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ABSTRACT
Recently, there has been a growing concern that, in relation
to process technology scaling, the soft-error rate will become
a major challenge in designing reliable systems. In this
work, we introduce a high-fidelity, high-performance simu-
lation infrastructure for quantifying the derating effects on
soft-error rates while considering microarchitectural, tim-
ing and logic-related masking, using realistic workloads on
a CMP switch design. We use a gate-level model for the
CMP switch design, enabling us to inject faults into blocks of
combinational logic. We are then able to track logic-related
and time-related fault masking, as well as microarchitectural-
related fault masking, at the architecture level. We find out
that for complex designs, logic-and time-related fault mask-
ing account for more than 50% of the masked faults. We
also observe that only 3-4% of the injected faults propagate
an error at the design’s output and cause an error in the
application’s execution, resulting in a derating factor of 30.
From our experiments, we also demonstrate that soft-error
derating effects highly depend on the design’s characteristics
and utilization.

1. INTRODUCTION

As silicon technologies scale into the nanometer regime,
there is a growing concern among system designers about the
susceptibility of future-generation semiconductor-based dig-
ital systems to the effects of transient faults caused by ener-
getic particles (such as neutrons and alpha particles) [24, 12,
25]. Historically, the major concern about transient faults
effects was focused on memory structures. This was because
memory structures dominated chip area and unstructured
combinational logic exhibited low soft-error rates. Recently,
numerous works [20, 7] argue that in future-generation sys-
tems, the soft-error rate due to transient faults in combina-
tional logic will grow and will therefore constitute a major
challenge for system designers to provide high-reliability de-
signs.

Numerous techniques already exist to deal with the effects
of transient faults, most typically by providing soft-error de-
tection via redundancy [1, 16, 3, 21, 17]. However, all of
these techniques have a significant impact on performance,
power dissipation, die size and design time. Consequently,
early in the design cycle, system designers need to trade-off
between the reliability level provided by these approaches

and their implementation cost. On the one end, a design
with inadequate soft-error protection may prove useless due
to its poor reliability. On the other end, a design with exces-
sive protection may make the product uncompetitive in cost
and/or performance. The best way for the system design-
ers to balance this trade-off is by having accurate soft-error
estimates for their designs. Although much work has been
done by the device community to get raw soft-error rates for
current and future technologies devices [20, 5, 4, 8], system
designers still lack an accurate assessment of soft-error rates
for their designs. This is mainly due to the lack of analysis
tools that accurately model the possible masking of tran-
sient faults as they enter into a complex computing system.

The need for accurate soft-error rates of complex circuits
places high demands on the analysis infrastructure. The
analysis framework must accurately gauge detailed circuit-
level phenomena in order to correctly model the introduc-
tion, propagation and possible masking of transient faults.
For example, a transient glitch which manifests in a block
of combinational logic may not affect the latch at the end of
the associated logic chain, either because the glitch is time-
masked and therefore doesn’t reach the input of the latch
at the latch’s sensitive timing window, or it is logic-masked
and does not propagate to the latch’s input. Previous ap-
proaches used for analyzing much of the work in reliable sys-
tems design utilize high-level models of micro-architectural
components. The advantages of these simplistic models are
flexibility and speed. However, the accuracy of these models
is put in question as they cannot capture important aspects
of transient fault propagation in complex systems, such as
timing and logic masking.

In this work, we introduce a high-fidelity, high-performance
simulation infrastructure for estimating soft-error rates of
complex computing systems. We permit simulations that
react to circuit-level reliability phenomena on a cycle-by-
cycle basis, while simulating with sufficient speed in order
to examine entire workloads. Our simulation framework is
capable of asynchronously injecting voltage pulses of var-
ious durations at the gate level and modeling the many
possible ways the faults can be masked through microar-
chitectural, logic and timing masking. For evaluating the
simulation framework, we select an essential aspect of a
typical chip multiprocessor (CMP) system: a single CMP



router switch. We further decompose the CMP switch into
functional modules with different circuit characteristics and
study how different circuit characteristics tolerate transient
faults and how they affect the soft-error derating factor. We
use realistic workloads with various design utilizations and
study how they affect fault tolerance and soft-error deration.
In addition, we give estimations of the design failure rates
for current and future technologies based on derated soft-
error rates. Finally, we perform experiments to study the
effects on soft-error derating when a single energetic particle
strike causes multiple faults to manifest.

