
VOLTaiRE: Low-cost Fault Detection Solutions
for VLIW Microprocessors

Smitha Shyam, Sujay Phadke, Benjamin Lui, Hitesh Gupta,
Valeria Bertacco and David Blaauw

University of Michigan
Electrical Engineering and Computer Science Department

Ann Arbor, MI 48109-2122

(smithash, sphadke, blui, guptah, valeria, blaauw)@umich.edu

ABSTRACT
Reliability is emerging as a critical problem in microprocessor de-
sign due to aggressive technology scaling and architectural innova-
tions required by ever increasing performance demands. In this pa-
per we present VOLTaiRE, a VLIW processor with OnLine Testing
and REconfigurability, which guarantees increased reliability of
microprocessor datapaths in the presence of permanent defects and
transistor wearouts. The processor includes a set of novel, dis-
tributed online property checkers, which monitor the correctness
of the functional units during its normal operation. If any of the
units are found to be defective, the processor ceases to use that
unit and can reconfigure itself to function solely with the remaining
working units by exploiting the built-in parallelism in VLIW archi-
tectures. This reconfigured design provides full functionality but
degraded performance. We designed our experimental processor
using a 0.18µm TSMC process with semi-custom and synthesized
blocks. Experimental results show that the coverage provided by
our online checkers is at least 93% for all functional units. More-
over, our post-layout analysis indicates that the area and power
overhead associated with the property checkers is less than 7% of
the processor core.

1. INTRODUCTION
The continuous race towards smaller and smaller feature sizes,

combined with evolving architectural innovations, has made it pos-
sible for CMOS technology to maintain the performance growth
outlined by Moore’s law. However, technology scaling has signif-
icantly increased the susceptibility of digital circuits to permanent
and transient faults, thereby adversely impacting circuit reliability
[1]. Shrinking geometries, lower operating voltages and higher fre-
quencies have resulted in a large increase in the number of occur-
rences of errors [3]. Consequently, the protection of complex VLSI
designs against all possible error sources with minimal overhead
has emerged as a primary challenge for semiconductor companies.

Fault events in digital VLSI circuits can be broadly classified
into three types - permanent, intermittent and transient. Perma-
nent errors reflect unalterable modifications to the original circuit
and arise mainly due to manufacturing imperfections that result in
opens or shorts. These faults are commonly modeled as wires be-
ing stuck-at a particular logical value. Design errors caused by
an erroneous circuit implementation can also result in permanent
faults. In contrast, intermittent faults are primarily influenced by
time-dependent environmental factors such as temperature and op-
erating voltage. Electromigration and gate-oxide breakdown are
two phenomena that result in sporadic errors and can eventually

lead to permanent faults [2]. Transient faults, such as soft errors,
occur when particle-induced transient effects are generated, due to
the interaction of particles with the semiconductor material. Digital
noise due to capacitive crosstalk and power supply variations also
affect both signal integrity and performance of digital circuits.

Designing an integrated circuit so that it is protected against per-
manent, transient and intermittent faults is a daunting and time con-
suming task due to the large number of fault sources, as well as their
unpredictable impact on circuit operation. To protect against design
errors, functional verification is deployed to an extent that is today
a considerable portion of the total design time and effort. Main-
stream techniques in this domain are both directed random simu-
lation [12] and formal [13, 14] and semi-formal solutions [15], all
aiming at the common goal of achieving the highest level of con-
fidence in the correctness of a design. For manufacturing defects,
non-concurrent testing mechanisms are commonly used. However,
the necessary equipment is very expensive [4]. Finally, transient
errors are inherently non-testable due to their fleeting nature.

All these challenges necessitate the need for fast and efficient on-
line reliability solutions that can ensure the correctness of a design
during its entire lifetime, with low cost and performance impact.
The main advantage of online techniques is that they can detect
failures while the processor is operational; hence they can monitor
the correctness of a design after it is deployed in the field. They
can be designed to detect and recover from any of the type of faults
describe above. Classic examples of such solutions are concurrent
error detection (CED) schemes [16] , in addition to the more recent
trend of incorporating a small amount of synthesizable assertions
in a design with the purpose of detecting unverified potential de-
sign errors [8]. The main drawback of currently available online
techniques is the associated area and power overhead.

