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Abstract—We propose a comprehensive yet low-cost solution for online
detection and diagnosis of permanent faults in on-chip networks. Using
error syndrome collection and packet/flit-counting techniques, high-
resolution defect diagnosis is feasible in both datapath and control logic
of the on-chip network without injecting any test traffic or incurring
significant performance overhead.
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I. INTRODUCTION

To satisty the perpetual need of increasing processor performance
while maintaining manageable levels of power consumption, multi-
core systems have become the prevalent architectures for high per-
formance computing [2]. The number of processors on a single chip
is increasing from few cores in Intel’s quad-core processors [16] to
thousands of simple processors in Adapteva’s Epiphany [1]. Among
various communication infrastructures, Network-on-chip (NoC) has
become the dominant architecture to cope with the ever-increasing
complexity of these multi-core systems [9].

Aggressive technology scaling has increased the number of tran-
sient and permanent faults due to increased process variation and
reduced noise-margins [6], [13]. In a multi-core system, both the
processor cores and the interconnecting network should be protected
against such faults. Fault tolerance techniques for processors are well-
studied in the literature [24], [17], [22], [19], [15] and are not the
subject of this paper. In this paper, we address the reliability issues
for the interconnect network by detecting the presence of permanent
faults and then locating the defective component. This diagnostic
information can then be used to reconfigure the system in a way that
better utilizes the fault tolerance resources.

Defective routers and links in NoCs result in various erroneous
behaviors that could cause performance degradation, data loss, and
ultimately complete system failure [4]. These reliability concerns
have motivated various innovative fault-tolerance methods that are
discussed in the next section. These methods enhance reliability by
detecting and correcting errors, and recover the system by either
bypassing or replacing the defective parts [11], [12], [21], [10], [3].
However, they also impose area and performance overhead and/or
fail to adequately address both data and control errors.

In this paper, we present a comprehensive online method to
diagnose permanent faults in an NoC. The proposed method addresses
both datapath and control-logic faults and incurs a low area overhead
(less than 10% is our case study). The transient faults in the datapath
are corrected using existing Forward Error Control (FEC) methods
[20], and our passive diagnosis method runs in the background to
locate the permanent faults, based on the observed FEC syndromes.
For control faults, our counter-based diagnosis mechanism locates
a permanent fault shortly after its occurrence. Complementary cor-
rective methods such as Automatic Repeat reQuest (ARQ) can be
employed to recover from data loss due to such faults, which imposes
minimal corrective traffic overhead due to our method’s short diagno-
sis time. For a relatively healthy network, the performance overhead
of our method is negligible. In summary, the main contributions of
this paper are:

« A comprehensive detection and diagnosis method that covers
permanent faults in both datapath and control logic
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« Passive and high-resolution diagnosis with low area and runtime
overheads

The rest of this paper is organized as follows: Sec. II discusses
the sources and effects of NoC faults and mentions some of the
researches performed to address them. In Sec. III, our proposed
passive error-detection and online diagnosis solution is introduced
and statistical analysis are shown to demonstrate the accuracy of
the proposed method. Simulation setup and experimental results are
discussed in Sec. IV, and Sec. V concludes the paper.

II. BACKGROUND AND RELATED WORK

There are many different causes of errors in NoCs: crosstalk,
radiation-induced soft errors, voltage-induced delay errors, etc. Often
these effects result in transient faulty behavior in the system [21],
[14], while permanent faults are resulting from manufacturing defects,
infant mortality, or hardware aging. Manufacturing testing and burn-
in can help screen most manufacturing and infant mortality defects,
but wear-out defects cannot be detected before shipment. These
permanent faults need continuous in-field testing, and are the target
of this paper.

These faults can result in erroneous NoC behaviors in the form
of control errors or corrupted data [4]. Any permanent or transient
fault in any of the components in the routing path of transmitted data
(datapath), such as router external or internal wires, input FIFOs, or
the cross-bars (as shown in Fig. 1), could manifest as a corrupted
packet payload since it changes the transmitted data. It should be
noted that an error in the header of the packet could also manifest as
a control error, sending the packet to a wrong destination, or resulting
in an incomplete or dropped packet.