The remainder of the paper is organized as follows. Sec-
tion 2 details the various ways a transient fault might get
masked. Section 3 describes the simulation framework and
the transient fault model used. In Section 4, we outline the
CMP switch architecture used. In Section 5, we describe our
experimental methodology and the experimental results. In
Section 6, we go through the related work and finally, Sec-
tion 7 gives conclusions and suggests directions for future
work.

2. SOFT ERROR MASKING

Fortunately, not all transient faults affect the final out-
come of a program. In order for a transient glitch caused
by a particle strike in combinational logic to affect correct
computation, it must first change the value of the latch at
the end of the associated logic chain and then propagate to
the design’s output. There are five basic phenomena that
might prevent the glitch from affecting the design’s output
thereby masking the transient fault:

• Logic Masking: A faulty glitch is logically masked
when it fails to affect the input value of a latch be-
cause it gets blocked by a following gate whose output
is completely determined by its other input values (i.e.
a faulty logical zero fitting a two input OR gate when
its other input value is a logical one). It’s clear that the
fewer levels of logic between two latches, the lower the
probability that a faulty glitch will be logically masked.
Therefore, it is expected that as the pipelines of micro-
processors get deeper and clock frequencies get shorter,
the levels of logic in a microprocessor’s pipeline stages
will become fewer and logic masking within a given
pipeline stage will occur less frequently [20]. Further-
more, as the pulse duration of the faulty glitch gets
larger, the probability that it will be logically masked
is lower. This is because the values of the other in-
puts of the blocking gate that determine its output
value must remain unchanged for an extended period
of time.

• Timing Masking: A faulty glitch is timing masked
if it affects the input of a latch, only in the period of
time that the latch is not sensitive to its input value.
It is clear that larger pulse durations lessen the prob-
ability of timing masking. Furthermore, the period of
time that the latch is sensitive to its input value is de-
termined by the technology’s setup and hold times.
Therefore, as microprocessors’ clock frequencies get
shorter and setup and hold times become a larger frac-
tion of the clock period, it is expected that the timing
masking will become a less frequent phenomenon.

• Electrical Masking: A faulty glitch is electrically
masked if its pulse is attenuated by subsequent logic
gates due to electrical properties, and as a result it does
not affect the input value of a latch. As with logic
masking, electrical masking depends on the number
of levels of logic between two latches. Hence, as the
length of the faulty glitch gets larger (or the number of
levels of logic become fewer), the probability that the
transient fault will get masked is less. Furthermore, as
transistors get smaller and faster, the effects on pulse
attenuation by logic gates are reduced, and electrical
masking is also expected to reduce.

• Microarchitectural Masking: Even when a latch’s
value is altered by a transient fault (either due to a
faulty transient glitch manifested in a combinational
logic block that didn’t get masked and, therefore, suc-
cessfully changed the latch’s value or due to a particle
strike directly flipping the latch’s value) the transient
fault can still be masked and be transparent to the
application’s correct execution as a result of microar-
chitectural masking. For example, if a register’s bit is
flipped by a particle strike and subsequently the regis-
ter’s value gets overwritten by a new value without the
wrong value ever having been read, then the fact that,
for a period of time, the register’s value was incorrect is
transparent to the application’s correct execution and
the transient fault is successfully masked by microar-
chitectural phenomena. There is also the case where
an incorrect value latched in a flip-flop is subsequently
masked either by electrical, logic or time-related mask-
ing in the next stage, thereby is prevented from prop-
agating to the design’s output. Since the state of the
design is incorrect for at least one cycle, we consider
this as microarctitectural-related masking, no matter
the way the transient fault was subsequently masked.

• Software Masking: Even when a transient fault prop-
agates an error to the output of the microprocessor,
the error can be masked at the software level [13]. For
example, when an error is propagated outside of the
microprocessor’s domain and causes an incorrect value
at a memory location, which is then overwritten by the
application or the operating system without having
been used, then the error is software-masked and it is
transparent to the correct execution of the application
or the operating system. The quantitative analysis of
software masking is out of the scope of this paper, as
it occurs outside of a microprocessor’s domain.

These five masking phenomena significantly derate the es-
timated raw soft-error rates for complex circuit designs but,
at the same time, because their analysis need to accurately
model and track cycle-by-cycle details of circuit activity, the
aforementioned phenomena place high demands on the soft-
error analysis infrastructure.