In this paper we detail an online reliability solution, VOLTaiRE,
that ensures reliable operation of datapath functional units by in-
corporating property checkers in a Very Large Instruction Word
(VLIW) architecture. The main benefits of our solution are min-
imal area and power overhead. In addition, even though our solu-
tions are detailed in the context of a VLIW processor, the detection
mechanisms can be easily altered to suit other types of processors.

1.1 Contributions of this Paper
VOLTaiRE addresses the reliability concerns discussed above to

ensure correct operation of the datapaths on a fixed-point multi-
issue VLIW processor. The architecture of VOLTaiRE is innovative
in two aspects:

• The design features online property checkers that verify the
processor’s computations while it is operational. These low-

cost distributed property checkers provide run-time identifi-
cation and diagnosis of silicon defects.

• The microarchitecture can reconfigure itself to respond to
failures in the design. To achieve this, VOLTaiRE exploits
the multiplicity of the resources in the VLIW processor and
uses only the functional units that are still working properly
to do the computations.

VOLTaiRE is capable of detecting and correcting most of the per-
manent faults in the processor datapaths. In addition, VOLTaiRE is
also able to detect design errors but it can not correct them. In the
event of permanent faults, VOLTaiRE first reconfigures the pipeline
and then corrects the erroneous data generated by recomputing the
faulty operation. Furthermore, VOLTaiRE differentiates between
transient errors caused by single event upsets and permanent faults
so that the reconfiguration is performed only in the latter case.
While in reconfigured mode, VOLTaiRE functions with a reduced
level of performance since one or more of its functional units are
disabled. The extent of performance degradation will depend on
the workload being executed. In the proposed chip implementa-
tion, we obtain an average fault coverage of 94% for the ALUs and
100% for the multipliers while incurring area/power overheads of
less than 7% of the original processor core.

This paper is organized as follows. Section 2 discusses the var-
ious approaches for online testing and the relative merits of these
techniques. An architectural overview of the system in the context
of property checkers is presented in Sections 3 and 4. Section 5
proposes the property checkers and the reconfigurability features of
VOLTaiRE. Section 6 discusses the heuristics developed for eval-
uating the coverage provided by the checkers and the results ob-
tained. Section 7 provides chip statistics and floor planning. Fi-
nally, we conclude in Section 8.

2. RELATED WORK
In the context of online testing of processors, various concurrent

error detection (CED) schemes have been proposed in the literature
[16]. All CED schemes incorporate an output characteristic pre-
dictor that predicts some special characteristic of the output, and a
checker that compares the expected behavior with that of the ac-
tual output and generates an error when a mismatch is detected.
Duplication is the simplest way of detecting errors. It has been
suggested in [16] that a diverse implementation of the logic is a
more robust approach compared to plain duplication as it offers
protection against multiple failures due to a common source. Other
solutions proposed in the direction of online testing are the Berger
codes [17], that can detect all unidirectional errors, and Bose-Lin
codes [18] that can detect up to t unidirectional errors (known as
t-EC). These codes are suitable for the reliability of systems that
have large occurrences of one kind of binary numbers as in memo-
ries. However, it is not easy to use these codes for online testing of
datapaths, as they impose constraints on the way the logic blocks
are designed so that only unidirectional faults can occur. As an ex-
ample, to detect up to 2 unidirectional errors, Bose-Lin codes need
a logic block to be inverter-free and that each logic gate has a fanout
of less than three.

Parity prediction schemes have been used for ensuring fault-
secure datapaths [19]. Here the multipliers and ALUs are con-
structed using fault-secure adders that act as building blocks. The
inherent drawback of both unidirectional codes and parity predic-
tion techniques is that they place heavy restrictions on the imple-
mentation of the hardware, resulting in an area overhead that often

IF

ID

ID

ID

ID

I
F

/

I
D RegFile

4-write 8-read

I
D

/

R
F

ALU

ALU

R
F

/

E
X

W
B

128
32

Forwarding
Logic

R
E
C
O
N
F
I
G
U
R
A
B
L
E

Data
Mem

LS/
M0

LS/
M0

LS/
M1

LS/
M1

LS/
M2

LS/
M2

E
X

/

W
B

Instruction
Memory

Property
Checker

Figure 1: Block Diagram of VOLTaiRE. The processor is based
on an Alpha architecture, which we have augmented with de-
tection and correction mechanisms.

compares to, or in some cases is even greater than, that of plain
duplication [20]. Further, these hardware restrictions have an addi-
tional negative impact on system performance.