On the other hand, if the fault site is in the control hardware of
a router, it can result in dropped, spurious/duplicated, or misrouted
packets rather than changing the packet payload [4]. For example, if
any stuck-at fault happens in the routing table, the packet may be sent
to an output port other than the one intended, resulting in a misrouted
packet. Alternatively, a false “empty” signal from a router’s input
FIFO could lead to retransmitting the last packet in the FIFO, causing
a spurious duplicated packet. A false “not-full” signal could result
in dropped packets, since the previous router would keep sending
packets to one with a full FIFO. For comprehensive diagnosis in
NoCs, both data and control faults should be addressed.

Forward Error Control (FEC) methods use Error Correction Codes
(ECCO) in order to detect and correct data faults during transmission
by adding data redundancy to the packets [11]. However, these
methods lose their efficiency in the case of permanent faults since
the correction strength of the ECC is frequently consumed by the
permanent faults in the datapath.

To address such permanent faults, in [21] the authors proposed
an online diagnosis mechanism that collects error syndromes in the
system and locates the faulty link while end-to-end ECC is used
to correct data errors in the network. However, the goal of [21] is
to pinpoint defective components to the resolution of links between
routers; defects in the router’s datapath are not directly addressed.
A higher-resolution diagnosis capable of locating the faulty part(s)
within a router could enable replacing/bypassing the defective part(s),
rather than disabling the entire router or link. Moreover, control errors
such as spurious/dropped packets and misroutings are out of the scope
of that paper.
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Fig. 1: NoC and internal structure of the router. Each router is
augmented with end-to-end error correction code, misroute detection
hardware, and counter-based dropped/spurious packet/flit detection, and
one of the nodes also acts as a supervisor.

Addressing both data and control faults, in [7] the authors demon-
strated a reliable router using N-Modular Redundancy (NMR) meth-
ods. However, NMR imposes a very high area overhead and is not
applicable to all circuit components (e.g. clock tree). Other methods
such as Automatic Repeat reQuest (ARQ) can address both data and
control errors as well. ARQ methods ensure that each packet reaches
its destination without error by monitoring and retransmission [25].
However, these techniques cannot effectively handle permanent faults.
Permanent faults result in frequent erroneous traffic in the system,
flooding the network with ARQ corrective packets and leading to
significant performance degradation. This necessitates a fast diagnosis
method for permanent faults, after which we can either bypass the
faulty parts or replace them with spares.

A diagnosis method was introduced in [12] where the authors pro-
posed embedding Built-In-Self-Test (BIST) error detection hardware
followed by a rerouting mechanism to bypass the defective parts. The
results of their case study showed that each router would incur a 43%
area overhead. Moreover, whenever an error is detected, this method
will need to interrupt the normal system operation and switch all
routers into the test mode to diagnose the faulty component.

Our proposed approach is a passive diagnosis method that elimi-
nates the shortcomings of the aforementioned solutions. The solution,
imposing lower area and performance overheads in comparison with
existing methods, addresses both data and control errors, enhances the
diagnosis resolution to match available fine-grained repair options,
and works in the background without affecting the normal system
operation. Fig. 1 shows an overview of the system in presence of the
method.

III. ONLINE ERROR DETECTION AND DIAGNOSIS

Our diagnosis approach is based on observing regular traffic in the
system for error detection, and consists of two main components: /)
a globally centralized scoreboarding approach is utilized to collect
the error syndromes of corrupted data and pinpoint the fault location
of detected data errors, and 2) a local flit/packet counting method,
implemented in each individual router, is used to diagnose packet
drop/duplicate and misroute resulting from control-logic faults.

A. Data Fault

Inspired by [21], we introduce a novel diagnosis method based on
scoreboarding to pinpoint the fault location in the datapath. Locality-
aware ECC [20] is added to packets protecting them against faults
along the path. However, the method is independent of the used ECC.
The ECC is decoded at the destination as the packets are received,
which detects and corrects errors. In our method, the error syndromes
produced after decoding the ECC are also used to differentiate
permanent and transient faults based on how often errors are observed
at the same bit position. For example, if a low percentage of the flits
in a packet have an error on a specific bit position, it can be inferred
that the errors are due to a transient fault. However, a high percentage

of erroneous flits at the same bit position would indicate a permanent
error in that bit position somewhere along the packet’s path.

