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1. INTRODUCTION

Due to the increasing demand for integrated circuits to provide more functions
while consuming less power, designing a new chip becomes more and more
difficult. One way to reduce this design effort is to reuse previously designed
circuits, such as Intellectual Property (IP) blocks and general-purpose proces-
sors. This approach, however, may result in designs with unnecessarily large
area and power consumption because they are overprovisioned with respect
to the target functionality. On the positive side, system performance and cost
may be improved by customizing reused components to the target applications
and environment. This novel optimization, which we call design specialization,
poses a new synthesis challenge, which differs from traditional formulations
by the abundance of external don’t-cares. In fact, both academic and commer-
cial synthesis tools available today appear to be structured and optimized to
extract optimization opportunities from small, localized sets of external don’t-
cares. While this approach succeeds on mainstream synthesis instances, it does
not perform well on the type of instances generated in the context of design
specialization and cannot handle some cases at all. Our experimental study
revealed that the performance of existing tools, such as Espresso [Rudell and
Sangiovanni-Vincentelli 1987] and some commercial synthesis tools, greatly
deteriorates when extensive don’t-cares are added. In addition, several other
tools, such as ABC [ABC 2007] and commercial tools, do not handle our problem
instances at all, or do not provide specification formats for this situation. The
latter problem is especially serious because without a simple and efficient way
to represent don’t-cares for synthesis tools, the adoption of circuit customiza-
tion methodologies will be much more difficult.

In this work we address two types of synthesis problems in the presence of
extensive external don’t-care sets. The first type assumes that the care-terms
are known and represented using a truth table while the circuit structure is
unknown. To solve this problem, we propose CleanSlate and InterSynth al-
gorithms that synthesize the truth table from scratch. The second problem
type assumes that an initial circuit already exists for customization. To solve
this problem, we developed a FastShrink algorithm which takes as input an
optimized design and reduces it based on the specified don’t-care set. Note
that FastShrink might find optimization opportunities even when applied after
CleanSlate. Our approach is based on an important insight: extensive don’t-
cares allow simple greedy algorithms to quickly produce a reasonably small
netlist, and the missed optimization opportunities can be recovered afterward
using more sophisticated synthesis techniques. Since this latter step does not
consider don’t-cares, it can run much faster and leverages existing tools. This
two-step process eliminates the need for a time-consuming don’t-care opti-
mizer, yet it is still capable of generating high-quality netlists. Our second
contribution is a methodology that automatically extracts don’t-care informa-
tion from existing verification environments, which can be either a direct test
or a constrained-random testbench, for circuit customization. In this way, de-
signers do not need to encode don’t-cares explicitly, which is often difficult and
time consuming. We integrated these techniques in our tool, called SWEDE
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(Synthesis Within an Extensive Don’t-care Environment) [Chang et al. 2009].
In our experiments we performed synthesis from truth tables with large don’t-
care sets and observed SWEDE completing ten times faster than state-of-the-
art synthesis tools while producing comparable or smaller circuits. We have
also used SWEDE to customize circuits with up to 30K gates and half-a-million
input vectors in under two hours on a single processor in most cases.

SWEDE’s high performance enables several new synthesis applications and
enhances many others, including (1) input constraint synthesis for emulation;
(2) acceleration of the most frequent computation in a unit [Austin et al. 2005;
Lakshminarayana et al. 2001; Verma et al. 2008]; (3) customization of third-
party IP components in an System-on-Chip (SoC); and (4) support for graceful
wear-out of electronic devices [Wagner et al. 2006]. Applications in category (1)
can solve current engineering problems, while the others provide new system
design paradigms. Our techniques may help address a wide range of emerg-
ing concerns in IC design, including increasing verification difficulty, unpre-
dictability of manufacturing [Wagner et al. 2006], and lower-power circuits
[Lakshminarayana et al. 2001]. Since our simplified circuits provide correct
outputs only within the specified care set, stimuli outside this realm may not
be viable. While “soft” application domains such as multimedia can tolerate
these situations well, other applications may require an output flag indicating
that a given input cannot be processed correctly. To this end, techniques for
masking timing errors, such as the work by Choudhury and Mohanram [2009],
can be used to generate the flag.

The rest of the article is organized as follows. In Section 2 we review previous
work and provide necessary background. We then describe our new synthesis
techniques in Section 3. Our circuit customization flow and proposed applica-
tions are given in Section 4. Experimental results are provided in Section 5,
and Section 6 concludes this article.

2. BACKGROUND

In this section we first review relevant previous work. Next, we describe five
important concepts: bit-signatures, Craig interpolation, Shannon entropy, sim-
ulation, and proof by induction. These concepts are used in our synthesis tech-
niques and circuit customization flows.

2.1 Prior Work on Synthesis with Don’t-Cares

Much research has been developed in exploiting don’t-cares in synthesis opti-
mization. A classic tool implementing some of the most commonly used tech-
niques is Espresso [Rudell and Sangiovanni-Vincentelli 1987]. Although other
more sophisticated synthesis tools exist, such as ABC [ABC 2007] and MVSIS
[MVSIS 2005], these focus specially on synthesis problems with a small number
of don’t-cares. Moreover, their input specification format makes it impractical
to describe a large number of don’t-cares. For example, a design that could arise
in our problem domain may have 50 inputs and as many as one million care
terms, leaving more than 1015 combinations to be don’t-care terms. In order
to specify such a complex set of don’t-cares, Brayton et al. [2002] proposed the
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use of an external netlist to encode them. The construction of such a netlist,
however, can be challenging.