A recent trend in hardware design has been exploring “better
than worst-case” solutions, that is, design solutions that can relax
some of the classic design constraints, such as timing, correctness,
voltage, etc., while still producing properly working hardware sys-
tems. Some of the solutions proposed in this domain can detect and
correct design errors and/or permanent faults. For instance, Razor
[6] provides correction of timing-related errors under process varia-
tions. However, the detection and correction mechanisms of Razor
can only address timing-related errors and can not detect perma-
nent defects or time-dependent-device-breakdown (TDDB). DIVA
[7] on the other hand, uses a complete, although streamlined pro-
cessor to ensure correct operation in face of both design errors and
faults, thus consuming a considerable amount of power and area.

VOLTaiRE is different from previous approaches as it can detect
and respond to a wide range of defects with minimal area and power
overhead. The on-chip property checkers check for permanent er-
rors that have escaped post-silicon detection as well as errors due to
device wearouts. Further, VOLTaiRE does not impose any restric-
tions on the implementation of the normal datapath except for mak-
ing provisions for reconfigurability. VOLTaiRE does not need to
replicate an entire datapath. Instead, it embeds sufficient property
checks on-chip to ensure the datapath correctness. Additionally, the
distributed nature of the VOLTaiRE checkers provides accurate de-
tection and diagnosis of defects, at area/power overheads less than
that of even the most efficient previous techniques (e.g., DIVA).
Finally, it takes advantage of the inherent redundacy of VLIW ar-
chitectures to reconfigure a faulty design rather than relying on an
extra simple processor or a redundant unit.

3. VOLTAIRE DESIGN DESCRIPTION
VOLTaiRE is a 4-way, 32-bit fixed point VLIW processor whose

instruction set is loosely based on the Alpha instruction set. The
block diagram of VOLTaiRE with the various modules and property
checks is depicted in Figure 1. We first provide an overview of the
architecture and then present the checker modules that ensure the
reliability of the datapaths.

Each VLIW instruction is 128-bits long and consists of 4 inde-
pendent 32-bit instructions. In VLIW architectures, the burden of

grouping independent instructions into a single bundle is placed
on the compiler. Hence the target micro-architecture is guaranteed
that all the incoming instructions in a bundle can be executed in
parallel. VOLTaiRE has two identical pipelines for carrying out
ALU instructions and two for load/store/multiply (LSM) instruc-
tions. Hence, each VLIW instruction bundle can be composed of
at most two ALU instructions and two LSM instructions. When a
compiler can not completely fill a bundle with independent instruc-
tions, NOPs are used as fillers.

Our baseline processor has five pipeline stages: The instruction
fetch (IF) stage is responsible for fetching a 128-bit VLIW instruc-
tion bundle from memory. The instruction decode (ID) stage de-
codes 4 independent instructions per cycle. The Register File (RF)
stage is involved with register accesses for the instructions. We
have an 8-ported-read and 4-ported-write register file to cater to the
4-way pipeline in a single cycle. The 8 read ports are necessary be-
cause each instruction needs at most 2 reads and 4 instructions are
executed in parallel in every cycle. The 4 write ports are needed to
facilitate the 4 instructions retiring and writing their results simul-
taneously. The execute (EX) stage consists of arithmetic logic units
and load/store/multiply units. The multiplier used in the VOLTaiRE
processor is 16-bit wide and produces a 32-bit result, as opposed to
the ALU and load/store units which are 32-bits wide. ALU instruc-
tions take one cycle to execute, while the instructions using the
LSM units take three cycles. This is shown in the schematic in Fig-
ure 1 where the LSM units are separated by two internal pipeline
registers. The execute stage also houses the reconfiguration mod-
ule. It is responsible for switching the data paths between the 2
ALU and/or the 2 LSM units. Naturally, data paths cannot be inter-
changeable between an ALU and a LSM unit.

The Write Back (WB) stage writes the results of the EX stage
into the register file. Also, the WB stage provides an extra buffer
zone for the property checkers to validate the results of the EX
stage. As data is not written back to the register file until the prop-
erty checker validates the data, execution of instructions up to the
writeback stage can be seen as speculative.

