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We propose two new algorithms for rewiring: a postplacement optimization that reconnects pins
of a given netlist without changing the logic function and gate locations. In the first algorithm, we
extract small subcircuits consisting of several gates from the design and reconnect pins according
to the symmetries of the subcircuits. To enhance the power of symmetry detection, we also propose
a graph-based symmetry detector that can identify permutational and phase-shift symmetries on
multiple input and output wires, as well as hybrid symmetries, creating abundant opportunities for
rewiring. Our second algorithm, called long-range rewiring, is based on reconnecting equivalent
pins and can augment the first approach for further optimization. We apply our techniques for
wirelength optimization and observe that they provide wirelength reduction comparable to that
achieved by detailed placement.
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1. INTRODUCTION

The semiconductor industry’s tendency to always push the limit for minimum
transistor sizing has led to new challenges in integrated circuit design. One
key challenge is wire parasitics, whose aggragation is leading to increased de-
lay and power consumption in wires to the point that their contribution dom-
inates that of transistor switching. Since accurate wire topology is available
only after the circuit is placed, postplacement optimizations have been stud-
ied extensively. Typically, these optimizations focus on improving delay, power,
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reliability, and/or wirelength. However, we observe that existing techniques
may fail to provide consistent improvements because, when optimizing one de-
sign aspect, they may worsen other physical aspects. For example, cell cloning
may improve timing at the expense of significantly increasing wirelength
[Hrkic et al. 2004], and the timing optimization may actually worsen the fi-
nal delay because of critical path detours after routing. The widespread unpre-
dictability of all these optimizations makes design closure an extremely difficult
task, often leading to many iterations of postplacement optimization and delays
in design completion.

In general, the stability (or lack thereof) of an optimization can be determined
by checking whether it creates illegal changes to the layout. For instance, if an
optimization changes placement by creating cell overlaps, then an additional
legalization step needs to be performed to remove the overlaps, and the latter
could cancel out or even worsen the optimizations of the former. As a specific ex-
ample, rewiring techniques based on addition and removal of wires may create
overlaps because cell types will be changed [Chang and Marek-Sadowska 2001;
Chang et al. 1999, 1997; Jiang et al. 1997; Wu et al. 2000], and the evaluation
of the changes must be delayed until legalization is performed. On the other
hand, the impact of optimizations that do not affect cell locations can be evalu-
ated immediately and reliably, therefore they have little risk of hampering the
design closure. In addition, such optimizations allow metal fix, a postsilicon re-
pair technique that only changes the metal layers while preserving the masks
for manufacturing transistors. With mask cost approaching one million dollars
per set, the ability to repair a circuit by metal fix reduces the cost of respin
significantly.

Chang et al. [2006] pointed out that symmetry-based rewiring is the only
postplacement optimization that does not affect cell placement. As a result,
it can be integrated into any design flow safely, and allows metal fix. To this
end, the symmetry-based rewiring system proposed by Chang et al. [2004] is
effective in optimizing the delay, power and reliability of a digital circuit. Their
system iteratively extracts subcircuits from the circuit and performs rewiring
optimizations by exploiting symmetries. However, their symmetry-detection
technique is only applicable to designs synthesized using certain basic gate
types and cannot be applied to many practical circuits.

In this article we extend our preliminary work in Chang et al. [2005] and
propose a novel rewiring technique that can be applied to designs mapped to
any type of cell. This is achieved by detecting symmetries in Boolean func-
tions, regardless of the logic structure used to represent them. In addition, we
observe that detecting fewer symmetries creates fewer possibilities for opti-
mization. While previous work on rewiring considers input symmetries only,
our comprehensive symmetry detector allows us to handle both input and out-
put permutations, as well as their composition. For example, the rewiring op-
portunity in Figure 1(a) cannot be discovered unless both input and output
symmetries can be detected. In addition, “phase-shift” symmetries [Kravets
and Sakallah 2000], that is, symmetries involving negation of inputs and/or
outputs, can also be detected. An example of this application is given in
Figure 1(c). In our rewiring approach, we extract subcircuits iteratively from
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Fig. 1. Rewiring examples: (a) multiple inputs and outputs are rewired simultaneously using
pin-permutation symmetry; (b) long-range rewiring using equivalent wires; and (c) inputs to a
multiplexer are rewired by inverting one of the select bits. Bold lines represent changes made in
the circuit.

the circuit, and use the symmetries detected to reconnect pins and optimize
wirelength. We also propose a “long-range” rewiring technique which operates
by rearranging the connection of equivalent pins, complementing the baseline
method (an example is shown in Figure 1(b)). Long-range rewiring first identi-
fies candidate equivalent wires by random simulation and uses formal methods
to verify their equivalency. Similar to symmetry-based rewiring, it does not af-
fect cell placement. Our experimental results show that the proposed approach
can reduce total wirelength by approximately 5%. While this new symmetry-
detection technique is potentially less scalable than previous ones, we found
experimentally that the execution runtimes are reasonable.

The remainder of the article is organized as follows. Section 2 introduces ba-
sic principles of symmetry, and describes relevant previous work on symmetry
detection and circuit rewiring. In Section 3 we describe our symmetry-detection
algorithm. Section 4 discusses the postplacement rewiring algorithms. Finally,
we provide experimental results in Section 5 and conclude in Section 6.

2. BACKGROUND

The rewiring technique proposed in this article is based on symmetry detec-
tion. Therefore, in this section, we present background ideas and related work
about symmetry detection. Previous work on postplacement rewiring is also
discussed.
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2.1 Symmetries in Boolean Functions

One can distinguish semantic (functional) symmetries of Boolean functions
from the symmetries of specific representations (syntactic symmetries). All syn-
tactic symmetries are also semantic, but not vice versa. For example, in function
“o = (x + y) + z”, x ↔ z is a semantic symmetry because the function will not
be changed after the permutation of variables; however, it is not a syntactic
symmetry because the structure of the function will be changed. On the other
hand, x ↔ y is both a semantic and syntactic symmetry. In this work we exploit
functional symmetries, whose definition is provided next.