In addition to synthesizing from a truth table, it is also possible to optimize
a design starting from an existing circuit and simplifying it using the don’t-
cares via resynthesis techniques such as rewiring [Yamashita et al. 1996], node
merging [Plaza et al. 2007], and multilevel logic optimizations [Matsunaga and
Fujita 1989]. One major challenge in this context is the representation and ma-
nipulation of such don’t-cares. For instance, Muroga et al. [1989] proposed the
concept of Compatible Sets of Permissible Functions (CSPFs), which was used
by Savoj and Brayton [1990] to optimize multilevel networks composed of NOR
gates. This representation was later improved by Yamashita et al. [2000] and
became Sets of Pairs of Functions to be Distinguished (SPFDs). One major draw-
back in these techniques is that representing the don’t-cares is cumbersome and
the related data structures are difficult to work with. Traditionally, these don’t-
cares are represented by BDDs, often exhausting all memory resources even
for moderate-size designs. To address this problem, Sinha proposed an efficient
representation of SPFDs based on graphs that can be used in logic resynthe-
sis [Yang et al. 2007]. This approach improves the memory profile of SPFDs,
but deteriorates the computing time. Recently, Plaza et al. [2007] relied on
bit-signatures generated by functional simulation to approximate observabil-
ity don’t-cares for node merging, followed by SAT-based verification. This ap-
proach is faster and is more efficient in memory than other solutions. However,
external don’t-cares were not used in the optimization. Gorjiara and Gajski
[2008] proposed a framework to generate customized circuits and showed that
these circuits are much more power efficient than the original versions. Their
work demonstrated that IP customization can be extremely useful. Nonethe-
less, their techniques cannot customize generic existing circuits like we do. In
stead of utilizing don’t-cares for circuit optimization, techniques based on logic
decomposition and refactoring can also effectively reduce the size of a circuit.
To this end, the greedy algorithm proposed by Rajski and Vasudevamurthy
[1992] is used in our CleanSlate synthesis flow.

2.2 Craig Interpolation

The concept of Craig interpolation originated in mathematical logic in 1957 and
has recently become popular in formal verification. In contrast, we are going to
use it in logic synthesis.

Definition 1. Consider a pair of Boolean functions, A(x, y) and B(y, z), such
that A(x, y)∧ B(y, z) = 0, where x and z are variables appearing only in Aand B,
respectively, and y are common variables of A and B. An interpolant of A(x, y)
with respect to B(y, z) is a Boolean function I over the common variables y
that satisfies the following conditions: A(x, y) ⇒ I(y) and I(y) ⇒ B(y, z) [Craig
1957].

Consider an unsatisfiable SAT instance composed of two sets of clauses A
and B. In this case, A(x, y) ∧ B(y, z) = 0. An interpolant of A can be computed
from the proof of unsatisfiability of the SAT instance by the algorithm found
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in [McMillan 2003, Definition 2]. The resulting interpolant is a single-output
multilevel logic network represented as an And-Inverter-Graph (AIG) [ABC
2007]. If A(x, y) is the on-set of a function, B(y, z) is its off-set, and A(x, y)∧B(y, z)
is its don’t-care set, then I(y) can be seen as an optimized version of A(x, y)
where the don’t-cares are used in a particular way to optimize representation
of I.

Interpolation is used in formal verification to compute an overapproximation
of the complete set of reachable states [McMillan 2003]. Interpolation has also
been used in area- and delay-driven technology mapping into K-input LUTs
[Mishchenko et al. 2007]. When applied to technology mapping, interpolation
is used to generate new functions for the node being synthesized.

2.3 Bit-Signatures and Entropy

Our FastShrink synthesis technique is based on bit-signatures generated us-
ing simulation, which are defined next. Note that a signature is essentially a
signal’s partial truth table. If the input vectors are applied exhaustively, then
the signature of a signal is its complete truth table.

Definition 2. Given a wire (signal) w in a circuit, computing function f, and
input vectors v1, v2 . . . vk, the signature of w is the bit-vector ( f (v1), . . . , f (vk)),
where f (vi) ∈ {0, 1} represents the output of f given the input vector vi.

The second step of the FastShrink technique (see Section 3.3) exploits short-
range optimization opportunities in a circuit. Intuitively, signals with less infor-
mation are easier to optimize. To quickly identify such signals, we use Shannon
entropy, which is calculated as follows [Shannon 1948].

Es = −#ones
k

log2

(
#ones

k

)
− #zeros

k
log2

(
#zeros

k

)
(1)

In the equation, Es is the entropy of signature s, #ones is the number of 1s
in the signature, and #zeros is the number of 0s in the signature. Variable k is
the number of bits in the signature and is also the number of vectors applied
to the circuit. A larger Es means that the signature contains more information.