This threshold for declaring a fault as permanent is one of
the diagnosis parameters. A high threshold results in missing the
syndrome of some permanent errors, while a low threshold results
in misdiagnosis of transient faults as permanent faults. The exact
value of this threshold will depend on a number of other design and
operational parameters, and determining it is not the subject of this
paper. However, the repercussions of a poorly selected threshold are
discussed in Sec. I'V-B.

When a data error is detected at the destination and is declared as
permanent according to the threshold, an error information packet is
sent to a designated supervisor node responsible for scoreboarding
and diagnosis. The supervisor node is one of the nodes of the network
and thus protected by the same error correction mechanisms. The
error information packet contains the source and the destination of
the erroneous packet and the bit position at which the error occurred.
Based on this information, a probabilistic method is used to calculate
the fault probability for each component along the possible paths from
the source to the destination. These probabilities are accumulated on
the scoreboard. After observing sufficient traffic in the system and
accumulating the fault probabilities from enough erroneous packets,
we expect that the scoreboard entry with the highest accumulated
fault probability is indeed defective. This argument is later supported
by statistical analysis in Sec. IV-B and the method is clarified by an
example.

The method can differentiate faults in components A and B only
if there is a packet that goes through component A and not thorough
component B, or vice versa. Accordingly, under a regular router
architecture, faults in an external link, an input port and the input
FIFO that connects them would not be differentiable. Collectively,
we call these three components a “link” in the rest of the paper.
However, faults within a router’s crossbar are more diagnosable since
different packets traveling through a crossbar could utilize different
crossbar inputs/outputs. Based on this observation, this paper offers
a diagnosis solution for locating a datapath fault to a unique link or
to a unique pair of I/O ports on a router (hereafter referred to as a
“turn”).

The fault probability calculation for different components is done
at the software level once an error information packet is received
and thus imposes no area overhead. These calculations depend on the
interconnect architecture and routing algorithm used in the network.
In this study we focus on a mesh topology, which is one of the most
frequent schemes used in the existing literature.

Our method can support a wide range of routing algorithms and
the component-level fault probability is computed accordingly. The
number of possible paths between the source and destination might
be one (as in a deterministic X-Y routing algorithm) or several (as
in a nondeterministic minimal-routing in which the route could be
any minimal length route) and the probability of taking each of the
components along those paths can be pre-calculated and stored. In
case of observing an error, the component-level fault probabilities
are calculated based on usage probability of each component and the
number of components on each path and then are accumulated in the
scoreboard to diagnose the defective component.

In the following, we show the step by step calculation of
component-level fault probability once the supervisor node receives
an error information packet. For the sake of better illustration, a
4-by-4 mesh is assumed as shown in Fig. 2 with minimal-routing
algorithm. A permanent fault is present in the le ft — wup turn inside
router D that may cause an error in a packet sent from source A to
destination B.

Step 1- Calculating the usage probability of each link: The use
of a minimal-routing algorithm implies that a valid path is limited
to the links and turns inside the gray rectangle, each of which has
a different usage probability. At A, there are two output links x and
y that can be used to transfer the packet. Their usage probability is
equal (0.5) since all the packets will travel through one of them. At
the next router, C, we again have two valid output links with equal
probability. However, since only half of the packets are sent to the
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Fig. 2: The usage probability of each link for a packet sent from
source A to destination B. The red turn is defective.

router C, the cumulative usage probability of each of the links is only
0.25. In this way, the usage probability can be calculated for all links
in the gray region, according to Eq. 1:

> Prob(input links to node X)

Prob(output link at node X) =
rob(output link at node X) number of valid output lm%/f)s

The number of valid output links depends on the interconnect
architecture and routing algorithm. The usage probability of different
links assuming pair A, B as source and destination is shown in Fig.
2. Note that usage probability of the same component varies based
on the selected source and destination pair.

Step 2- Assigning the usage probability of each turn: While the
actual usage probability of each turn can be calculated by dividing
the usage probability of the input link of the turn by the number of
valid output links assuming that specific input link is taken, recall
that these numbers are accumulated in a table in order to find the
defective component. Whenever a turn is used, both links forming
that turn are also used and their scores will increase at least as much
as the turn. To avoid overshadowing by and misdiagnosis of the links,
the usage probability recorded for turns should be assigned to the
highest usage probability of its connected links multiplied by a small
scaling constant. As we demonstrate in Sec. IV-B, this strategy will
not affect our ability to detect faulty links if enough syndromes are
collected.