Definition 1. Consider a multioutput Boolean function F : Bn → Bm, where

F (i1...in) =< f1(i1...in), f2(i1...in)... fm(i1...in) > . (1)

A functional symmetry is a one-to-one mapping s : B(n+m) → B(n+m) such that

< f1(i1...in), f2(i1...in)... fm(i1...in) >=< s( f1)(s(i1)...s(in)), s( f2)(s(i1)...s(in))...
s( fm)(s(i1)...s(in)) > . (2)

In other words, a functional (semantic) symmetry is a transformation of inputs
and outputs which does not change the functional relation between them.

Example 1. Consider the multioutput function z = x1 XOR y1 and w = x2
XOR y2. The variable-permutation symmetries include: (1) x1 ↔ y1; (2) x2 ↔
y2; and (3) x1 ↔ x2, y1 ↔ y2, and z ↔ w (all swaps are performed simul-
taneously). In fact, all the symmetries of this function can be generated from
combinations of the symmetries listed before. A set of symmetries with this
property is called a set of symmetry generators. For example, the symmetry
x1 ↔ y2; y1 ↔ x2; and z ↔ w can be generated by applying the symmetries of
items (1), (2), and (3).

While most previous work on symmetry detection focuses on permutations
of two variables, Pomeranz and Reddy [1994] and Kravets and Sakallah [2000]
consider swaps of groups of ordered variables. These swaps are called higher-
order symmetries in Kravets and Sakallah [2000]. For example, if variables a,
b, c, and d in the support of function f satisfy the condition

F (. . , a, . . , b, . . , c, . . , d , . .) = F (. . , c, . . , d , . . , a, . . , b, . .),

then we say that f has a second-order symmetry between ordered variable
groups (a, b) and (c, d ). Such higher-order symmetries are common in realistic
designs. For example, in a 4-bit adder, all bits of the two input numbers can
be swapped as groups (preserving the order of bits), but no two input bits in
different bit positions are symmetric by themselves. Kravets also introduced
phase-shift symmetry as a function-preserving transformation involving the
inversion of one or more inputs that do not permute any of the inputs. Our
work generalizes this concept by including output symmetries involving inver-
sion in the class of phase-shift symmetries. We also define composite phase-
shift symmetry as a symmetry which consists of phase-shift and permutational
symmetries.
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In this article we commonly refer to composite phase-shift symmetries as
just phase-shift symmetries, except for pure phase-shift symmetries which do
not include permutations.

Example 2. Consider again the multioutput function z = x1 XOR y1 and
w = x2 XOR y2 given in Example 1. Aside from the pin-swap symmetries dis-
cussed in Example 1, the following phase-shift symmetries also exist in the
circuit: (1) x2 ↔ y ′

2; (2) x1 ↔ y ′
1; (3) x2 ↔ x ′

2 and w ↔ w′; and (4) x1 ↔ x ′
1 and

z ↔ z ′. Among these symmetries, (1) and (2) are composite phase-shift sym-
metries because they involve both inversion and permutation of inputs, while
(3) and (4) are pure phase-shift symmetries because only inversions of inputs
and outputs are used. Note that due to Boolean consistency, a symmetry com-
posed of a complement of variables in another symmetry is the same symmetry.
For example, y2 ↔ x ′

2 is the same as x2 ↔ y ′
2.

2.2 Semantic and Syntactic Symmetry Detection

Symmetry detection in Boolean functions has several applications, including
technology mapping, technology-independent logic synthesis, BDD minimiza-
tion [Panda et al. 1994], and circuit rewiring [Chang et al. 2004]. Methods for
symmetry detection can be classified into four categories: BDD-based, graph-
based, circuit-based and Boolean-matching-based. However, it is relatively dif-
ficult to find all the symmetries of a Boolean function, regardless of the repre-
sentation used.

BDDs are particularly convenient for semantic symmetry detection be-
cause they support abstract functional operations. One naive way to find two-
variable symmetries is to compute the cofactors for every pair of variables,
say, whether v1 and v2, and check if Fv1v2 = Fv1v2 or Fv1 v2 = Fv1v2 . Recent re-
search [Mishchenko 2003] indicates that symmetries can be found or disproved
without computing all the cofactors thus significantly speeding-up symmetry
detection. However, work on BDD-based symmetry detection has been limited
to input permutations only, probably due to the single-output nature of BDDs.

In this article, symmetry-detection methods that rely on efficient algorithms
for the graph automorphism problem (i.e., finding all symmetries of a given
graph) are classified as graph-based. They construct a graph whose symmetries
faithfully capture the symmetries of the original object, find its automorphisms
(i.e., symmetries) and map them back to the original object. Aloul et al. [2003]
proposed a way to find symmetries for SAT clauses using this approach. The
symmetry-detection approach proposed in this article is inspired by their work.

Circuit-based symmetry-detection methods often convert a circuit represent-
ing the function in question to a more regular form where symmetry detection
is more practical and efficient. For example, Wang et al. [2003] transform the
circuit to NOR gates. Chang et al. [2004] use a more elaborate approach by
converting the circuit to XOR, AND, OR, INV, and BUF first, and then parti-
tioning the circuit so that each subcircuit is fanout free. Next, they form “su-
pergates” from the gates and detect symmetries for these supergates. Wllace
[2001] uses concepts from Boolean decomposition [Bertacco and Damiani
1997] and converts the circuit to “quasicanonical forms,” and then the input
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Table I. Comparison of Different Symmetry-Detection Methods

Time
Data structure used Target Symmetries detected Main applications complexity
BDD [Mishchenko

2003]
Boolean

functions
All 1st-order input

symmetries
Synthesis O(n3)

Circuit—Supergate
[Chang et al. 2004]

Gate-level
circuits

1st-order input
symmetries in
supergates,
opportunistically

Rewiring,
technology
mapping

O(m)