4. VOLTAIRE FAULT-DETECTION MODEL
From an architectural perspective, we envision VOLTaiRE as a

fault-secure reliable VLIW processor. VOLTaiRE can detect and
correct errors resulting from silicon defects and wearout faults. In
VOLTaiRE, the property checkers continuously monitor the datap-
aths for errors. The status of each functional unit is stored in the
processor status register (PSR). When an error is detected in one of
the functional units, the corresponding bit in the status register is
set and the instruction is flushed. The entire pipeline is reconfigured
and the failing instruction is recomputed using another functional
units.

The correct identification of errors is critical. To avoid the cor-
ruption of data from soft errors, the status register’s bits are updated
only if an execution unit fails twice executing the same instruction.
That is, the first time a fault in an execution unit is flagged by the
property checkers, the pipeline is flushed and the instruction is re-
executed. This way, transient faults in the checker or in the pro-
cessor will not cause to incorrectly update the status registers and
mark a unit as faulty, and thus hamper the processor’s performance.

It is possible that a few errors occur in the datapaths that escape
detection. Our goal is to detect errors within a reasonable time-
frame while minimizing the overhead associated with the correct-
ness checks, and imposing no restrictions on the hardware imple-
mentation of the processor.

cincincin
ALU [24:16]ALU [31:23] ALU [16:8] ALU [8:0]

ALU checkerALU checkerALU checkerALU checker

Checker control

- sliding window

Figure 2: The ALU property Checker uses a sliding window
mechanism to evaluate the correct operation of a 32-bit ALU
using only a 9-bit mini-ALU.

5. VOLTAIRE RELIABILITY FEATURES
A novel feature of VOLTaiRE is the use of property checkers to

verify the correct functionality of datapaths. Properties are condi-
tions that are always satisfied during the normal operation of a pro-
cessor. For instance, the output of an adder should always be equal
to the sum of the operands. In general, a property could be a math-
ematical formulation of a relationship between outputs and inputs
of a logic block, or it could state a specific characteristic relation
among certain internal signals, or it could impose constraints on la-
tency, timing or a combination of these. Property checkers can be
deployed at many distinct locations in a design: to monitor signals
within a logic block, to guarantee correct communication among
blocks, and/or check correct functionality at the system level.

On-chip property checkers do not undermine the importance of
verification, system level testing or post manufacturing testing. How-
ever, by having properties placed on-chip, we can validate the cor-
rectness of the design within the input space the user is interested
in and, due to the ability to reconfigure our design we can rectify
the system when faults occur.

Our property checkers are in-charge of flagging faulty execution
units. They check the results of the datapath computations based
on arithmetic properties that can be used to verify them. We have
developed mini-ALUs for verifying the arithmetic logic units and
boundary and residue checkers for the multiplication units.

5.1 ALU Checker
The computations of the 32-bit ALUs of VOLTaiRE are checked

using sliding-window 9-bit mini-ALUs. As shown in Figure 2, dur-
ing each instruction cycle, a mini-ALU checks 9-bits out of the
32-bit result, keeping one bit overlap in each 9-bit window. For in-
stance, during the first cycle the mini-ALU verifies the least signif-
icant 9 bits of the ALU result and in the following cycle, it verifies
the correctness of bits 8 to 16 of the ALU result, using an overlap
of one bit. The checker’s window slides up the 32-bit ladder until
it reaches the most significant 9 bits (24 to 31), and then, restarts
again from the lowest 9-bits. We use this overlap mechanism be-
cause it allows us to simplify the checker implementation, since we
can avoid realizing the input carry logic in the mini-ALU checker.
The same type of ALU checker is also used to validate the address
generation logic in the load/store units.

An alternative to our solution could have been the use of residue
checkers, which have been widely used for detecting errors with

arithmetic operations. However, residue checkers cannot be used
for verifying logical operations. Hence, we chose to verify the ALU
result in small portions using a mini-ALU. It must be noted that, in
comparison to redundancy techniques which duplicate an ALU and
incur high area and power penalties, our mini-ALU is much smaller
and simpler to verify.