2.4 Simulation and Proof by Induction

Simulation is one of the most commonly used verification methods: input stim-
uli are applied to a circuit’s inputs, and the circuit’s outputs are checked against
expected results. In logic simulation, scalar values are applied to the inputs.
For example, feeding 2 and 3 to the inputs of an adder will produce 5 on its
output. In symbolic simulation, symbols are applied to the inputs, and the out-
puts are logic expressions [Bertacco 2005]. For example, applying a and b to
the inputs of an adder will produce a + b on its output. Since a symbol can
represent all possible values simultaneously, symbolic simulation has much
larger verification power than logic simulation.

One major limitation of simulation-based verification is that it can only check
circuit correctness within the simulated cycles. In other words, it can only verify
bounded properties. One way to solve this problem is to use proof by induction
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[Ganai and Gupta 2007]. The basic idea behind this method is that if the initial
states before simulation are a superset of the final states after simulating a
certain number of cycles, then the properties that hold throughout simulation
are guaranteed to hold unboundedly if the circuit is initialized to one of these
initial states.

3. CIRCUIT OPTIMIZATION WITH EXTERNAL DON’T-CARES

In this section we formalize the synthesis problem described earlier and propose
three circuit optimization techniques. One shrinks an existing netlist, while
the other two perform synthesis starting from a functional specification (truth
table). We then illustrate our techniques by example and provide in-depth
analysis of our techniques.

3.1 Problem Formulation

We formulate the circuit specialization problem as follows. Given a circuit,
the complete set of all possible input vectors and their output responses (or,
equivalently, a functional specification in the form of a truth table), we seek
to produce a small netlist that generates the correct outputs for the given
inputs. Our solution considers a combinational flattened circuit and performs
the optimization without any structural or other information from the user. On
the other hand, if structural information is available in the original netlist, it
can be used to improve quality of results.

3.2 Fast Synthesis Based on Truth Tables

In this section we introduce two fast synthesis techniques based on truth tables.
The first one, called CleanSlate, greedily expands cubes and then performs
more sophisticated resynthesis to minimize the size of the netlist. The second
one, called InterSynth, is based on interpolation.

3.2.1 The CleanSlate Technique. Our specification-based synthesis tech-
nique, called CleanSlate, starts from a truth table and produces a technology-
mapped netlist. The algorithm is outlined in Figure 1: CleanSlate first greedily
expands a cube, one literal at a time, similar to the heuristic used in Espresso
(lines 1–3). A cube is subsumed by the expanding cube and is eliminated if
its outputs are the same as those of the expanding cube. The expansion stops
when the cube overlaps another cube with different outputs. After produc-
ing an optimized truth table, CleanSlate generates a two-level netlist (line 4)
which is fed to ABC for further optimization. Using ABC, CleanSlate first per-
forms fast logic sharing detection of the netlist [Rajski and Vasudevamurthy
1992], and then converts the netlist to an And-Inverter-Graph (AIG) [ABC
2007]. After that, it expands 2-input ANDs in the AIG to multi-input ANDs
to create more opportunities for logic sharing detection, and performs AIG
resynthesis to optimize the netlist. The procedure in lines 7–10 is applied
several times to achieve better optimization (three times in our implementa-
tion). At completion, we apply a technology mapping step to produce the final
netlist.
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Fig. 1. The CleanSlate synthesis flow.

The rationale behind our solution is that the large number of don’t-cares en-
ables even a greedy algorithm to generate a reasonably small two-level netlist
within a short time. We then bypass a time-consuming two-level optimiza-
tion process, and instead perform multilevel synthesis. As our experimental
results in Section 5 indicate, CleanSlate runs 10X faster than exiting tools,
handles more complex circuits, and provides comparable or better synthesis
quality.

3.2.2 The InterSynth Technique. Another specification-based synthesis
technique is InterSynth. It is a heuristic procedure that attempts to minimize
the size of multilevel logic implementing a given function. There is no guar-
antee that it will find the smallest or even a relatively good circuit structure,
but for most test cases in practical applications (such as interpolation-based
model checking), it was found useful for circuit minimization. This approach is
based on computing multioutput interpolants, as shown in the pseudocode of
Figure 2. The computation begins by dividing the input patterns into the on-set
and the off-set for each output of the design. Next, the multioutput on-sets and
off-sets are converted into AIGs and synthesized to reduce the total number of
AIG nodes. After this, an incremental SAT problem is solved for each output,
by assuming that the on-set and the off-set of this output are true at the same
time. The proof of unsatisfiability of this instance is used to derive the inter-
polant for the output under consideration. The interpolants for all outputs are
then combined into a single AIG, which is synthesized to reduce the total num-
ber of AIG nodes. Finally, the AIG is mapped into two-input gates as described
in Section 3.2.1.

InterSynth differs from Mishchenko et al. [2007] in that it interpolates all
primary outputs of the network rather than one node. For this, we extend the
interpolation procedure to work for multioutput unsatisfiability proofs derived
by solving several incremental SAT problems. The interface of a SAT solver
such as MiniSAT [Eén and Sörensson 2003] allows us to specify assumptions for
each incremental SAT run. When the run is proved unsatisfiable, assumptions
are lifted and the SAT solver can be reused. The assumptions used in the
incremental runs express the condition that the on-set and the off-set are true
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Fig. 2. The InterSynth synthesis flow.