Circuit—Boolean
decomposition
[Wllace 2001]

Gate-level
circuits

Input and output,
permutational
symmetries,
higher-order

Rewiring, physical
design

�(m)

Circuit—simulation,
ATPG [Pomeranz
and Reddy 1994]

Gate-level
circuits

Input, output, and
phase-shift
symmetries,
higher-order

Error diagnosis,
technology
mapping

�(2n)

Boolean matching
[Chai and
Kuehlmann 2005]

Boolean
functions

Input, output and
phase-shift
symmetries,
higher-order

Technology
mapping

�(2n)

Graph automorphism
(this work)

Both (with
small
number
of inputs)

All input, output,
phase-shift
symmetries, and
all orders,
exhaustively

Exhaustive small
group rewiring

�(2n)

In the table, n is the number of inputs to the circuit and m is the number of gates. Currently-known BDD-based
and most circuit-based methods can detect only a fraction of all symmetries in some cases, while the method
based on graph automorphism (this work) can detect all symmetries exhaustively. Additionally, the symmetry-
detection techniques in this work find all phase-shift symmetries, as well as composite (hybrid) symmetries
that simultaneously involve both permutations and phase shifts. In contrast, existing literature on functional
symmetries does not consider such composite symmetries.

symmetries are recognized from these forms. This technique is capable of find-
ing higher-order symmetries. Another type of circuit-based symmetry detector
relies on ATPG and simulation, such as the work by Pomeranz and Reddy
[1994]. Although their technique was developed to find both first- and higher-
order symmetries, they reported experimental results for first-order symme-
tries only. Therefore, its capability to detect higher-order symmetries is unclear.

Boolean matching is a problem related to symmetry detection. Its purpose
is to compute a canonical representation for Boolean functions that are equiv-
alent under negation and permutation of inputs and outputs. Symmetries are
implicitly processed by Boolean matching in that all functions symmetric to
each other will have the same canonical representation. However, enumerating
symmetries from Boolean matching is not straightforward and requires extra
work. This topic has been studied by Wu et al. [1994] and Chai and Kuehlmann
[2005].

A comparison of BDD-based [Mishchenko 2003], circuit-based [Chang et al.
2004; Pomeranz and Reddy 1994; Wllace 2001], Boolean-matching-based sym-
metry detection [Chai and Kuehlmann 2005], and the method proposed in this
article is summarized in Table I.
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2.3 Graph Automorphism Algorithms

Our symmetry-detection method is based on efficient graph automorphism al-
gorithms which have recently been improved by Darga et al. [2004]. Their
symmetry detector, Saucy, finds all symmetries of a given colored undirected
graph. To this end, consider an undirected graph G with n vertices, and let
V = {0, ..., n − 1}. Each vertex in G is labeled with a unique value in V . A
permutation on V is a bijection π : V → V . An automorphism of G is a per-
mutation π of the labels assigned to vertices in G such that π (G) = G; we say
that π is a structure-preserving mapping or symmetry. The set of all such valid
relabelings is called the automorphism group of G. A coloring is a restriction
on the permutation of vertices; only vertices in the same color can map to each
other. Given G, possibly with colored vertices, Saucy produces symmetry gen-
erators that form a compact description of all symmetries. Saucy is available
online at http://vlsicad.eecs.umich.edu.

2.4 Postplacement Rewiring

Rewiring based on symmetries can be used to optimize circuit characteristics.
Some rewiring examples are illustrated in Figures 1(a) and (c). Here the goal
is to reduce wirelength, and swapping symmetric input and output pins accom-
plishes this.

Chang et al. [2004] use the symmetry-detection technique described earlier
to optimize delay, power, and reliability. In general, the symmetry detection
in their work is done opportunistically rather than exhaustively. Experimen-
tal results show that their approach can achieve these goals effectively using
the symmetries detected. However, they cannot find the rewiring opportunity
in Figures 1(a) and (c) because their symmetry-detection technique lacks the
ability to detect output and phase-shift symmetries.

Another type of rewiring is based on the addition and removal of wires. Three
major techniques are used to determine the wires that can be reconnected.
The first uses reasoning based on ATPG (automatic test pattern generation)
such as REWIRE [Chang et al. 1999], RAMFIRE [Chang and Marek-Sadowska
2001], and the work by Jiang et al. [1997]. This type of technique tries to add a
redundant wire that makes the target wire redundant so that it can be removed.
The second class of techniques is graph based; one example is GBAW [Wu et al.
2000], which uses a predefined graph representation of subcircuits and relies
on pattern matching to replace wires. The third technique uses SPFDs (sets
of pairs of functions to be distinguished) [Cong and Long 2001] and is based
on don’t-cares. Although these techniques are potentially more powerful than
symmetry-based rewiring because they allow more aggressive layout change,
they are also less stable and do not support postsilicon metal fix.

3. EXHAUSTIVE SEARCH FOR FUNCTIONAL SYMMETRIES

The symmetry-detection method presented in our work can find all input, out-
put, multivariable, and phase-shift symmetries, including composite (hybrid)
symmetries. It relies on symmetry detection of graphs, thus the original Boolean
function must first be converted to a graph. After that, it solves the graph
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automorphism (symmetry-detection) problem on this graph, and then the sym-
metries found are converted to symmetries of the original Boolean function.
Our main contribution is the mapping from a Boolean function to a graph,
and shows how to use this to find symmetries of the Boolean function. These
techniques are described in detail in this section.

3.1 Problem Mapping

To reduce functional symmetry-detection to the graph automorphism problem,
we represent Boolean functions by graphs as described to follow:

(1) Each input and its complement are represented by two vertices in the graph,
and there is an edge between them to maintain Boolean consistency (i.e.,
x ↔ y and x ′ ↔ y ′ must happen simultaneously). These vertices are called
input vertices. Outputs are handled similarly, and those vertices are called
output vertices.