3. MODELING AND ANALYSIS OF SOFT
ERRORS

In this section, we describe our simulation infrastructure
for modeling and analyzing transient faults. In subsection
3.1, we first give a detailed description of the simulation
infrastructure and methodology used, and subsequently in



subsection 3.2, we give details about the transient faults
model used.

3.1 A Gate-Level Soft-Error Simulation In-
frastructure

Our simulation infrastructure for evaluating the impact
of transient faults on a complex digital design is shown in
Figure 1. It consists of an event-driven simulator which is
comprised of three major modules:

Statistical Fault 
Model

Model 
Stimuli

(TRIPS traces)

Structural
Design

Fault
Analyzer

Time, location,
duration

Fault is

• Logic masked
• Timing masked
• Architecture masked
• Error (fault manifests)

MonteCarlo Simulation
loop – 1000x

Fault-Exposed
Model

Golden Model
(no fault injected)

Figure 1: Simulation infrastructure. The simulation
infrastructure consists of an event-driven simulator,
comprised of the design under test, a fault generator
and a fault analyzer. The fault generation is based
on a transient fault model and the model stimuli are
based on realistic workloads.

• Design Under Test: The design under test is the
structural gate-level description of the design (netlist)
obtained by synthesizing the Verilog description of the
design using Synopsis CAD tools. In the simulation
framework, we instantiate two copies of the design’s
structural gate-level description, one of which is sub-
jected to fault injection (fault-exposed model) and the
other is kept intact (golden model).

• Fault Generator: The fault generator is capable of
injecting voltage pulses of various durations at any
gate in the design and flipping the value of any in-
dividual flip-flop of the design. This is done by forcing
values on the design nets and latches during the sim-
ulation. Faults are uniformly distributed at the time
of occurrence, spatial location (which net they affect)
and duration of the event.

• Fault Analyzer: At the end of each clock cycle, all
outputs and sequential elements of the design under
test are compared with the golden model. The fault
analyzer distinguishes four cases: (1) if a mismatch
is detected in the outputs of the design, then an er-
ror has occurred; (2) if a mismatch is found in the
sequential elements, but not at the outputs, then the
fault was microarchitecturally masked; we derive that
all the other injected faults have been either (3) time
masked or (4) logic masked. To discern between these
two cases, we re-run the simulation by injecting the
same faults synchronized with the design’s clock cycle

using a one cycle duration: the faults injected in this
second simulation cannot be time-masked, hence, the
difference between these two analyses gives the correct
partition between time-and logic-masked faults.

Our simulation infrastructure does not model the elec-
trical attenuation of the voltage pulses, caused by particle
strikes, as they traverse through a chain of logic. Previous
work [20], studied in detail the effects of electrical attenua-
tion on transient voltage pulses and concluded that the pri-
mary effect of electrical masking is to screen out marginal
pulses and the degradation effect on pulses with sufficient
strength is minimal. In general, it is expected that the frac-
tion of masked transient faults due to electrical masking is
minimal and it would be decreased with device scaling.

The maximum propagation delay of an injected fault to
propagate to the design’s output in the simulated CMP
switch design is 160 clock cycles. Therefore, we let the CMP
switch to warm up for the first ten thousand cycles and then
start injecting faults in the design with intervals of at least
200 clock cycles between each injected fault. For each in-
jected fault we keep track of its effects on the design by
monitoring the design’s state and outputs and comparing
them with those of golden model.

In order to gain statistical confidence of the results, we
run the simulations many times in a Monte Carlo modeling
framework. Each simulation setup was run 1000 times with
different random number generation seeds, so that the dis-
tribution of injected faults in space, time and duration were
different for each run.

3.2 Transient Faults Model

An important aspect of the simulation framework is the
way it models transient faults. The system uses a pulse-
based model for transient faults which are caused by ener-
getic particle strikes. The transient voltage pulses are clas-
sified into five classes based on their duration. The model
uses a sixth class of faults to model the flip of a flip-flop’s
value, when the flip-flop is hit directly by an energetic parti-
cle strike. The transient fault generation is modeled using a
six-variable random process, where random variables model
the uniformly distributed arrival rate of each class of faults.
For both current and future technology processes the mean
inter-arrival times for each class of faults was derived by [20]
and by detailed SPICE simulations.