Fig. 3. The SignalMerge algorithm.

simultaneously. This condition is, by construction, unsatisfiable for the on-set
and the off-set. The resulting interpolant is a multioutput AIG such that the
function of each output is contained in the interval defined by the on-set of this
function and the complement of the off-set.

3.3 Specializing an Existing Netlist

Given an existing netlist, FastShrink uses a two-step process to produce a spe-
cialized new netlist. The first step, called SignalMerge, quickly merges signals
in an existing circuit that are identical under the given input combinations.
The second step, called ShannonSynth, performs further optimization using
local don’t-cares. The algorithm of SignalMerge is shown in Figure 3. It first
simulates care-term vectors and then merges signals with identical signatures.
This allows SignalMerge to leverage both external and internal satisfiability
don’t-cares to remove redundant gates. Our implementation selects the signal
closest to primary inputs for merging to achieve smaller circuit delay. After
the signals are merged, unconnected gates are removed. To expose additional
merging opportunities, large cells such as AOI, OAI, etc., are decomposed into
smaller gates. After signals in the netlist are merged, the netlist can be tech-
nology mapped again.

Signal merging can remove redundant logic that generates identical signal
functions. ShannonSynth pushes the optimization further by reimplementing
subcircuits in smaller structures using don’t-cares. To quickly identify subcir-
cuits with high optimization potential, we use Shannon entropy to guide our
resynthesis. Intuitively, signatures with low entropy contain less information
and should be easier to optimize. In our experience we found that for a random
subcircuit extraction technique to produce the same quality as our entropy-
guided approach, 50% more runtime is required.
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Fig. 4. The ShannonSynth algorithm.

The ShannonSynth algorithm in Figure 4 first simulates vectors in the care
terms to generate a signature for each signal. Next, it computes the entropy
of each signature. To make sure its resynthesis attempts are worthwhile, the
algorithm only tries subcircuits whose output signatures have small entropy
(the bottom 20% of all signatures in our implementation). The key idea in this
algorithm is that, instead of trying to resynthesize the netlist in the subcir-
cuit, we build a partial truth table using only the subcircuit’s input and output
signatures so that we can exploit don’t-cares. ShannonSynth then synthesizes
the truth table using the CleanSlate algorithm. In this step, however, we use
Espresso to replace lines 1–3 of CleanSlate to achieve better resynthesis qual-
ity. This is appropriate in local resynthesis because the truth tables are small.
After an optimized truth table is generated, ABC is still called for further opti-
mization and technology mapping. If the new resynthesized netlist is smaller
than the original one, ShannonSynth replaces it.

The goal of ShannonSynth is to find local optimization opportunities by ex-
tracting subcircuits from the design and optimizing them using don’t-cares.
It can find optimizations that SignalMerge cannot find. However, runtime of
ShannonSynth can be considerably longer than SignalMerge. As a result, Sig-
nalMerge should always be performed first. ShannonSynth can then be applied
whenever there is spare machine or time left to achieve further optimization.

3.4 A Circuit Specialization Example

We now illustrate the FastShrink algorithm on a 3-bit ripple-carry adder. In
this example, input A can only assume values 3, 4 or 5, while input B has
values 1 or 7. SignalMerge first simulates all possible six input combinations
on the given adder to produce 6-bit signatures for all internal signals. The
circuit annotated with the signatures is shown in Figure 5(a). SignalMerge
then merges signals with identical signatures and removes all the gates that
are no longer connected (Figure 5(b)). At this point, only 8 out of the 15 gates
are still needed, resulting in a much smaller circuit.

To further optimize the circuit, we invoke ShannonSynth. This extracts a
subcircuit composed of gates g7, g8, and g9 to explore further optimizations.
First, a truth table is built using the signatures of the subcircuit’s inputs and
outputs as follows.
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Fig. 5. Ripple-carry adder specialization example: (a) original circuit; (b) after SignalMerge; and
(c) after ShannonSynth. Allowed input values are 3, 4, 5 (for A) and 1 and 7 (for B).

A1 A0 B1 g5 g9
1 1 0 1 1
1 1 1 0 1
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 1 1

We then feed the truth table to CleanSlate for synthesis and obtain a new
netlist, “g9=A0 & (g5 | B1)”, that only uses two gates. Since this resynthesized
netlist is smaller, it will replace the original one. Another ShannonSynth run
replaces gate g0 with an inverter, and the final result is shown in Figure 5(c). By
using the signatures of the subcircuit instead of the netlist for resynthesis, we
can fully utilize don’t-cares for optimization. This optimization is not performed
by many traditional synthesis tools that only use function-preserving netlist
transformations. Note that among the 58 don’t-care input combinations, 25.9%
are still added correctly.

3.5 Analysis

An important property of FastShrink is that every netlist modification it per-
forms always preserves the output responses of the given input vectors. This is
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because we operate on signatures, which are simulated values of the input vec-
tors. Since all the changes made by FastShrink preserve signatures, the output
responses are also preserved. Moreover, we observe that FastShrink subsumes
the common constant propagation technique, which is used when a subset of
the signals are constant 0 or 1. To simplify our reasoning, we assume that the
netlist is decomposed into 1- or 2-input gates, but the same holds in the general
case as well.