(2) Each minterm and maxterm of the Boolean function is represented by a
term vertex. We introduce an edge connecting every minterm vertex to the
output, and an edge connecting every maxterm vertex to the complement
of the output. We also introduce an edge between every term vertex and
every input vertex or its complement, depending on whether this input is
1 or 0 in the term.

(3) Since inputs and outputs are bipartite permutable, all input vertices have
one color, and all outputs vertices another. All term vertices use yet another
color.

The idea behind this construction is that if an input vertex gets permuted
with another input vertex, the term vertices connected to them will also need
to be permuted. However, the edges between term vertices and output vertices
restrict such permutations to the following cases: (1) the permutation of term
vertices does not affect the connections to output vertices, which means that
the outputs are unchanged; and (2) permuting term vertices may also require
permuting output vertices, thus capturing output symmetries. A proof of cor-
rectness appears in the Appendix.

Figure 2(a) shows the truth table of function z = x ⊕ y , and Figure 2(b) illus-
trates our construction for the function. In general, vertex indices are assigned
as follows. For n inputs and m outputs, the ith input is represented by vertex 2i,
while the complementary vertex has index 2i + 1. There are 2n terms, and the
ith term is indexed by 2n+ i. Similarly, the ith output is indexed by 2n+2n +2i,
while its complement is indexed by 2n + 2n + 2i + 1.

The symmetry detector Saucy [Darga et al. 2004] used in this work typically
runs faster when the graph is smaller and contains more colors. Therefore, if
output symmetries do not need to be detected, a reduced version of the graph can
be used. It is constructed similarly to the full graph, but without output vertices
and potentially with more vertex colors. We define an output pattern as a set of
output vertices in the full graph that are connected to a given term vertex. Fur-
ther, term vertices with different output patterns shall be colored differently.
Figure 2(c) illustrates the reduced graph for the 2-input XOR function.
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Fig. 2. Representing the 2-input XOR function by: (a) the truth table; (b) the full graph; and (c)
the reduced graph for faster symmetry detection.

All the minterms and maxterms of the Boolean function are used in the
graph because we focus on fully-specified Boolean functions. Since all the terms
are used, and there are 2n terms for an n-input function, the time and space
complexity of our algorithm is �(2n).

3.2 Discussion

Compared with other symmetry-detection methods, the one method proposed
in our work has the following advantages: (1) It can detect all possible input
and output symmetries of a function, including multivariable, higher-order, and
phase-shift symmetries; and (2) our symmetry generators are used to represent
the symmetries and are very compact, and the relationship between input and
output symmetries is very clear. These characteristics make the use of symme-
tries easier than other methods which enumerate all symmetry pairs.

While evaluating our algorithm, we observed that Saucy is more efficient
when there are few or no symmetries in the graph, whereas it takes more time
when there are many. For example, the runtime of a randomly chosen 16-input
function is 0.11 sec because random functions typically have no symmetries.
However, it takes 9.42 sec to detect all symmetries of the 16-input XOR function.
Runtimes for 18 inputs are 0.59 sec and 92.39 sec, respectively.

4. POSTPLACEMENT REWIRING

This section describes two techniques for postplacement optimization, permu-
tative rewiring and long-range rewiring. Permutative rewiring uses symme-
tries of extracted subcircuits to reduce wirelength. Long-range rewiring finds
rewiring opportunities from equivalent wires that are farther apart. It first
identifies candidate opportunities by simulating the circuit on random inputs,
then prunes such opportunities based on their potential for improving the in-
terconnect, accepting only those which pass on-the-fly formal verification.
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Fig. 3. Rewiring opportunities for p and q cannot be detected by only considering one bucket. To
rewire p and q, a subcircuit with p and q as inputs must be extracted.

4.1 Permutative Rewiring

After placement, symmetries can be used to rewire the netlist to reduce wire-
length. This is achieved by reconnecting pins according to symmetries found in
subcircuits, and these subcircuits are extracted as follows.

(1) We represent the netlist by a hypergraph where cells are represented by
nodes and nets are represented by hyperedges.

(2) For each node in the hypergraph, we perform breadth-first search (BFS)
starting from the node, and use the first n nodes traversed as subcircuits.

(3) Similarly, we perform depth-first search (DFS) and extract subcircuits using
the first m nodes.

In our implementation, we perform BFS extraction 4 times with n from 1 to
4, and DFS 2 times, with m from 3 to 4. This process is capable of extracting
various subcircuits suitable for rewiring. In addition to logically connected cells,
min-cut placers such as Capo [Caldwell et al. 2000; Adya et al. 2004] produce
a hierarchical collection of “placement bins” (buckets) that contain physically
adjacent cells, and these bins are also suitable for rewiring. Currently, we also
use subcircuits composed of cells in every half- and full bin in our rewiring. After
subcircuits are extracted, we perform symmetry detection on these subcircuits.
Next, we reconnect the wires to the inputs and outputs of these subcircuits
according to the detected symmetries in order to optimize wirelength.

The reason why multiple passes with different sizes of subcircuits are used
is that some symmetries in small subcircuits cannot be detected in larger sub-
circuits. For example, in Figure 3, if the subcircuit contains all the gates, only
those symmetries between x, y , z, and w can be detected, and the rewiring
opportunity for p and q will be lost. By using multiple passes for symmetry
detection, more symmetries can be extracted from the circuit.

The rewiring algorithm can be easily extended to utilize phase-shift symme-
try: If the wirelength is shorter after the necessary inverters are inserted or
removed, then the circuit is rewired. It can also be used to reduce the delay on
critical paths.

4.2 Long-Range Rewiring

While permutative rewiring is effective in finding local rewiring opportuni-
ties, long-range rewiring is capable of finding equivalent wires that are farther
apart. It can augment permutative rewiring to further optimize the circuit.
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The basic idea is similar to that popular in equivalence checking: Simulation
identifies potentially equivalent wires, and a CNF-SAT solver proves whether
they are [Lu et al. 2004]. After equivalent wires are identified, we try recon-
necting them and accept the reconnection that reduces wirelength. However,
unlike in equivalence checking, our goal is layout optimization. Therefore, we
can prune rewiring opportunities before formally verifying them. In particular,
we perform verification only after wirelength reduction is guaranteed, since
equivalence checking is relatively slow.