4. CMP SWITCH ARCHITECTURE

The design that we have chosen to experiment with is an
essential part of a Chip Multiprocessor (CMP): an inter-
connection network switch. We selected this design because
it is much less complex than a microprocessor yet it is not
too simplistic in that it contains many representative com-
ponents of larger designs, including finite state machines,
buffers, control logic, and buses.

The interconnection network switch chosen is a worm-
hole switch that collectively implements the routing and
flow-control functions required to buffer and forward 32-bit
packet flits in a mesh and 2D torus interconnect network
topologies. The design is derived from the design described
in [15, 2]. Our design is pipelined at the flit level, where a
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Figure 2: Baseline CMP switch design. In (a) a high-
level block diagram for a wormhole interconnection
switch is presented. It consists of five input con-
trollers, a cross-bar, a switch arbiter, and a cross-
bar controller. In (b) an area breakdown of the four
switch modules and the input/output buses is given.
The area is broken down into state and logic.

head flit proceeds through the routing and output virtual-
channel allocation stages and all packet flits pass through
the switch allocation and switch traversal pipeline stages.
A high-level block diagram of the interconnection switch is
depicted in Figure 2(a).

The implemented interconnection switch is composed of
four major functional modules. The first being the input
controller module which is responsible for determining the
virtual output channel to which the packet flits must be
routed. It uses a dimensional order routing algorithm (rout-
ing logic). In addition, the input controller keeps track of
the state of the virtual channel by determining whether it
is idle, receiving a route request by a head flit, requesting a
virtual channel allocation from the switch arbiter or trans-
mitting a packet (VC State). The input controller is also
augmented with buffers used for buffering flits when it is un-
able to allocate and route the incoming flits (input buffers).
For the specific design, each of the five input controllers is
augmented with eight 32-bit buffers.

The second major functional module, the switch arbiter,
allocates the output virtual channels to the input controllers,
depending on their requests. To avoid starvation, the switch
arbiter uses a priority matrix, in a way that the input con-
troller that least recently requested an output virtual chan-
nel has the highest priority during the output virtual chan-

nels allocation. Furthermore, the switch arbiter uses a credit-
based flow control by keeping track of the number of buffers
available on the next hop. After the switch arbiter allo-
cates the output virtual channels to the input controllers,
the third functional module, the cross-bar controller, de-
codes the allocate signals. The final and fourth functional
module is the cross-bar, which provides common paths be-
tween the switch’s input and output ports.

The design is specified in Verilog and synthesized using
the Synopsys tools to create a gate-level netlist. To pro-
vide a better understanding of the design, Figure 2(b) pro-
vides an area breakdown of the four modules along with the
input/output buses. The entire switch is composed of ap-
proximately 10k gates. The height of each bar represents
the percentage of the total area for each module, and the
bars are broken down into two pieces that indicate, for each
module, the fraction of area devoted to logic/state. In this
design, the input controller is obviously dominant in area.
There are five input controllers, thus the fraction of area is
magnified. The design is also heavily dominated by logic as
compared to state: 84% logic verses 16% state.

5. EXPERIMENTAL METHODOLOGY
AND RESULTS

5.1 Experimental Methodology

The design under test is described using the Verilog HDL
and synthesized to a gate-level representation using the Syn-
opsys Design Compiler [22]. The simulator used is the Syn-
opsys VCS 7.1.1. To evaluate the design’s exposure to tran-
sient faults, we used realistic workloads from communication
traces derived from the TRIPS architecture [19]. We used
traffic traces for 13 benchmarks from the SPEC2000 bench-
mark suite, six benchmarks from the MediaBench suite, and
one synthetic high-utilization traffic trace (hi util), as shown
in Table 1.

Each traffic trace consists of 32-bit packet communica-
tion transactions, where each communication transaction is
specified by the incoming input channel, the header of the
flit with the destination node (needed for the routing of the
packet), the data of the packet and the clock cycle that the
packet is injected into the switch. The mean switch utiliza-
tion for each traffic trace is specified by the ratio between
the number of communication transactions and the number
of clock cycles needed to complete all the communication
transactions.

As shown in Table 1, the time needed for running a bench-
mark is relatively small (the simulations were ran on a 1GHz
SunBlade 1500 with 1GB RAM). This enables us to run the
simulations many times in a Monte Carlo modeling frame-
work, in order to gain statistical confidence of the results.