PROPOSITION 1. SignalMerge followed by ShannonSynth subsumes the opti-
mizations produced by constant propagation.

PROOF. Since the output of a 1-input gate can only be constant 0 or 1,
SignalMerge connects the output signal to VCC or GND, thus eliminating the
gate. Given a 2-input gate, suppose the constant input is the controlling value
of the gate, then the output of the gate can only be constant 0 or 1. In this
case, SignalMerge proceeds as the 1-input gate. Now suppose that the constant
input is not the controlling value of the gate, then the output of the gate can be
either identical or the complement to the other input. If the output is identical,
then SignalMerge connects it directly to the nonconstant input, eliminating
the gate. Otherwise, we build a truth table using the gate’s input and output
signatures and rely on ShannonSynth to simplify the gate to an inverter.

Finally, note also that a SignalMerge pass guarantees that no two signals
are identical in the final circuit, since it merges all the signals with identical
signatures.

Our analysis on how current commercial synthesis tools utilize don’t-cares
suggests that they perform interblock optimizations by first dissolving the
boundaries between the blocks to form a large flattened netlist, and then em-
ploying resynthesis techniques such as those introduced in Section 2.1. In other
words, they convert external don’t-cares into internal don’t-cares before opti-
mizations are performed. Although effective, this approach has the following
drawbacks. First, the block boundaries are not preserved after optimization,
which may make verification difficult, especially when dealing with third-party
IP blocks in an SoC design. Second, dissolving boundaries makes it difficult to
use external don’t-cares because the chip’s environment often depends on ap-
plications and cannot be modeled easily using a netlist. While state-of-the-art
synthesis tools mostly exploit internal don’t-cares, our work shows how to effec-
tively exploit external don’t-cares without viewing them as internal don’t-cares
and without blending multiple blocks into one netlist.

4. CIRCUIT CUSTOMIZATION FLOW AND NEW APPLICATIONS

In this section we describe flows that reuse existing simulation-based ver-
ification environments for circuit customization, including direct tests and
constrained-random testbenches. Since direct tests provide all the test pat-
terns in the care-set of the circuit, the techniques described in Section 3 can be
applied directly. However, sometimes the inputs may only be partially known.
For example, although the program running on an embedded system may be
given, its input data may vary at runtime. To address this problem, we propose
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an innovative technique that uses the constrained-random testbench developed
in most design verification flows as a “synthesis IP” for circuit customization.
This approach guarantees that whatever verified by the testbench will still
be correct in the customized circuit, even when some inputs are not given in
advance.

This section is organized as follows. We first describe our circuit customiza-
tion flow using constrained-random testbenches and propose a new verification
method suitable for this flow. We then finalize this section by proposing several
applications enabled by our resynthesis techniques.

4.1 Circuit Customization Using Constrained-Random Testbench

Our circuit customization flow using constrained-random testbenches works as
follows. (1) Simulate the testbench for a certain number of cycles to produce a
direct test. (2) Use the techniques described in the previous section to customize
the circuit. (3) Verify the correctness of the circuit with respect to the testbench
after each circuit modification in step (2) and only accept changes that pass
verification. The verification step will be described in Section 4.2.

4.2 Verification of Circuit Customization Changes

Although many verification techniques can perform complete sequential equiv-
alence checking between two circuits, such as reachability analysis and un-
bounded model checking [Ganai and Gupta 2007], they may not be scalable
enough to handle today’s designs. To address this problem, we describe a new
algorithm to verify the correctness of a customized circuit with respect to a
constrained-random testbench. The algorithm is based on symbolic simula-
tion and bounded model checking, and it utilizes proof-by-induction to achieve
complete proof. Due to its bounded nature, the algorithm can be applied to
much larger designs than traditional techniques. The algorithm is shown in
Figure 6. In the algorithm, ckt1 is the original circuit, ckt2 is the customized
circuit, tb is the testbench, and n is the number of cycles to be simulated.
Function verify then checks if ckt1 and ckt2 produce identical results at checker
variables within n cycles under the given constraints, whereas a checker vari-
able is typically a primary output or a register in the circuit. Note that to
achieve complete proof, we replace scalar random values in the testbench
with symbols in line 4 to make sure all possible inputs are verified in our
approach.

Ideally, initial symbolic state should be the set of all reachable states en-
coded symbolically. However, reachability analysis may be impossible for even
moderate-size designs. Therefore, in this work we assign pure scalar (overcon-
strained) or pure symbolic (underconstrained) values to the state bits depend-
ing on how these bits are used. If the verification algorithm returns false, then
we abandon the change made to the circuit. Although we may lose some op-
timization opportunities because part of the state bits are underconstrained,
this step is necessary to ensure the scalability of our verification method. If
the verification algorithm returns true, then due to the overconstrained state
bits, proof-by-induction should be used to generate additional rules for the
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Fig. 6. Circuit verification using symbolic simulation and constrained-random testbenches.