4.3 Implementation Insights

During implementation, we observed that for subcircuits with a small number
of inputs and outputs, it is more efficient to detect symmetries by enumerating
all possible permutations using bit operations on the truth table. This is because
the required permutations can be implemented with just a few lines of C++ code,
making this technique much faster than building the graph for Saucy. We call
this algorithm naive symmetry detection. To further reduce its runtime, we limit
the algorithm to detect first-order symmetries only. In our implementation,
naive symmetry detection is used on subcircuits with number of inputs less
than 11 and number of outputs less than 3. Experimental results show that
the runtime can be reduced by more than half with almost no loss in quality,
because lost rewiring opportunities can be recovered in larger subcircuits where
Saucy-based symmetry detection is used.

4.4 Discussion

Our rewiring techniques described so far use permutational symmetries. Here
we describe two applications of phase-shift symmetries.

(1) The ability to handle phase-shift symmetries may reduce the interconnect
by enabling permutational symmetries, as the MUX example in Figure 1(c)
shows.

(2) Phase-shift symmetries support the metal fix of logic errors involving only
inversions of signals: By reconnecting certain wires, signals may be inversed.

Compared with other rewiring techniques, the advantages of our techniques
include the following:

(1) Our rewiring techniques preserve placement, therefore the effects of any
change are immediately measurable. As a result, our methods are “safe” and can
be applied with every flow. In other words, their application can only improve
the optimization objective and never worsen it. This characteristic is especially
desirable in highly optimized circuits because changes in placement may create
cell overlaps, and the legalization process to remove these overlaps may affect
multiple gates, leading to a deterioration of the optimization goal.

(2) Our techniques support postsilicon metal fix, which allows reuse of tran-
sistor masks and can significantly reduce respin cost.

(3) The correctness of our optimizations can be verified easily using combi-
national equivalence checking.
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Fig. 4. Flow chart of our symmetry detection and rewiring experiments.

(4) Our techniques can optimize a broad variety of objectives, so long as the
objectives can be evaluated incrementally.

The limitations of our rewiring techniques include:

(1) The performance varies with each benchmark, depending on the num-
ber of symmetries and equivalent wires which exist in a design. Therefore the
improvement is not guaranteed.

(2) In permutative rewiring, the ratio of improvement tends to reduce when
designs get larger. Since permutative rewiring is a local optimization, it cannot
shorten global nets. However, we have not observed such a trend in long-range
rewiring.

5. EXPERIMENTAL RESULTS

Our implementation is written in C++, and the test cases are selected from
ITC99, ISCAS, and MCNC benchmarks. To better reflect modern VLSI circuits,
we chose the largest test cases from each benchmark suite, and added several
small and medium ones for completeness. Unselected test cases show the same
trends, but are omitted in this article due to space limitation. Our experiments
use the min-cut placer Capo. The platform used is Fedora 2 Linux on a Pentium-
4 workstation running at 2.26 GHz with 512M RAM.

We convert every testcase from BLIF to the Bookshelf placement format
(.nodes and .nets files) using the converter provided in Caldwell and Markov
[2002] and GSRCBookshelf [2007]. We report two different types of experimen-
tal results in this section, including the number of symmetries detected and
rewiring. A flow chart of our experiments on symmetry detection and rewiring
is given in Figure 4.
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Table II. Number of Symmetries Found in Benchmark Circuits

Symmetries
Number of Phase-shift Phase-shift Input and

Benchmark subcircuits Input input Output output output
ALU2 876 855 120 249 126 211
ALU4 15933 15924 242 1245 243 1244
B02 143 130 18 22 15 21
B10 1117 1015 160 201 137 170
B17 198544 190814 23789 32388 17559 24474
C5315 20498 19331 9114 5196 4490 4145
C7552 28866 26626 12243 7540 6477 5895
DALU 16665 15506 6632 3272 2550 2852
I10 14670 14165 4298 3710 2929 2516
S38417 141241 126508 75642 64973 59319 61504
S38584 122110 117084 55966 35632 29661 33655

Average 100% 94% 28% 23% 18% 20%

5.1 Symmetries Detected

The first experiment evaluates the symmetries found in the benchmarks, and
the results are summarized in Table II. In the table, the column labeled “num-
ber of subcircuits” is the number of subcircuits extracted from the benchmark
for symmetry detection. “Input” is the number of subcircuits which contain in-
put symmetries, “phase-shift input” is the number of subcircuits that contain
phase-shift input symmetries. “Output” and “phase-shift output” are used in
a similar way. “Input and output” are subcircuits that contain symmetries in-
volving both inputs and outputs. The number of symmetries found in circuits
can be used to predict the probability of finding rewiring opportunities: At least
66% of the subcircuits contain permutational input symmetries and are suit-
able for rewiring. It can also be observed that although output symmetries do
not happen as often as input symmetries, their number is not negligible and
rewiring techniques should take them into consideration.

5.2 Rewiring

In the rewiring experiments, wirelength reduction is calculated against the
original wirelength after placement using half-perimeter wirelength. The sec-
ond experiment compares the wirelength reduction gained from rewiring and
detailed placement. It also compares the wirelength reduction of rewiring be-
fore and after detailed placement. These results are summarized in Tables III
and IV, respectively. The maximum number of inputs allowed for symmetry
detection is 16 in this experiment. From Table III, it is evident that our method
can effectively reduce wirelength by about 3.7%, which is comparable to the
improvement due to detailed placement.