Step 3- Calculating the fault probability of each part: An
observed error could be caused by any of the links or the turns along
the routing path and shorter paths, can let us know more about the
exact fault site since there are less components on them. Hence, the
fault probability for each component is defined to be the associated
usage probability divided by the total number of links and turns along
the path.

Step 4- Accumulating the fault probabilities in the scoreboard:
The scoreboard is a table of floating point fault probability entries
for each bit position in each link or turn of the network. Every time
an error information packet is received by the supervisor, the fault
probability for each link or turn that could be responsible is calculated
and is accumulated in the scoreboard. Aging (i.e. gradual decrease
of the scoreboard entries over time) can be incorporated to limit the
repercussions of transient faults that were misdiagnosed as permanent
faults.

At the end of this process, the entry with the highest fault probabil-
ity is declared faulty if its score or the number of erroneous packets
exceeds a preset threshold. To justify this conclusion, we consider the
expected scoreboard value for each entry, assuming a specific fault
and a random (uniformly distributed) packet source/destination.

Figure 3 shows the expected value of the scoreboard entries for
a faulty turn (shown in red) on an 4-by-4 mesh. The four values
shown inside each router are the probabilities for bottom — wup,
left — right, bottom — right and left — up turns, respectively.
The other turns are omitted as their expected values are strictly zero.
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Fig. 3: The expected value of different links and turns being faulty
in a 4-by-4 minimal-routed mesh given that the red turn is defective.
Values shown inside each router are the expected values for bottom —
up, left — right, bottom — right, and left — up turns respectively.
values are truncated to four decimal digits.

The values on each edge are the scores for the links, and again,
the opposing link directions are omitted as their expected values are
strictly zero. As we can see, the faulty turn indeed has a higher
expected value of being faulty than the others.

Our experimental results in Section IV-B indicate that just a few
tens of erroneous packets are sufficient for an accurate diagnosis
of the defective part. It should be emphasized that ECC corrects
the errors caused by the permanent faults, so the system operates
normally during the diagnosis process.

B. Control Faults

A fault in a router’s control logic may lead to many different
failure scenarios. Such faults may lead to data corruption and/or
to complete flits/packets being dropped or spurious ones generated.
In addition, such faults could lead to packets being misrouted,
potentially resulting in deadlock or livelock. Other errors that inhibit
forward progress, such as starvation, can be due to faults in the
arbitration logic rather than misrouting. Hence, we try to detect
various classes of control faults and accurately diagnose the faulty
port using the following techniques:

o Dropped or spurious flits: by counting the number of flits per

packet received by a router’s input port.

« Dropped or spurious packets: by keeping a total count of packets

currently inside any router.

« Misrouted packet: by detecting misrouting at the receiving router

« Starvation: using time-outs

These symptoms are monitored on a per-router or per-port basis
and any diagnosis information is relayed back to the supervisor
node that maintains the scoreboard. In addition to maintaining a
scoreboard for diagnosing datapath faults, this node keeps a status
table” reflecting the state (working or faulty) of each link and router
in the network. This table is updated upon receiving the diagnosis
information from various nodes.

Note that the goal of diagnosis is not to find the exact cause of
the faulty behavior, but to find the faulty component with sufficient
resolution and accuracy to guide reconfiguration or repair. In the
following subsections, each diagnosis scheme is discussed in detail.
All of these schemes introduce minimal area overhead, using simple
counters and tables, and thus to safeguard the detection hardware we
can use established reliability mechanisms such as NMR [7], without
introducing significant overhead.

1) Dropped or Spurious Flits: In an NoC, packets are typically
broken down into fragments called “flits”. The number of flits per
packet can be extracted from the header flit or is implied in the case
of fixed packet size. We use this information to detect dropped or
spurious/duplicated flits by counting the number of flits sent from
each input port (towards the output port), starting with the header flit



and stopping at the tail flit. If this count differs from its expected
value, then either a flit was dropped or created within this input port
or the connecting output port of the upstream router. Thus, to enable
this scheme we only need one counter per input port bounded by the
maximum size of any packet serviced by the network.