5.2 Experimental Results

In Figure 3, we classify the injected faults into four cat-
egories: (1) the faults that caused an error, (2) faults that
were microarchitecturaly masked, (3) faults that were tim-
ing masked, and (4) faults that were logically masked. This
classification is presented per transient fault type. The first
type (column) are state-bit flipping transient faults, while



Benchmark 
# of Comm. 

Transactions 
Clock Cycles 

to Completion 
Mean 

Util. (%) 
Sim. 

Time (s) 

ammp 64664 356452 18.14 758.53 

art 44050 549648 8.01 531.64 

bzip2 69014 686084 10.06 823.22 

compress 60306 1304340 4.62 715.28 

equake 57608 641020 8.99 664.00 

gzip 76538 572473 13.37 909.39 

m88ksim 58335 814768 7.16 689.42 

mcf 76866 704404 10.91 920.78 

mgrid 71786 258160 27.81 822.63 

parser 80338 1429220 5.62 951.34 

swim 47105 236272 19.94 540.58 

twolf 59529 1009868 5.89 731.58 

vortex 70848 439440 16.12 842.99 

adpcm 79257 1454536 5.45 969.68 

dct 70786 175120 40.42 836.07 

hydro2d 62026 302728 20.49 728.78 

mpeg2encode 58368 533684 10.94 680.13 

tomcatv 51796 208952 24.79 602.62 

turb3d 38695 416412 9.29 448.12 

hi_util 40005 57150 70.00 505.05 

 

Table 1: Simulated Benchmarks. The benchmark
pool consists of 13 benchmarks from the SPEC2000
suite, six from the MediaBench suite and one syn-
thetic benchmark. For each benchmark, we list the
number of communication transactions, the clock
cycles needed to complete these transactions, the
switch’s mean utilization and the simulation time in
seconds.

the next five are transient glitches with a pulse duration
of 100%, 80%, 60%, 40% and 20% of the design’s clock
period, respectively. The last column is the classification
for all types of transient faults combined. The presented
data are averages over all the SPEC2000 and MediaBench
benchmarks. The bit-flipping faults have no logic-related or
time-related masking, since they are injected directly into
the design’s state.

We notice that in the design there is high microarchitec-
tural masking that reaches 95% of the injected faults. This
suggests that even if the logic-related and time-related mask-
ing of transient glitches in combinational logic blocks were
more infrequent and glitches altered latches’ values more fre-
quently, the derating factors of transient faults would still
be high due to microarchitectural masking effects. From
the graph, we can also notice that as the pulse duration of
the faulty glitches gets smaller, the logic related masking
fraction gets larger. We attribute this to fact that when
the glitch pulse is smaller the possibility of being logically
masked by a subsequent gate is higher. The reason for this
higher probability is that the other inputs of the blocking
gate, which logically masks the fault, need to stay at this
blocking state for a lesser period of time. As the pulse dura-
tion of the faulty glitches gets smaller the time related mask-
ing fraction is increasing as well. This is because glitches
with smaller pulse durations have less of a chance to reach
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Figure 3: Classification of transient fault ef-

fects. The graph classifies the effect of tran-
sient faults on: logically-masked, time-masked,
microarchitecturally-masked, and those faults that
caused errors. The classification is made for six dif-
ferent categories of transient faults with different
characteristics, and for the combination of all the
different fault categories.

a latch’s input during the latching window.

From Figure 3, we observe that the degree and type of
masking of transient faults depends on the characteristics of
each fault. For example, the percentage of transient glitches
with small pulse duration that cause an error in the ap-
plication’s execution (1.2%) is four times smaller than the
equivalent percentage for state-bit flipping transient faults
(4.8%). Furthermore, the logic masking of transient faulty
glitches with small pulse duration is 21% more than the logic
masking of transient glitches with pulse duration equal to
the design’s clock period. Although timing masking is neg-
ligible (less than 1%) for glitches with pulse duration larger
than half of the design’s clock period, it becomes important
for small glitches and it accounts for up to 9% of the masked
faults.

When all transient fault types are combined, we observe
that 51.7% of them are logic masked, 2.2% are timing masked,
and 42.9% are microarchitectural masked. The remaining
3.2% of the injected transient faults propagate the fault at
the output of the design and consequently cause an error in
the application’s execution. The 24% of the total error rate
results from the state-bit flipping transient faults, while the
rest 76% results from transient faults injected into combi-
national logic.