Table IV shows that the wirelength reduction is a bit smaller when rewiring
is used after detailed placement, suggesting that some rewiring opportunities
interfere with the optimization from detailed placement. For example, detailed
placement performs flipping of cells, which may interfere with permutative
rewiring if the inputs of the cells are symmetric. However, the difference is
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Table III. Performance and Runtime Comparisons Between Rewiring and Detailed Placement

Wirelength reduction Runtime (seconds)
Detailed Detailed Global

Benchmark Wirelength Rewiring Placement Rewiring Placement Placement
ALU2 5403.29 3.21% 8.98% 2.60 0.2 3.6
ALU4 35491.38 9.02% 3.54% 15.20 3.0 27.2
B02 142.90 8.29% 0% 2.80 0.4 0.0
B10 1548.28 5.04% 3.89% 7.20 0.0 1.0
B17 367223.20 2.92% 2.28% 350.60 32.6 206.2
C5315 30894.06 1.76% 1.52% 17.39 3.0 3.2
C7552 39226.30 1.71% 1.57% 23.80 4.0 2.8
DALU 20488.84 2.79% 3.46% 13.20 2.6 2.6
I10 50613.84 2.11% 2.05% 15.60 2.6 29.0
S38417 129313.20 2.01% 2.05% 180.80 22.2 17.2
S38584 174232.80 2.51% 2.27% 157.80 20.6 46.0

Average 77689.00 3.70% 2.87% 30.80 8.3.0 71.5.0

Table IV. Impact of Rewiring Before and After Detailed Placement

Wirelength Reduction Runtime (seconds)
Before After Before After

Detailed Detailed Detailed Detailed
Benchmark Placement Placement Placement Placement
ALU2 3.49% 3.21% 3.4 3.6
ALU4 9.38% 9.02% 27.2 27.2
B02 8.29% 8.29% 0.2 0.2
B10 4.78% 5.04% 0.8 1.0
B17 3.0% 2.92% 199.6 206.2
C5315 1.71% 1.76% 3.6 3.2
C7552 1.82% 1.71% 2.6 2.8
DALU 2.9% 2.19% 2.8 2.6
I10 2.05% 2.11% 29.2 29.0
S38417 2.04% 2.01% 18.0 17.2
S38584 2.50% 2.51% 46.2 46.0

Average 3.82% 3.70% 30.3 30.8

very small, showing that the wirelength reduction from rewiring is mostly in-
dependent of detailed placement.

The third experiment evaluates the relationships between the number of
inputs allowed in symmetry detection, wirelength reduction, and runtime. In
order to show the true performance of Saucy-based symmetry detection, the
use of naive symmetry detection is turned off in this experiment. Since our
symmetry-detection method is most efficient with a small number of inputs,
this relationship represents the tradeoff between performance and runtime.
Empirical results, shown in Table V, indicate that the longer the rewiring pro-
gram runs, the better the reduction will be. However, most improvement occurs
with a small number of inputs and can be achieved quickly.

The fourth experiment shows the wirelength reduction gained from long-
range rewiring and is summarized in Table VI. The SAT solver used is MiniSAT
[Eén and Sörensson 2003]. For comparison, long-range rewiring is conducted
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Table V. Impact of Number of Inputs Allowed
in Symmetry Detection on Performance and

Runtime

Number of Runtime Wirelength
Inputs Allowed (seconds) Reduction

2 2.90 1.06%
4 4.30 2.58%
6 7.07 3.12%
8 14.98 3.50%

10 28.03 3.63%
12 41.34 3.72%
14 59.85 3.66%
16 82.30 3.68%

The numbers are averages of all the benchmarks.

Table VI. Wirelength Reduction of Long-Range Rewiring Before and After
Permutative Rewiring

Wirelength Reduction Runtime (seconds)
Before After Before After

Permutative Permutative Permutative Permutative
Benchmark Rewiring Rewiring Rewiring Rewiring
ALU2 1.63% 1.51% 0.66 0.33
ALU4 0.00% 0.05% 13.66 12.66
B02 0.00% 0.00% 0.33 0.33
B10 0.01% 0.00% 0.33 0.33
B17 0.83% 0.76% 445.33 421.00
C5315 1.33% 1.21% 13.66 12.00
C7552 1.69% 1.02% 28.66 17.66
DALU 2.10% 2.21% 23.33 21.66
I10 0.55% 0.48% 18.66 17.33
S38417 5.66% 5.84% 339.66 315.66
S38584 3.21% 3.03% 280.00 272.33

Average 1.55% 1.47% 105.78 99.18

before and after permutative rewiring. From the results, we can see that long-
range rewiring tends to be more beneficial for larger circuits. This is because
larger circuits contain more logic, therefore wires with equivalent functionality
are more likely to exist. Furthermore, larger circuits contain more long wires,
which makes wirelength reduction more significant for many rewiring oppor-
tunities. From the comparison of long-range rewiring applied before and after
permutative rewiring, we can see that the wirelength reduction gained from
long-range rewiring applied after permutative rewiring is less, but the runtime
is also shorter. This is because some rewiring opportunities have already been
discovered by permutative rewiring. However, since permutative rewiring runs
much faster, it saves time for long-range rewiring. As a result, it is clear that
long-range rewiring should be applied after permutative rewiring for better
performance. When long-range rewiring is applied after permutative rewiring,
an extra 1.47% of wirelength reduction can be gained, which makes the total
wirelength reduction 5.17% using our rewiring techniques. Considering the fact

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 32, Publication date: August 2007.



16 • K.-H. Chang et al.

that no gate has been added or modified, our approach appears practical and
very effective.

We also applied our rewiring techniques to the OpenCores suite [OpenCores
2007] in the IWLS’05 benchmarks [IWLSBenchmarks 2005], and performed
routing to measure the wirelength reduction for routed wires. The results
show that our prerouting optimizations effectively transform into postrout-
ing wirelength reduction. Furthermore, we observe that via counts can also
be reduced by our optimizations. These results show that our rewiring tech-
niques are effective in reducing wirelength and the number of vias that can
both reduce manufacturing defects and improve yield. Reducing via count
is especially important in the deep submicron era because vias are a ma-
jor cause of manufacturing faults. To study the effect of logic optimization
on the performance of rewiring, we also conducted an experiment that per-
forms rewiring on optimized and unoptimized netlists. In addition, we mea-
sured the maximum delay of several benchmarks to study the effect of rewiring
on circuit timing. Empirical results for these experiments are available in the
Appendix.