There are three cases in which this simple detection scheme might
fail: First, when an entire packet is dropped or created. To cover this
case, separate counters for counting packets are provided which will
be discussed in Sec. III-B2. Second, if a tail flit is missing, the counter
would never be compared against its expected value. For this case,
we provide a timeout counter per input port that counts the number of
cycles from the departure of the header flit and resets on departure of
the tail flit. If this counter exceeds a threshold, then we infer that the
tail flit was dropped. Finally, if the packet length information within
the header is corrupted due to data corruption, then it could lead to
incorrect diagnosis. When the supervisor node is notified about any
data corruption, all the fault diagnosis information relayed from the
nodes in the path of the corrupt packet is ignored. This avoids any
bogus update to the ’status table” due to incorrect diagnosis caused
by data errors in the header flit.

2) Dropped or Spurious Packets: In order to detect a dropped
or duplicated/spurious packet, we maintain a packet counter in each
router, incrementing the counter at each packet tail flit received and
decrementing the counter at each packet tail flit sent. This counter
will be used to detect dropped and spurious packets.

Dropped packet: Packet drop inside a router means that there are
more packets coming into the router than going out of it. Therefore,
a dropped packet can be identified by checking whether the packet
counter reaches zero at any point during a specified period of time
or check window: if zero is never reached, it indicates that there
has been a dropped packet. This can be implemented with a sticky
flag register that is reset at the beginning of every checking window.
This scheme eventually avoids false negatives, but may cause false
positives in a fault-free router due to heavy traffic. We experimentally
show in Sec. IV-D that choosing a suitable check window size can
reduce the false positive rate to an acceptable level.

Spurious packet: A duplicated/spurious packet error is detected
when the counter reaches a negative value. A negative value in the
packet counter means that more packets have been sent out of the
router than have entered the router. Note that this scheme is somewhat
susceptible to false negatives: even if one or more packets are created
within a router, the corresponding counter could remain at a non-
negative value if the faulty router is congested and filled with packets
for an extended period of time. However, the results in Sec. IV-E
show that such false negatives are extremely rare for realistic traffic
loads, and detection will eventually occur in the long term.

In summary, implementation of this scheme requires a counter of
size bounded by the packet storage capacity of all buffers within
a router, a timer to track timing windows for zero-checking, and a
zero-observed storage bit, per router.

3) Misrouted packets: Misrouted packets are caused by faults in
the control logic of the router, sending the packet to a port other than
the one intended. This condition is often recoverable: a misrouted
packet can be sent along to the correct destination even if it makes
an unanticipated detour. However, a permanent misrouting fault can
result in livelocks/deadlocks and should be avoided.

Detection of a misroute is highly dependent on the interconnect
architecture and routing algorithm. In case of a deterministic routing
scheme like X-Y routing, a lookup table or simple hardware assertion
in the receiving router could be used to identify all misroutes. In the
case of nondeterministic minimal-routing, misroutes which cause the
packet to take a longer-than-minimal path can be similarly detected.

In order to differentiate transient and permanent misrouted faults,
each router should keep track of the number of misrouted packets
received by each port. If the number exceeds a threshold, the
port will be declared defective (i.e. having a permanent fault) and
rerouting/reconfiguration schemes can use the information to avoid
the associated link. Aging can be used on the number of observed
faults to further decrease the effect of transient faults.

4) Starvation: Starvation causes a flit or packet to wait indefinitely
for access to an output channel. Thus, starvation can be detected
using a timeout counter per input port. This counter, which counts
the number of cycles that no output channel is granted to each input
channel, is different from the one discussed in Sec. III-B1. In addition,
the diagnosis information provided by this counter will indicate a
specific faulty input port.

IV. EXPERIMENTAL RESULTS

In this section, we present our experimental results to evaluate the
proposed method.

A. Experimental Setup

Data corruption and misrouting diagnosis accuracy were assessed
by Monte Carlo simulation using a C++ simulator supporting various
routing algorithms on an 8-by-8 mesh. For dropped and spurious
packet detection (which require a cycle-accurate model due to the
use of counters), we used a cycle-accurate C++ NoC simulator based
on [8]. The baseline system is an 8-by-8 XY-routed mesh network;
routers are a simple 2-stage pipeline with no virtual channels and
five entry deep buffers per input port. The NoC is augmented with
the detection and diagnosis capabilities described in the previous
sections. This framework was analyzed with two different types of
workloads: random traffic and applications from the PARSEC suite
[5]. A separate Verilog implementation of the same system was used
to estimate the area overhead of the detection scheme. Synthesis was
performed using Synopsys Design Compiler targeting the Artisan
45nm library.