constrained-random testbench to ensure the equivalency between ckt1 and
ckt2 for all cycles, and the rules are derived as follows. Suppose that the initial
state is called statei and the final state is called state f . If statei ⊇ state f , then no
further constraints are needed, and ckt1 and ckt2 will produce identical outputs
for all the inputs that can be generated by the constrained-random testbench
if the circuits are both initialized to statei. On the other hand, if statei ⊂ state f ,
then additional constraints must be added to make sure statei is reached ev-
ery n cycles, for example, if a pipelined processor is initialized to a state in
which all general registers are symbols and all bypass control registers are 0.
Further assume that algorithm verify successfully confirmed the equivalency
between ckt1 and ckt2 for 100 cycles. Then as long as the program running
on the customized circuit makes all bypass control registers 0 every 100 cycle,
both circuits will produce the same outputs. Note that if statei ∩state f is empty,
then proof by induction fails and the customized circuit is correct only within
the simulated cycles.

From the preceding analysis, it can be observed that symbolically simulating
more cycles will provide more flexibility for circuit customization. Typically,
simulating cycles equal to twice the number of pipeline stages will yield good
results because most inputs will be able to propagate through the pipeline.
Note that if a wire remains 0 or 1 throughout symbolic simulation, then the
wire can be replaced by the constant, and this can often initiate a chain of
further optimizations.

4.3 New Applications

In this subsection we discuss some of the new applications that are enabled
by our techniques, including three applications based on circuit specialization
followed by one that requires synthesizing truth tables.

Acceleration of common-case computations. Certain classes of SoC designs
include several instances of a computational module to improve the paral-
lelism of the system. For instance, this is the case for multimedia SoC where
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the required output throughput is achieved by increasing the parallelism of
the computation. Among CPU designs, a specific example is the case of the Sun
Niagara T1 where 8 processor cores were sharing one Floating Point Unit
(FPU). However, due to its poor performance on FP testbenches, the second-
generation processor has been enhanced with 8 FPUs. Often the input distribu-
tion of components embedded in a system is highly skewed for a very small set,
while remaining combinations are rare [Schnarr and Larus 1998]. For instance,
it is observed that often under 10% of a program’s instructions account for 90%
of its execution time [Lakshminarayana et al. 2001]. Hence, SWEDE can be
adopted to explore a “Better Than Worst-Case Design” methodology [Austin
et al. 2005], also known as “Common-Case Computation” [Lakshminarayana
et al. 2001], where one of several units is fully functional, and all others are
optimized to only operate correctly for a few commonly occurring input com-
binations. This approach reduces power and area of the final system. If an
optimized computation fails at runtime, a fully functional module is invoked
as a back-up. Note that, for this approach to be viable, it may be necessary to
deploy either a functional checker (validating the operation results) or a “valid
input detection” circuit, as we are planning to explore. Alternatively, if one
is only concerned with correctness on a small subset of inputs, faster circuits
are possible as well. For example, the main idea in Verma et al. [2008] is that
much faster arithmetic circuits can be designed by allowing a small fraction of
incorrect results. In contrast, we focus on circuit size rather than performance.

Customization of third-party IP components in an SoC. In order to improve
reuse, SoC designs often acquire some components from third-party vendors.
In the fourth quarter of 2007, total IP revenue had reached $265.4 million, with
a growth rate of 4.1% each year [EETimes 2008]. Such components are typi-
cally embedded in an environment that only exploits a small fraction of their
functionality. It is then possible to use SWEDE to reduce the component’s com-
plexity (and power consumption) based on the specific environment in which
it is embedded. For example, floating point logic in an embedded processor is
redundant if the target application does not require any floating point compu-
tation. Manually removing redundant portions of the design, however, can be
difficult and error prone. While some hard IPs are difficult to modify, a large
segment of the $1B/year IP market consists of soft IPs, such as ARM proces-
sors, USB and PCI-Express devices, etc. The source-code is given to customers
unencrypted because design companies would not agree to put unknown blocks
in their chips. In addition, design houses often need to patch possible problems
and better optimize their entire SoC designs in terms of placement and floor-
planning. Importantly, such source code can be modified, and the techniques in
our article may lead to new business models, competing on cost by simplifying
existing IPs automatically. For example, there are many USB and PCI-Express
peripherals for PCs and laptops that are dedicated to a single function, like
WiFi, WiMax, voice-over-IP, Dolby 7.1 sound, etc. Needless to say, such devices
do not exercise the entire bus protocol, but the IP on which they are built may
support it. Therefore, to reduce the cost, one may automatically customize the
inherited bus IP to a given application. Whether or not the cost differential
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is significant, IP specialization may noticeably reduce power consumption. For
example, Apple iPhone contains the S-Gold2 baseband chipset from Infineon
in which Apple chose to turn off FM radio support and MMC/SD card compati-
bility, apparently to reduce power [Walko 2007].

Graceful wear-out of electronic devices. Extreme transistor scaling is leading
to reduced silicon reliability, including early device and interconnect wear-
out. To overcome the impact of this issue there is a growing need for low-
cost reliable design solutions. The use of SWEDE enables reliability through
component sparing [Constantinides et al. 2006], where spare components can
be optimized to provide only bare-bone functionality, sufficient to keep the
system operational in critical aspects until it is replaced. An example of this
spare optimization application is discussed by Wagner et al. [2006], where
the authors identify a small subset of a processor design that must be kept
operational in order to provide full system functionality (in this case the spare
was part of the processor itself with acceleration features excluded). When the
original circuit becomes unreliable, it will be replaced by the bare-bone spare
component to avoid a system-level crash.