The 3.2% of the injected faults that cause an error in
the application’s execution can also be represented as a de-
rating factor (the term vulnerability factor is also used in
related works [14]) of 31.25, which means that one of ev-
ery 31.25 energetic particle strikes that hit the design will
cause an error in the application’s execution. The derat-
ing factor for each benchmark is shown in Figure 4. We
notice that the derating factors for the SPEC2000 and Me-
diaBench benchmarks fluctuate between 22 and 45, which
correspond to error rates of 4.5% and 2.2% respectively. On
average, both SPEC2000 and MediaBench benchmarks ex-
hibit derating factors of 31. The synthetic high-utilization
benchmark exhibits a much lower derating factor of 12 due
to less microarchitectural masking of transient faults. Even
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though this artificially created benchmark keeps the switch’s
buffers full and a number of packets get routed by the switch
every cycle, still the transient faults that cause an error to
the application’s execution is relatively low at 8.3%. Al-
though the error rate for the high-utilization benchmark is
low, it is still 2.6 times larger than the average error rate
over the realistic workloads. This brings to light the impor-
tance of evaluating a design’s tolerance to transient faults
using realistic workloads.

It ’s interesting to notice from Figure 3 that when logic
and time related masking is not taken into account, 95% of
the injected transient faults are microarchitecturally masked
leading to a derating factor of 20. However, when logic and
time related masking is taken into account the derating fac-
tor is increased by 56% to 31.25. This shows the importance
of logic/timing masking analysis in order to get more accu-
rate estimates of soft-error derating factors.

The aspects of a design that are important in its toler-
ance to transient faults are the transistor density (number
of transistors per area unit), the raw soft-error rate of a sin-
gle device in the design, the design’s size, and the design’s
clock frequency. All of these design parameters change with
process technology scaling, except for the design size of mi-
croprocessor chips which, based on ITRS [6] projections, will
stay constant for future generation microprocessor designs.
In order to derive a design’s failure rate, we need to know
all of the above along with the design’s SER derating factor.
Based on the design’s masking derated SER, derived from
simulations using our simulation infrastructure, and projec-
tions for the characteristics of future designs from ITRS [6],
we estimated the failure rates of the CMP switch design for
current and future process technologies. We note that the
accuracy of these failure rate estimations are subject to the
degree that the fault model used for raw SER (described in
Section 3.2) accurately estimates raw SER of single devices
for current and future process technologies and to the accu-
racy of ITRS’s projections of future design characteristics.

Figure 5, presents the estimated failure rates of six dif-
ferent process technologies for varied workloads. Across the
different process technologies the architecture of the CMP
switch design is kept the same, and the presented failure
rates are for an area equal to a chip die. The Y axis rep-
resents the design’s failure rate in FITs (Failures In Time),
which is the number of failures in a billion hours of opera-
tion, and is plotted in logarithmic scale. The top line is the
raw SER, where each energetic particle strike that hits the
design is assumed to cause an error at the application’s ex-
ecution. The other lines project the estimated failure rates
for two different designs for varied workloads considering
fault masking. Since the design’s clock frequency is one of
the major design aspects that affect its tolerance to transient
faults (and typical interconnection networks are clocked with
much slower frequencies than microprocessors), we estimate
the failure rates for two designs: one with projected clock
frequencies for interconnection networks and a second with
projected clock frequencies for microprocessors (though the
architecture of the design is the same). As we can see, from
the graph, the failure rates for the higher-clock frequency
design are an order of magnitude larger than that of the
lower-clock frequency design. The reason for this is that
while the pulse duration of a given transient fault is equal
with the clock cycle of the high frequency design, it is only
a fraction of the clock cycle of the low frequency design. As
shown in Figure 3, transient faults whose pulse duration is
only a small fraction of the clock cycle exhibit significantly
lower error rates than the ones with pulse durations equal
to the clock cycle. This indicates the importance of the
frequency at which the design is clocked in relation to its
ability to tolerate transient faults.

In Figure 5, for each design we present the failure rates
for different workloads: the synthetic high-utilization bench-
mark, the average failure rate over the SPEC2000 bench-
marks, and the average failure rate over the MediaBench
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Figure 5: Projection of failure rates due to transient

faults. The estimated failure rates due to transient
faults are projected for six different process tech-
nologies, for designs with different clock frequencies
and for various workloads. The raw SER is pro-
jected as well.

benchmarks. The failure rates for the SPEC2000 and Me-
diaBench benchmarks overlap, which indicates that realistic
workloads exhibit similar masking effects to transient faults.
The failure rate for the high-utilization benchmark is higher
than that of the realistic benchmarks, which correlates with
the lower derating factor showed in Figure 4.