5.2 Multiplier Property Checker
Multiplications, in general, are more computationally intensive

than ALU operations. Consequently, our strategy of small win-
dows of verification, used for the ALU checker, is not feasible
for the multiplier units. Hence, we have devised two ad-hoc tech-
niques specific for multipliers, namely bounded checker and resid-
ual checker.

5.2.1 Boundary Checker
Boundary checking is a novel, simple, yet highly effective method

to test the bounds on a given multiplication operation. It is based
on the idea of using the nearest powers of two of a multiplication’s
result to determine the bounds on the product. With this technique,
we execute a fast compare of the result of the circuit implementa-
tion with that of the checker unit to determine whether the produced
result is within the correct bounds.

Our technique starts by first generating upper and lower bound-
aries for the two 32-bit input operands of a multiplication, say A
and B. For simplicity of explanation, let us first consider the case
where the two operands are positive. Clearly, there exist integers i
and j such that

2i
≤ A < 2i+1 (1)

2 j
≤ B < 2 j+1 (2)

We then observe that the following two inequalities are valid:

A∗2 j
≤ A∗B < A∗2 j+1 (3)

B∗2i
≤ A∗B < B∗2i+1 (4)

This pair of inequalities provide bounds on the product A ∗B, that
are efficient to compute. For instance, suppose that A = 5 and B =
11; the Equations (3) and (4) above would evaluate to: 5*8 ≤ 55
< 5*16 and 11*4 ≤ 55 < 11*8. In case one operand, say A, is a
negative value, then we can still find a positive integer i such that
-2i+1 ≤ A < -2i, and our inequalities can be derived in the same
fashion by just substituting these two boundary values for A. The
Equations would become:

A∗2 j+1
≤ A∗B < A∗2 j (5)

−B∗2i+1
≤ A∗B < −B∗2i (6)

A similar reasoning holds when both operands are negative.
The presence of perfect powers of 2 in the checker enables an ef-

ficient hardware implementation to determine the bounds required.
First, the integers i and j can be calculated by counting the num-
ber of significant digits. The four multiply operations required to
generate the bounds have 2n as one of the operands. Hence, they
can be replaced by shift operations. The case where we need to
multiply an operand by a power of two which is also a negative
value can be easily adapted to require simply a partial bit inversion
and a shift operation. The inequalities are checked using simple
comparators. In order to reduce the performance penalty, we split
these operations across different pipeline stages so that the bound-
checking operation does not impact the critical path. In particular,
the shift operations are completed in the execute stage, while the

comparisons are performed in the write-back stage. If an error is
flagged by a comparator, we first identify the source multiplier that
computed this faulty product. We then flush the instruction and
re-compute the multiplication using a different multiplier unit.

Boundary checkers are particularly efficient for multiplications
involving small positive integers since they would generate a tight
boundary constraint. Fortunately, it has been observed that a ma-
jor portion of the arithmetic operations occurring in a processor’s
typical data load involve small operands [11]. Consequently our
boundary checker technique has proven to be an effective method
to evaluate the correctness of multiplier units.

5.2.2 Residue Checker
In addition to the boundary checkers, we also use arithmetic

residue checkers to validate the correct functionality of the mul-
tiplier units [9]. Given an n-bit operand X , its residue Xr with re-
spect to r is the result of the operation X modulo r. When applied
to multiplication, residue codes adhere to the following property:

(Xr ∗Yr)r = (X ∗Y)r (7)

Moreover, when the value of r = 2a - 1, for a given a of choice, the
residue operation is simple to implement in hardware. Hence the
name “low-cost residue code”. For our checker implementation,
we used a = 2 and the value of the residue is r = 3.

Residue codes can detect most faults in the multiplier except
those that manifest as multiples of the residue. As our choice of
residue is 3, we can detect each single-bit error in a multiplication
result. However, it is possible that errors impacting two of more
output bits could go undetected by the residue checker. Note that
our fault model focuses only on single faults. However, since we
have not imposed any implementation restrictions on the multiplier,
a single fault at an internal node could manifest as multiple-bit er-
rors in the output. If a multiple-bit error is such that the difference
between the actual and incorrect result is a multiple of the residue,
then the error goes undetected. For instance, if the correct result of
multiplication were 16 and we obtain an output of 19, the checker
would not detect the error since 163 = 1 = 193. Fortunately, most
errors missed by the residue checker are caught by the boundary
checker and the two checkers used in tandem provide a good over-
all coverage for any internal fault in the multiplier.