Synthesis for fast emulation. In the emulation domain, one common is-
sue is the synthesis of the input constraints. Emulation systems can apply
constrained-random simulation at very high performance compared to logic
simulation. However, if the input constraints are not synthesizable, then at
each clock cycle the emulator must communicate with a simulating host, in-
curring a huge performance impact on the emulation. At the same time, input
constraints are often written in a high-level language (C++, Vera, etc.) and can-
not be synthesized. SWEDE can be deployed by running the random simulation
only on the design’s input constraints (and not including the design itself). This
simulation would be very fast and generates a set of care terms that SWEDE
then synthesizes in a circuit uploaded on the emulator along with the design.
Each emulation run would use a different constraint circuit, each synthesized
by SWEDE based on the random stimuli. On the other hand, the design itself
does not need to be resynthesized for each run.

5. EXPERIMENTAL RESULTS

In this section, we use three design examples to evaluate the capability of
SWEDE in customizing circuits: an Alpha processor running real applica-
tions, an integer multiplier, and a DLX processor with constrained-random
testbenches. In addition, we compare SWEDE with existing synthesis tools to
evaluate its ability to synthesize truth tables with external don’t-cares. These
tools are Espresso, MVSIS, and a commercial synthesis tool. Table I reports
the numbers of primary inputs and outputs, as well as initial cell count for the
benchmarks used. Benchmarks C1908-C7552 are from ISCAS’85. Both Alpha
and DLX are processors from the Bug UnderGround project [Bertacco et al.
2007] that implement subsets of the Alpha and MIPS ISA, respectively. Our
experiments were performed on Linux workstations with AMD Opteron 280
CPUs (2.4 GHz) equipped with 8GB of memory.
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Table I. Characteristics of Benchmarks

Benchmark Description #In/Outputs #Cells
C1908 16-bit SEC/DED circuit 33/25 461
C2670 12-bit ALU and controller 233/140 484
C3540 8-bit ALU 50/22 1060
C5315 9-bit ALU 178/123 1057
C7552 32-bit adder/comparator 207/108 1187
Alpha 5-stage pipeline Alpha CPU 3054/3619 30531
DLX 5-stage pipeline MIPS-lite CPU 2127/2160 14725
Multiplier 16-bit Wallace tree multiplier 32/32 1938

Table II. Characteristics of SpecINT Programs [SpecINT
2000]

Benchmark Description Language
bzip2 Compression tool C
gcc Compiler C
mcf Combinatorial optimization C
parser Word processing C
perlbmk Perl programming language C

5.1 Case Studies

Case study 1 (Alpha processor). For this study we ran five applications from
the SpecINT [2000] suite, whose characteristics are summarized in Table II.
The processor was synthesized using Cadence RTL compiler with the highest
optimization effort, and was mapped to a 0.18μm library. Since our Alpha pro-
cessor only implements a subset of the Alpha ISA, simulation was performed
in lockstep with the Simplescalar instruction set simulator [Austin et al. 2002].
We then use SignalMerge to optimize the circuit based on the stimuli from each
program. Figures 7 and 8 report the final sizes of the optimized designs and
the synthesis runtimes, respectively, achieved after simulating up to half-a-
million instructions. They indicate that the optimization potential varies from
application to application: for instance, the bzip2 application has a very small
stimuli set, hence we can exploit aggressive optimizations on it; while gcc has
a much wider span, hence little optimization can be extracted. This is aligned
with the intuition that bzip2 is a specialized algorithm applying the same oper-
ations to arbitrary datasets, while gcc’s operation is much more complex. This
result suggests that if the program running on a circuit is known, SWEDE
can potentially reduce its size significantly, generating a much smaller circuit
that consumes less power. Figure 8 also shows that SignalMerge operates in
approximately linear time on the number of input vectors in the care set, which
enables it to handle complex designs efficiently. Designs can be further opti-
mized by ShannonSynth: this step has greater runtime complexity; however,
this is offset by the fact that ShannonSynth only takes into consideration small
blocks in a circuit. For comparison, in the figures we also show the trend of op-
timizing for a constrained-random trace generated by StressTest [Wagner et al.
2005] (diamond-bullet lines). Its curve indicates that with random inputs, we
can only reduce the circuit by 10%, even when the number of instructions is
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Fig. 7. Gate count after specializing the Alpha CPU with SignalMerge. 30%–90% of the gates can
be removed for applications as long as half-million dynamic instructions.

Fig. 8. SignalMerge runtime to specialize Alpha. Runtime is approximately linear on the number
of stimulus vectors used.

as small as 6400. This is not surprising since, intuitively, random traces span
a much larger fraction of the circuit’s configurations than real applications,
making optimization difficult.