Since the die area of a CMP is not dominated by the inter-
connection network, in order to estimate the failure rate of
a CMP interconnection network the failures rates presented
in Figure 5 must be multiplied by the area percentage of
the interconnection network over the total die area. For ex-
ample, in a typical scenario of a chip multiprocessor, where
the 20% of the chip area is allocated to the interconnection
network then the failure rates corresponding to the intercon-
nection network are five times less than the ones presented
in Figure 5. Of course, in order to estimate the total failure
rate for the chip multiprocessor, the estimated failure rate
for the remaining 80% of the chip area has to be added to
the interconnection network’s failure rate.

Figure 6, shows the distribution of the injected transient
faults for the five different components of the CMP switch.
The data referenced by the graph suggests that transient
faults can have different effects on components with dif-
ferent characteristics. The most vulnerable component of
the switch design is the switch arbiter with an error rate
of 12.8%. The high vulnerability of the switch arbiter is
inherent to its functionality, to arbitrate the output chan-
nels of the switch to the input channels. Hence, an error
in the switch arbiter would lead to misrouting a flit. The
microarchitectural-masking fraction for this component ac-
counts for the cases where an output channel was arbitrated
incorrectly to an input channel, but during the particular
clock cycle no useful flit was routed through the output
channel and the corresponding input channel. Thus, the
erroneous arbitration is transparent to the application’s cor-
rect execution.

The next most vulnerable component in the design is the
I/O busses with error rates of 7.9%. We attribute this to
the fact that, in a case where a transient fault strikes an
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Figure 6: Transient fault distribution per switch com-

ponent. The distribution of injected transient faults
is shown for the five different components of the
CMP switch. Each component, based on its char-
acteristics, exhibits different error rates and fault-
masking distributions.

output bus transferring a useful flit, the fault is propagated
directly to the design’s output causing an error. Otherwise,
if the bus does not transfer a useful flit the fault is mi-
croarchitecturally masked. Furthermore, time-related, logic-
related and microarchitectural-related masking can manifest
in cases where faults occur at input busses. The input con-
trollers exhibit moderate error rates at 2.1% and the cross-
bar controller and cross-bar components exhibit negligible
error rates. As shown in Figure 2(b) the switch’s area is
dominated by the five input controllers, hence, the pattern
of transient fault distribution for the hole design, shown in
Figure 3, matches with the input controller’s distribution.

An interesting experiment in studying the effects of tran-
sient faults is to observe the effects of transient faults on
the design when a single energetic particle strike that hits
the design affects more than one neighboring devices. Using
our simulation infrastructure, we modeled this phenomenon
by injecting multiple glitches at neighboring gates in com-
binational logic blocks and by flipping multiple neighboring
state bits at the time that a strike hits the design. Since no
complete place and route was performed on the design, the
way we modeled multi-fault strikes was by injecting faults
in multiple gates in the same functional module in the case
of strikes on combinational logic and by flipping contiguous
bits in the case of strikes on sequential logic. In [11], the
authors measure the probability that a single energetic par-
ticle strike will affect multiple SRAM cells for the 130nm
and 90nm process technologies, and conclude that there is
a 2% probability of affecting two cells and a 0.1% proba-
bility of affecting three cells. These rates are expected to
grow with process-technology scaling, although multi-fault
strikes in combinational logic will be less common than in
SRAM due to the larger area and wider transistors em-
ployed in combinational logic. Due to the lack of a model
for multi-fault strikes for latches and logic gates in combi-
national logic blocks, for future process technologies, we are
over-pessimistic and each strike results to multiple faults in
our simulations.
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Figure 7: The failure rates of multiple faults per en-

ergetic particle strike. The projected failure rates for
different number of faults per strike are shown for
six different processes technologies.