Ensuring the correctness of checkers is very important in order
to avoid false negatives. As the checkers are trivial compared to the
actual functional blocks that they are monitoring they can be func-
tionally verified completely by formal verification tools [14]. In
addition, the comparators used in the checkers could be made dual-
rail to obtain completely self-checking checkers [10]. The checkers
in VOLTaiRE are very small and are physically located away from
the execution units to reduce the probability of manufacturing de-
fects occurring in both structures. Furthermore, these checkers do
not need to be resilient to soft-error strikes, since we re-compute an
errorneous result before flagging a unit as defective.

5.3 Reconfigurability
The status of each functional unit is stored in the processor status

register (PSR). When an error is detected in one of the functional
units, the corresponding bit in the status register is set and the in-
struction is flushed. The entire pipeline is reconfigured and the
failing instruction is recomputed using one of the other functional
units. The ALU instructions are single cycle and if one of them
breaks down, we stall the pipeline every other clock cycle to allow
the other functional ALU to take on the extra burden. On the other

Operation Total nets Observed F Detected F Percent
Add st@0 380 343 341 99.42%
Add st@1 380 335 333 99.40%
Xor st@0 380 57 57 100%
Xor st@1 380 39 39 100%
Mul st@0 1138 1136 1136 100%
Mul st@1 1138 1125 1125 100%

Table 1: Property Checker Coverage for Random Inputs.

Operation Total nets Observed F Detected F Percent
Add st@0 380 252 236 93.65%
Add st@1 380 231 222 96.10%
Mul st@0 1138 918 918 100%
Mul st@1 1138 1118 1118 100%

Table 2: Property Checker Coverage for Typical-case Inputs.

hand, if one of LSM units breaks down, VOLTaiRE suffers an ad-
ditional 3-cycle penalty. Note that an execution unit is pronounced
faulty only after ensuring that the failing instruction produced an
erroneous result twice. This circumvents the false negatives that
could otherwise be obtained from single event upsets. The datap-
ath is reconfigured and the processor may operate at reduced per-
formance depending on the program workload.

6. VOLTAIRE COVERAGE ANALYSIS
Quantifying the coverage provided by the property checkers is

an intricate task when developing an on-line fault detection archi-
tecture. We analyzed the VOLTaiRE design for shorts, stuck-at-0
and stuck-at-1 faults. Each of the injected fault was simulated with
1000 test inputs, both random and typical-case data. Note that, not
all injected faults are going to result in false computations. We
recorded the number of valid faults, the faults caught by the prop-
erty checkers, and first times these faults were caught. Tables 1, 2
and 3 show the results of the simulations.

Tables 1 and 2 provide the results of coverage for random and
typical-case input data, respectively. Here, the “Total nets” column
is the total number of nets where faults can occur. The next column
lists the number of nets where the presence of faults actually caused
an incorrect output. The last two columns report the absolute value
and the fraction. The results are presented for both random data and
typical-case data extracted from the SPEC2000 benchmark suite.
For each functional unit we analyzed the resiliency of both stuck-
at-0 (st@0) and stuck-at-1 (st@1) faults. For the ALU unit, the
coverage was evaluated on the ADD and XOR instructions. Note
that for the faults that were missed in the ALU ADD instructions,
the simulation results showed that these inputs had a very low fre-
quency, less than 0.01% probability of appearing in a benchmark.

Furthermore, it can be seen that the ALU property checker, mini-
ALU, gives better coverage for random data than typical-case data
in the case of ADD instructions, as this checker is based on the
property of a sliding window mechanism. This result is expected as
typical-case data is biased towards smaller values, whereas random
data is unbiased.

The multiplier makes use of two types checks, one of which is
favorable to smaller data values. Consequently, we observe that we
can achieve 100% coverage for both random and typical-case data.
The residue checker used for the multiplier can be used to obtain
100% coverage for the ADD instructions, but these checks cannot
verify logical operations.

In Table 3, the multiplier coverage results are further elaborated.