B. Corrupted Data

It should be intuitive that the location of the faulty component
is diagnosable with high confidence if a sufficiently large number
of erroneous packets is observed. However, a key question is how
sensitive the diagnosis accuracy is to the quantity of observed
erroneous traffic.

Fig. 4 shows the diagnosis accuracy of our method for a selected
faulty turn and link based on the total number of erroneous packets
observed for both XY and nondeterministic minimal-routing. In all
the cases, over 98% diagnosis accuracy is achievable after observation
of fewer than 15 erroneous packets with XY-routing and around 40
packets with minimal-routing. This discrepancy is due to the fact that
XY routing specifies the exact path, whereas in minimal-routing less
information about the path is known.

Recall from Sec. III-A that not all permanent faults will be
correctly identified, and some transient faults will be mistakenly
classified as permanent. These scenarios are called a miss and a
mistake, respectively. Fig. 5 shows the effect of the miss and mistake
rates on the diagnosis accuracy. Observe that the accuracy is not
affected severely even in the presence of many missed or mistakenly
collected syndromes: since the accuracy has an asymptotic behavior
with the count of observed erroneous packets as shown in Fig. 4,
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Fig. 5: Effect of miss rate and mistake rate on diagnosis accuracy of
a faulty turn in an 8-by-8 mesh using minimal-routing after sending
40 erroneous packets.

a few missing fault reports will not severely decrease the accuracy.
Mistakenly collected syndromes does not significantly affect accuracy
either since they are scattered evenly on all the 64 bit positions
while all the correct error syndromes are focused on the erroneous
bit position.

C. Misrouted Packets

One of the diagnosis parameters is the number of observed mis-
routed packets from each port before declaring that port faulty: setting
a higher threshold results in higher diagnosis confidence but requires
more overall traffic to reach that decision. Fig. 6 shows the number of
total packets required to have the desired number of erroneous packets
activating the misrouting fault with a confidence of 99.7%. In larger
networks, more total traffic is needed to ensure receiving enough
packets activating the misrouting fault since each router has a lower
probability of receiving a packet in general. Similarly, routers on the
borders of the mesh need more total traffic. However, it should be
noted that the performance overhead is regardless of the total traffic
since only the erroneous packets need corrective measures.

D. Dropped Packet

As discussed in Section III-B2, our detection scheme for dropped
packets can exhibit false positives. The false positive rate of the
detection scheme depends on the duration of the check window
and traffic conditions. False positives are triggered when the packet
counter is non-zero for an entire check window; a heavily loaded
network will see more false diagnoses as packets accumulate at router
buffers due to congestion. Intuitively, a longer check window will
reduce the false positive rate by allowing more time for packets to
clear a routers buffers.

Fig. 7 shows the decrease in false positive rate with increasing
check window size. It can be seen that a heavily loaded network
exhibits a higher false positive rate than a moderately loaded network,
and hence requires a larger check window size to limit false positives.
Additionally, networks operating with smaller packets, exhibit a
greater false positive rate as more number of packets can reside at
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Fig. 7: Dropped packet detection scheme under uniform random
traffic. The false positive rate with increasing check window size is
plotted for various packet sizes (4, 8, 12 flit-per-packet) at medium (1.5
x zero-load latency) and high (2 x zero-load latency) injetion loads. False
positive rate drops rapidly with larger check window sizes and decreasing
network load. Additionally, networks with shorter packets exhibit more
false positives.

any router’s buffer for extended periods of time, causing the packet
counter to not touch zero values. In all cases, the false positive
rate drops to a negligible value beyond a certain check window size
(Windowmin).

To calibrate the check window, we ran rigorous simulations,
operating the network normally (i.e. fault free) for a preset length
of time and calculating the false positive rate for a range of check
window values. Fig. 8 plots Windowmi, necessary to eliminate
false positives and the average network latency as network load is
increased, under uniform network traffic. Windowm:, exhibits a
slow increase with rising injection rate up to network saturation, and
a steep rise afterwards. From the plot, a worst-case Windowmin
of 1K cycles is sufficient to eliminate all false positives when the
network is in deep saturation, operating at an average latency of well
over 3 times the zero-load latency. A similar result was observed
for nine different PARSEC benchmark traces (1 million instructions
each), where a check window size of 400 cycles was sufficient to
eliminate all false positives for every benchmark. Our simulations
indicate that Windown,r, rises to high values only when the network
is operated at loads well past saturation. Such a scenario is unlikely:
NoC workloads are characterized by the self-throttling nature of
the applications, which prevents them from operating past saturation
loads [18].