6. CONCLUSIONS

In this article we proposed a new symmetry-detection methodology and applied
it to postplacement rewiring. We show experimentally that, compared with
other symmetry-detection techniques, our method identifies more symmetries,
including multivariable permutational and phase-shift symmetries for both
inputs and outputs. This is important in circuit rewiring because more detected
symmetries create more rewiring opportunities. In addition, we proposed a long-
range equivalence detector for further rewiring opportunities.

Our experimental results on common circuit benchmarks show that the
wirelength reduction is comparable and orthogonal to the reduction pro-
vided by detailed placement—the reduction achieved by our method per-
formed before and after detailed placement is similar. This shows that our
rewiring method is very effective, and should be performed after detailed
placement for the best results. When applied alone, we observe an average of
3.7% wirelength reduction for the experimental benchmarks evalauted. When
long-range rewiring is also applied, the total wirelength reduction increases
to 5%.

In summary, the rewiring technique we presented has the following advan-
tages: (1) It does not alter the placement of any standard cell, therefore no cell
overlaps are created and the improvements from changes can be evaluated reli-
ably; (2) it can be applied to a variety of existing design flows; (3) it can optimize
a broad variety of objectives, such as delay and power, so long as they can be
evaluated incrementally; and (4) it can easily adapt to other symmetry detec-
tors, such as the one proposed by Chai and Kuehlmann [2006]. On the other
hand, our technique has some limitations: (1) Its performance depends on the
specific design being optimized and there is no guarantee of wirelength reduc-
tion; and (2) the improvement tends to decrease with larger designs, similar to
what has been observed for detailed placement.
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APPENDIX

Proof of Correctness of Symmetry Detection. We first prove the correctness
of the reduced graph construction proposed in Section 3. Our proofs that follow
are presented as a series of numbered steps.

(1) First, we need to prove that there is a one-to-one mapping between the
function and its graph. This mapping can be defined following the graph
construction in Section 3. The inverse mapping (from a graph to a function)
is also given in Section 3.

(2) Second, we need to prove that there is a one-to-one mapping between sym-
metries of the function and automorphisms of the graph.
(a) First, we want to show that a symmetry of the function is an automor-

phism of the graph. Symmetry of function means that permutation of
the inputs will not change the output, and permutation in inputs cor-
responds to reevaluation of the outputs of that term. Since the inputs
are symmetric, no output will be changed by the permutation, and the
color of term vertices in the corresponding graph will remain the same.
Therefore it is also an automorphism of the graph.

(b) Next we want to show that an automorphism of the graph is a sym-
metry of the function. Since there is an edge between the input and
its complement, mapping one input vertex, say x, to another vertex,
say y , will cause x ’s complement to map to y ’s complement, so Boolean
consistency is preserved. Since an input vertex connects to all the term
vertices that contain it, swaps between two input vertices will cause
all the term vertices that connect to them to be swapped according to
the following rule: Suppose that the input vertex x swaps with input
vertex y , then all term vertices that connect to both x and y will also be
swapped because there is an edge between the term vertex and both x
and y . Since a swap between term vertices is legal only if they have the
same color, this means that all automorphisms detected in the graph
will not map a term vertex to another color. And since the color of the
term represents an output pattern in the Boolean function, this means
that the outputs of the Boolean function will not be changed. There-
fore, an automorphism of the graph maps to an input symmetry of the
Boolean function.

(3) From Steps 1 and 2, there is a one-to-one mapping between the function
and its graph, and a one-to-one mapping between symmetries of the func-
tion and automorphisms of the graph. Therefore, the symmetry-detection
method for the reduced graph is correct.

Next, the correctness of the original graph is proved. The relationships be-
tween terms and inputs are described in the previous proof. Hence the proof
here focuses on the relationship between terms and outputs. There are three
possible situations: input symmetries that do not affect outputs, input symme-
tries that affect outputs, and output symmetries that are independent of the
inputs.
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Table VII. Characteristics of OpenCores Benchmarks

Benchmark Gate Count Net Count Description
STEP 226 231 Stepper motor controller
SASC 549 566 Simple asynchronous serial controller
AC97 11855 11948 AC 97 Controller
USB 12808 12968 USB 1.1 Functional IP
AES 20795 21055 Advanced Encryption Standard IP core
PCI 16816 16990 PCI Bridge
Ethernet 46771 46891 Ethernet MAC core

(1) Input symmetries that do not affect the output: The way term vertices
connect to output vertices represents an output pattern. If two term vertices
have exactly the same outputs, then they will connect to the same output
vertices; otherwise they will connect to at least one different output vertex.
Mapping a term vertex to another term vertex which has different output
pattern is invalid (except for the situation described in item 2, previously
given) because at least one output vertex to which they connect is different,
therefore the connections to output vertices behave the same way as coloring
in the preceding proof.

(2) Input symmetries that affect the output: If all terms that connect to an
output pattern can be mapped to all terms connecting to another output
pattern, then the output vertices corresponding to the two patterns can
also be swapped because the terms to which the outputs connect will not
change after the mapping. In the meantime, input vertices that connect to
the swapped minterms will also be swapped, which represents a symmetry
involving both inputs and outputs.

(3) Output symmetries that are independent of the inputs: If two sets of output
vertices connect to exactly the same term vertices, then the output vertices
in the two sets can be swapped, which represents output symmetries. In
this case, no term swapping is involved, so the inputs are unaffected.