Multiplier Observed Detected Percent Bounded Residue Both
operation faults faults detected alone alone checkers
Rand-st@0 381622 379983 99.57% 0.65% 89.62% 9.30%
Rand-st@1 704416 703989 99.93% 0.02% 90.11% 9.80%
Typ-st@0 190520 189986 99.72% 0.70% 59.38% 39.64%
Typ-st@1 887538 887393 99.98% 0.0% 30.93% 69.05%

Table 3: Multiplier Property Checker Coverage.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

Number of vectors

P
er

ce
n

ta
g

e
o

f
fa

u
lt

s
d

et
ec

te
d

stuck@0 faults

stuck@1 faults

Figure 3: Cumulative plot of the first detection trend for the
ALU property checker for typical-case data.

Every fault that can occur in a particular network is simulated with
1000 random and typical-case data. The table reports the number
of these observed faults in column “Observed” and the number of
faults caught by the checkers in “Detected”. It also reports the per-
centage of the detected faults caught by the bounded checker alone
and not by the residue checker in column “Bounded alone”, and
vice-versa in “Residue alone”. Column “Both checkers” gives the
percentage of faults detected by both checkers. Even though the
contribution of bounded checks is small when compared to residue
checks, it is nevertheless needed to obtain improved coverage.

Figure 3 shows the first times the ALU property checkers de-
tected an error in an operation’s result. For example, the ALU
checker caught 89% of the stuck-at-1 faults and 91% of the stuck-
at-0 faults within their 20th appearance of the incorrect propagation
to an output value. The corresponding data for the multiplier prop-
erty checkers is not shown in the plot as they detected all faults
within the 3rd appearance of a faulty result.

7. VOLTAIRE CHIP CHARACTERISTICS
The VOLTaiRE 4-wide VLIW prototype was implemented in

synthesizable Verilog and it was synthesized for minimum delay
using Synopsys’s Design Compiler. This produces a structural ver-
ilog specification of the processor implemented with Artisan’s stan-
dard cells in TSMC 0.18um fabrication technology. The design was
then placed and routed using Cadence Sedsm, which in turn yields a
physical design with wire capacitances. The custom SRAM blocks
and several circuits within the chip-to-chip communication module
required custom designs and were specified at the schematic level
using Virtuoso Schematic Editor and Virtuoso Layout Editor. The
design was back-annotated to get a more accurate delay profile and
simulated to verify timing and functional correctness. Layouts at

Figure 4: System-level final layout of the processor.

Module Area(mm2) Power(W)
Fetch 0.057 0.029

Decode 0.066 0.052
RF 1.700 0.200

Execute 1.200 1.710
Write 0.224 0.075

AluChk 0.084 0.050
MulChk 0.154 0.089

Table 4: VOLTaiRE absolute area and power consumption by func-
tional unit.

both the block-level and global-level were verified for correctness
using Mentor Graphics Calibre DRC and LVS tools.

The layout of VOLTaiRE is shown in Figure 4. During the imple-
mentation of VOLTaiRE from architecture to layout, several con-
siderations were necessary. In order to have no latency during the
register access stage, we built a semi-custom 8-port read and 4-port
write register file. Several clever techniques were used to reduce
timing delay during register access. The reconfigurable data path is
implemented in the execution stage. To reduce critical path delay,
most of the control signals needed for reconfiguration are generated
in parallel in the RF stage itself. The checkers are also distributed
over the execute and write-back stages for performance reasons.
The clock tree at the global level is a first order balanced structure.
The chip specifications for VOLTaiRE are:

• operating frequency is 280MHz.

• operating voltage is 1.8 V.

• technology is TSMC 0.18µm.

• total area of the chip is 2.5mm X 2.9mm.

• number of PADS is 120.

In Table 4, the area and power measurements of the property
checkers can be compared to the rest of the pipeline stages. No-
tice that the property checkers form a minimal part of the pipeline.
Together they are responsible for 6.9% additional area and 6.3% ad-
ditional power for the processor core. Note that the execution stage

1.7% 1.9%

49.3%

34.8%

6.5%

2.4%
4.5%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

IF ID RF EX WB Aluchk Mulchk

Modules
P

o
w

er
 %

Figure 5: Distribution of the total area of the core.

1.3% 2.3%

9.0%

77.2%

3.4% 2.3%
4.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

IF ID RF EX WB Aluchk Mulchk

Modules

P
o

w
er

 %

Figure 6: Distribution of the total power of the core.

contributes to the maximum power because of the multiple execu-
tion units. Figures 5 and 6 show the contribution of each individual
module to the area and power of the processor core, respectively.