E. Spurious Packet

As discussed in Section III-B2, our detection scheme for spurious
packets can exhibit false negatives, while false positives are not
possible. Hence a different methodology is required to evaluate this
scheme: after operating the network fault-free for a preset length

1200 + = 200

180

-&- windowmin4 -4- windowming8
=o~-latency8

-4 windowmjn12 :
1000 :

-m-latency4 -rlatencyl_i 160

o
3
3

Windowmin (cycles)
a
3
8

IS
g
avg network latency (cycles)

200

0.04 0.09 0.14 0.19
injection rate (flits/node/cycle)
Fig. 8: Dropped packet detection scheme under uniform traffic.
The variation of Window,,;, and latency with increasing network load
is shown for various packet sizes (4, 8, 12 flit-per-packet). A high
Windowm,y is required only when the network is deeply saturated.
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Fig. 9: Created packet detection scheme under uniform traffic. Figure
shows The variation of maximum detection latency (create packet) and
average network latency with increasing network load. Detection latency
is within tolerable limits for deeply saturated networks.

of time, a spurious packet is intentionally created with a certain
probability and written to the buffer of a randomly chosen router.
Detection latency is defined as the time required to detect the
error after the packet was created. A spurious packet is flagged as
false negative if the detection latency exceeds 10K cycles. To gain
statistical confidence, we inject 10,000 such faults one after another
and repeated each simulation 10 times for different randomization
seeds. Fig. 9 shows the results of such a study. Maximum detection
latency and average network latency are plotted for different packet
sizes as we increase the network load. Again, maximum detection
latency increases slowly up to a certain network load after which
there is a steep increase. As we can see, worst-case detection latency
is within 1.2K cycles for networks operating at average latency of
more than 10 times the zero-load latency, and recall that on-chip
networks do not operate at deep saturation points [18]. Similarly, for
the nine PARSEC benchmark traces, a maximum detection latency
of 302 cycles was observed. No false negatives were observed for
the network loads shown in Fig. 9.

FE Area Results

In this paper, our main goal is to provide a high diagnosis resolu-
tion while keeping the area overhead at a minimum. Our diagnosis
scheme is based on a software implemented scoreboard, end-to-end
ECC, and low-overhead per-router counter-based diagnosis hardware
and misrouting detectors described in previous sections. In addition,
faults inside these additional detection and diagnosis hardware are
detected using Double modular redundancy (DMR); a viable solution
due to our low-overhead implementation. Our synthesis results show
that the overall area overhead after adding DMR is less than 10%,
as shown in Table I. Same baseline router as Vicis [12] is used here
which is consistent with the Intel Polaris router [23]. As it is shown
in Table I, the majority 7% area overhead is due to DMR enabled
ECC encoders and decoders necessary to detect data corruption. Note
that, the area overhead of our scheme is less than 5%, if DMR is
not employed.

Design Area (um?) %
Baseline Router 115898 100.00
Datapath ECC Encoder/Decoder (DMR) 8026 6.92
Control-logic Diagnosis Hardware (DMR) 3168 2.73
Total Overhead 11194 9.65

TABLE I: Area overhead (per router).

V. CONCLUSION

In this paper, a comprehensive method was introduced to detect and
diagnose permanent faults in datapath and control logic of an on-chip
network. ECC is utilized to detect and correct data errors. In case of
an error detection, an information packet is sent to a supervisor node
that is used to measure the fault probability of different components
and pinpoint the defective one to the resolution of a specific port,
link, or turn. Control errors such as dropped/spurious packets/flits
are diagnosed via per router counters measuring the number of

flits/packets passing through every port/router in a predefined activity
window, and misrouted packets are found according to the routing
algorithm.

Our method imposes no performance overhead on the system in the
case of an error-free network. There is no system down time to test the
system and no specific traffic is sent to test different components. The
high resolution provided by our method can be utilized to improve
the efficiency of reconfiguration/rerouting schemes.
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