacco, “Engineering trust with semantic guardians,”
in Proc. DATE, 2007.

[9] A. Meixner and D. Sorin, “Error detection via online checking of cache
coherence with token coherence signatures,” in Proc. HPCA, 2007.

[10] R. Parikh and V. Bertacco, “Formally enhanced runtime verification to
ensure NoC functional correctness,” in Proc. MICRO, 2011.

[11] R. Abdel-Khalek, R. Parikh, A. DeOrio, and V. Bertacco, “Functional
correctness for CMP interconnects,” in Proc. ICCD, 2011.

[12] P. Gratz, B. Grot, and S. Keckler, “Regional congestion awareness for
load balance in networks-on-chip,” in Proc. HPCA, 2008.

[13] X. Chang, M. Ebrahimi, M. Daneshtalab, T. Westerlund, and J. Plosila,
“PARS; an efficient congestion-aware routing method for networks-on-
chip,” in Proc. CADS, 2012.

[14] J. Escamilla, J. Flich, and P. Garcia, “ICARO: Congestion isolation in
networks-on-chip,” in Proc. NOCS, 2014.

[15] E. Baydal, P. Lopez, and J. Duato, “A family of mechanisms for
congestion control in wormhole networks,” IEEE Trans. Parallel and

Distributed Systems, 2005.

[16] M. Thottethodi, A. Lebeck, and S. Mukherjee, “Self-tuned congestion
control for multiprocessor networks,” in Proc. HPCA, 2001.