Figure 7 shows the estimated failure rates for current and
future process technologies for one, two and three faults per
strike. The corresponding derating factors are shown in Fig-
ure 8(a). From the results, we observe that the derating fac-
tor is decreased, when a single strike causes two and three
faults, by 75% and 112% respectively. The concluding ob-
servation is presented in Figure 8(b), where we show that
when multiple faults are injected into the design in a single
cycle, more faults manifest as errors in the design’s opera-
tion. Specifically, by injecting more faults per strike, more
faults pass the first level of masking, which is logic masking,
and then get masked by timing masking. Thus, logic mask-
ing percentages decrease as more faults manifest per strike
and, respectively, timing masking percentages increase. Fur-
thermore, more faults successfully alter the value of a latch
but subsequently get masked by microarchitectural mask-
ing and, as expected, more faults eventually cause an er-
ror at the application’s execution, thereby causing both mi-
croarchitectural masking and error percentages to increase
as more faults manifest per strike.

6. RELATED WORK

Several works studied with varied degrees of simulation
fidelity the soft-error’s impact on a system’s reliability. The
impact of soft errors on embedded microprocessors was stud-
ied in [18]. The simulation infrastructure used injected tran-
sient faults in a gate-level model of a DLX-like microproces-
sor. However, the focus of that work was to compare the
soft-error vulnerability of control versus speculative logic,
and combinational versus sequential logic. The main pur-
pose was not to quantify the transient fault masking effects
yet the concluding outcome of this work concurs with our
observations that there are inherently high soft-error derat-
ing factors in complex designs.

In [23], the authors focus on the effects of transient faults
and their manifestation within a typical modern micropro-
cessor. The authors present a fine-grained latch-level Verilog
processor model and they randomly flip single-bit state ele-
ments in order to accurately characterize microarchitectural
fault masking and thereby to identify which portions of the
microarchitecture are most susceptible to error when a tran-
sient fault hits the processor. The main difference between
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Figure 8: Modeling multiple faults per energetic par-

ticle strike. (a) shows the corresponding derating
factors and (b) the distribution of injected transient
faults.

this work and ours is that our simulation infrastructure mod-
els the design under test at a gate-level model enabling accu-
rate consideration of timing-related and logic-related mask-
ing effects in addition to microarchitectural masking. Our
technique provides a higher degree of simulation fidelity and
accuracy. A similar simulation approach was used in [9] to
evaluate the transient-fault vulnerability of a PicoJava II
microprocessor.

In [26], an analytical soft-error rate analysis methodology
(SERA) is introduced, based on a modeling and analysis-
based approach employing probability theory, circuit simu-
lation, graph theory and fault simulation. The major draw-
back of this methodology is that its applicability is limited to
relatively simple designs (in the hundreds of gates). Further-
more, the methodology concentrates only on logic-related
masking of transient faults in blocks of combinational logic.

Another work studying the effects of soft errors on pro-
cessor reliability is SoftArch [10]. This work quantifies the
impact of technology scaling on the processor soft-error rate,
taking the architecture level derating effects and workload
characteristics into consideration for different structures in
a modern superscalar microprocessor. However, this work
studied soft-error derating at an architecture-level model,
disregarding soft-error derating effects such as logic-related
and time-related masking.

7. CONCLUSIONS AND FUTURE WORK

With process technology scaling, there is a growing con-



cern that soft-error rate will grow and will constitute a ma-
jor challenge for designing reliable systems. In this work,
we use a high-fidelity, high-performance simulation infras-
tructure to study the derating effects on soft-error rates
by considering microarchitectural, timing and logic related
fault masking. Our experimental results show that for com-
plex designs there is significant fault masking, with derating
factors as high as 30. We also show that soft-error derat-
ing effects highly depend on the design’s characteristics and
its utilization. Our observations suggest that the soft-error
rate threat to future systems’ reliability might have been
overstated and that system designers need to evaluate their
design’s soft-error tolerance with high-fidelity simulation in-
frastructures by considering low-level derating effects, and
basing their design-protection decisions on more accurate
soft-error rates.

Our future directions include studying the soft-error de-
rating effects for several designs with different character-
istics, as well as higher-complexity designs, such as high-
performance microprocessor cores. Due to the size of the
higher-complexity designs, studying the soft-error derating
effects for such designs with the existing simulation frame-
work might be cumbersome and lead to long simulation runs.
We are planning to overcome this limitation by employing a
hierarchical simulation framework. In this hierarchical simu-
lation framework, a detailed gate-level simulation is actively
employed for limited number of clock cycles and to a sub-
set of the design. In this manner, windows of accuracy are
achieved when faults occur, but the majority of the simula-
tion can run fast.
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