OpenCores Benchmark Results. We also applied our rewiring techniques to
real designs from OpenCores. Some characteristics of the benchmarks are given
in Table VII, and the results are summarized in Table VIII. From the results, we
can see that our techniques continue to be beneficial for these designs in terms
of reduction both in wirelength and via counts. However, it can be observed that
the improvement from permutative rewiring becomes much smaller compared
with the benchmarks used in the article, while the improvement from long-
range rewiring remains roughly the same. One reason is that these benchmarks
are larger than the previous ones. As discussed in the article, permutative
rewiring is a local optimization and its improvement tends to decrease when
the design gets larger. Another reason is that the pins in the cells are close
to each other and the gates are small. Since permutative rewiring is more
effective for larger gates when pins are farther apart, the improvement becomes
less significant. The results of reduction in via counts show that permutative
rewiring is more effective than long-range rewiring in reducing via counts. The
reason is that permutative rewiring can reduce local congestion and increase
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Table VIII. Wirelength and Via Reduction After Detail Routing for OpenCores Benchmarks

Original Wirelength Reduction Via Reduction
Permutative Perm+long Permutative Perm+long

Benchmark Wirelength Via Count Rewiring Rewiring Rewiring Rewiring
STEP 6582 1174 1.02% 5.07% 0.94% 2.56%
SASC 24471 3648 0.70% 1.54% 0.90% 0.66%
AC97 883291 84414 0.41% 2.05% 1.59% 1.70%
USB 1005226 87848 0.50% 1.87% 2.29% 3.49%
AES 1390080 131014 0.89% 3.69% 2.08% 3.39%
PCI 1483021 122701 0.26% 1.78% 0.25% 0.52%
Ethernet 7926180 430748 0.37% 4.01% 0.57% 1.64%

Average 1816979 123078.1 0.59% 2.86% 1.23% 1.99%

“Perm+long” the results of long-range rewiring applied after permutative rewiring.

Table IX. Characteristics of Benchmarks for the Logic Optimization Experiment

Unoptimized Optimized
Benchmark Description Gate Count Wirelength Via Count Gate Count Wirelength Via Count
MiniRISC A mini-RISC CPU 4987 1045619 91338 4359 829725 83309
MD5 An MD5 encoder 13311 3073978 258399 9181 1789543 182868
DLX An MIPS-Lite CPU 14788 4340807 320418 11028 3058868 248093
Alpha An Alpha CPU 38831 15012263 855910 30212 9410743 672399

Optimized netlists were produced with great optimization efforts during logic synthesis, while unoptimized
netlists were produced with little efforts.

Table X. Wirelength and Via Reduction After Detail Routing for Unoptimized
and Optimized Circuits

Unoptimized Optimized
Wirelength Reduction Via Count Reduction Wirelength Reduction Via Count Reduction

Permutative Perm+long Permutative Perm+long Permutative Perm+long Permutative Perm+long
Benchmark Rewiring Rewiring Rewiring Rewiring Rewiring Rewiring Rewiring Rewiring
MiniRISC 0.50% 5.04% 0.87% 1.85% 0.58% 1.08% 0.88% 1.94%
MD5 0.45% 6.29% 1.28% 3.05% 0.65% 2.93% 1.48% 2.80%
DLX 0.41% 5.67% 1.09% 5.51% 0.47% 1.78% 0.74% 1.67%
Alpha 0.24% 8.68% 1.02% 6.87% 0.36% 1.93% 1.34% 2.04%

Average 0.40% 6.42% 1.07% 4.32% 0.52% 1.93% 1.11% 1.94%

The column “Perm+long” shows the results of long-range rewiring applied after permutative rewiring.

pin access, which in turn reduce the use of vias; while long-range rewiring does
not have such effects.

Effect of Logic Optimization on Rewiring. To study the effect of logic op-
timization on rewiring, we selected four register-transfer-level (RTL) bench-
marks, whose characteristics are summarized in Table IX. For logic synthe-
sis we used the Cadence RTL Compiler 4.1, configuring it with little opti-
mization effort when generating “unoptimized” netlists, while the “optimized”
netlists were generated with greater effort. We performed rewiring on both
types of benchmark, and the results are summarized in Table X. From the
results, we can observe that the wirelength reduction obtained using long-
range rewiring is smaller for optimized netlists. The reason is that logic op-
timization involves merging equivalent nodes, which reduces the opportuni-
ties for long-range rewiring. However, the wirelength reduction achieved by
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Table XI. Maximum Circuit Delay After Detail Routing

Changes in Maximum Delay
Before Permutative Perm+long

Benchmark Rewiring (ns) Rewiring Rewiring
MiniRISC 7.36 0.43% 3.40

MD5 20.98 −0.43% 35.05%
DLX 9.92 −9.71% 40.21%

Alpha 20.86 0.07% 7.36%
Average −2.41% 21.50%

Column “Perm+long” shows the results of long-range rewiring applied
after permutative rewiring.

permutative rewiring actually increases when the design is optimized, sug-
gesting that permutative rewiring is orthogonal to logic optimizations. Since
permutative rewiring requires both physical and logical information, our re-
sults indicate that it cannot be replaced by pure physical optimizations (i.e.,
detailed placement) or pure logic optimizations (i.e., those performed during
synthesis).

Effect of Rewiring on Circuit Timing. To study the impact of rewiring on
circuit timing, we instructed the detail router (Cadence NanoRoute 4.1) to re-
port the maximum delay of the benchmarks in Table IX (optimized version)
before and after rewiring, and the results are summarized in Table XI. The re-
sults show that indiscriminate long-range rewiring may increase circuit delay
because it invalidates the buffer insertion performed during synthesis. Hence,
it must be performed carefully to avoid delay increase in critical paths. How-
ever, circuit timing actually improves during permutative rewiring, despite the
fact that timing is not considered in wirelength optimization—this is not sur-
prising because permutative rewiring reduces the length of affected nets and
does not introduce new wires. In the deep submicron era, power consumption
and reliability are often as important as circuit timing. Our results show that
permutative rewiring can safely improve both objectives without deteriorat-
ing circuit timing; shorter wires reduce dynamic power consumption, while
reduction in via count makes signal delays more predictable (the resistance of
Tungsten vias can vary by 20 to 30 times).
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