8. CONCLUSIONS AND FUTURE WORK
In this paper we present a novel VLIW microprocessor design

with a low cost fault detection solution for datapaths. Our solu-
tion deploys a series of efficient online property checkers that en-
sure functional correctness while incurring minimal area and power
overhead. When a functional unit fails to operate correctly, our de-
sign can reconfigure itself to isolate the faulty unit and continue to
be fully operational at a reduced level of performance. Experimen-
tal results show that we achieve a high level of test coverage (above
93%) with an area and power penalty of less than 7%.

In future we plan to extend the reconfigurability aspect to all
the control and memory units of the design. While checkers for
the datapath were designed using simple mathematical properties,
checkers for the control unit will require sophisticated analysis.

9. REFERENCES
[1] Critical reliability challenges for the International Technology

Roadmap for Semiconductors. International Sematech Tech Transfer
03024377A-TR, 2003.

[2] J. Srinivasan, S. V. Adve, P. Bose and J. A. Rivers. The impact of
technology scaling on lifetime reliability. In Proc. of Intl.
Conference on Dependable Systems and Networks, June 2004.

[3] C. Constantinescu. Trends and challenges in VLSI circuit reliability.
In Proc of IEEE Micro, vol 23,no 4.pp 14-19, July/August 2003.

[4] K. Cheng, S. Dey, M. Rodgers and K. Roy. Test challenges for deep
sub-micron technologies. In Proc. of 37th Design Automation
Conference, 2000

[5] S. Borkar. Design challenges of technology scaling. In Proc of IEEE
Micro July/August 1999.

[6] D. Ernst, N. Kim, S.Das et al. Razor: A low-power pipeline based on
circuit-level timing speculation. In Proc of IEEE Micro, Nov 2003.

[7] C. Weaver and T. Austin. A fault tolerant approach to
microprocessor design.”, In Proc of Dependable Systems and
Networks (DSN), 2001.

[8] A. Bayazi and S. Malik. Complementary use of runtime validation
and model checking, In Proc of International Conference for
Computer Aided Design, 2005.

[9] A. Avizienis. Arithmetic Error Codes: cost and effectiveness studies
for application in digital system design, IEEE Trans. Computers,
Vol. C-20, No. 11, pp. 1322-1331, Nov. 1971.

[10] E. J. McCluskey. Design techniques for testable embedded error
checkers, IEEE Computer, Vol. 23, No. 7, pp. 84-88, July 1990.

[11] T. Austin, V. Bertacco, D. Blaauw and T. Mudge. Opportunities and
challenges for better than worst-case design, in Proc of Asia-South
Pacific Design Automation Conference, Jan 2005.

[12] J. Bergeron. Writing test benches: functional verification of HDL
models. Kluwer Academic Publishers, 2nd edition, 2003.

[13] K. McMillan. Applying SAT methods in unbounded symbolic model
checking. In Proc. of Computer Aided Verification Conference,
LNCS vol. 2404, July 2002.

[14] A. Biere, A. Cimatti, E. Clarke and Y. Zhu. Symbolic model
checking without BDDs. In Proc. of Tools and Algorithms for the
Analysis and Construction of Systems, LNCS vol. 1579, 1999.

[15] P. H. Hu, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco, J.
Taylor and J. Long. Smart simulation using collaborative formal and
simulation engines. In Proc of International Conference for
Computer Aided Design, 2000.

[16] S. Mitra and E. J. McCluskey. Which concurrent detection scheme to
choose? In Proc. of Intl. Test Conference, Oct 2000.

[17] J. M. Berger. A note on an error detection code for asymmetric
channels, Information and Control, Mar 1961.

[18] B. Bose and D. J. Lin. Systematic unidirectional error-detecting
codes. In the Proc of IEEE Trans on Computers, Nov 1985.

[19] M. Nicolaidis, R. Duarte, S. Manich and J. Figueras. Fault-secure
parity prediction arithmetic operators, IEEE Design and Test of
Computers, 1997.

[20] D. Das and N. A. Touba. Synthesis of circuits with low-cost
concurrent error detection based on Bose-Lin codes. VLSI Test
Symposium, May 1998.