In Figure 9 we show the results when optimizing individual components in
the Alpha processor using the gcc application. The blocks we studied are the
instruction fetch unit (IF), the decode unit (ID), the execute block (EX), and the
memory access controller (MEM). The result indicates that the optimization
potential is very block specific. In particular, the EX block cannot be optimized
well because the execution unit needs to handle a wide range of input values,
making don’t-cares less dense. The MEM block also has very limited optimiza-
tion potential because it only has 363 gates but has 195 inputs. This shallow
logic structure makes signal sharing difficult.

Case study 2 (constant-coefficient multiplier). Embedded systems and digital
signal processors often need to perform simple operations repetitively [Lai
et al. 2008; Sarbishei et al. 2009]. For example, consider a portable electronic
measurement device that must convert between US units and metric units
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Fig. 9. Gate count of Alpha blocks after specialization.

Table III. Comparison of Two Major Commercial Tools and SWEDE
in Synthesizing Constant-Coefficient Multipliers

Tool1 Tool2 FastShrink
Orig. Opt. Orig. Opt. Orig. Opt.

Cell count 1387 834 2238 1440 1938 981
Reduction Ratio 39.9% 35.7% 49.4%

Original cell counts, optimized cell counts and the reduction ratios are shown.
FastShrink runtime was 42 seconds.

while keeping power consumption low. To keep the circuit simple, an integer
multiplier can be used, adjusting the decimal point afterward.

To support conversions between inches, feet, miles, and meters, one needs
to be able to multiply by the following six constants: 2.54, 30.4, 1.61, and their
inverse. For the sake of this example, we made the assumption that the user
can only compute with 5-digit decimal values. We used SWEDE to optimize
the circuit starting from a 16-bit Wallace-tree multiplier. The original circuit
had 1938 gates, and our care-set included 393216 patterns. For comparison,
we converted external DCs into internal DCs by hard-coding the constants in
the RTL code, and then we synthesized the design using two different commer-
cial synthesis tools, Tool1 and Tool2. The results are summarized in Table III.
Since different synthesis tools may use different multiplier architectures, the
reduction ratios should be compared instead of the cell counts. As the results
suggest, FastShrink performs better than existing synthesis tools. For compar-
ison with existing tools that support true external don’t-care synthesis, we also
attempted to synthesize the truth table of the 393216 patterns using Espresso
and Tool1 (truth table synthesis mode) but could not obtain a result netlist
after 96 hours.

While this multiplier only serves as a simple and intuitive example, the
case study indicates that SWEDE can seamlessly handle even traditionally
difficult synthesis problems, such as multipliers. This is because SWEDE is
unconcerned with the complexity of the original functionality and can focus
on just a few important inputs for its optimization. This characteristic makes
SWEDE considerably different from domain-specific optimization techniques
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Table IV. Percentage of Registers that Can Be
Removed Using Different Combinations of

Instructions and Random Data Inputs

Register Runtime
Instructions Allowed Reduction (sec)

NOP 60.4% 1
ADD, ADDI, NOP 33.9% 8

ADD, ADDI, LW, SW 31.9% 12
ADD, ADDI, LW, SW, 10.1% 37
SLL, SRA, BEQ, ORI

Runtime is the time for checking whether a register is
constant.

such as Sarbishei et al. [2009] in that our methods do not require architectural
information. To further study the behavior of the specialized multiplier, we
computed all the multiplications where one input ranges from 0 to 65535, and
the other from 100 to 199, producing a total of 6553600 input combinations.
The range for the second input was selected around the range of our specialized
input constants. The results show that 29.33% of the input combinations were
still multiplied correctly, while the average error over all input combinations
was 9.75%. The greatest error we observed was 98.72%, produced by 56685 ×
188.

Case study 3 (customizing DLX with a constrained-random testbench). In
this case study we customize DLX with constrained-random testbenches that
allow the use of different combinations of instructions. Insight [Avery 2008], a
commercial symbolic simulator that can symbolically simulate behavior-level
testbenches as well as gate-level netlists, is used in this case study. The cir-
cuit is initialized to a state in which all general registers are symbols and all
control registers are scalar values. We then prepare four testbenches that gen-
erate different combinations of instructions with random data values, and the
number of cycles used in verification is 10. In this case study, we report the
numbers of registers that are proven to be constant under different testbenches.
These registers can then be removed to simplify the circuit, and the results are
summarized in Table IV. The results suggest that when fewer numbers of in-
structions are used, more logic becomes redundant and can be removed. Since
we assign random values to data inputs in the testbenches, the customized cir-
cuit will produce correct outputs for any input as long as the instructions used
in the program comply with those used in the testbenches and the control reg-
isters return to their initial scalar values every 10 cycles. The latter condition
can be achieved by inserting a few NOPs before the 10-cycle boundary. This
case study also suggests that by developing different constrained-random test-
benches to model different usages, SWEDE can generate various customized
circuits to measure the trade-off among the functionality of a circuit, the die
area, and its power consumption. Note that while previous case studies only
focus on optimizing the combinational part of the circuits, in this case study
we actually performed a simple form of sequential optimization because some
registers are removed.

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 3, Article 26, Publ. date: May 2010.



26:20 • K.-H. Chang et al.

Table V. Comparison of Existing Tools and SWEDE using One-Hour Time-Out

Number of cells after (re)synthesis
Truth table based Netlist based

FastShrink
Benchmark Espresso Tool1 CleanSlate InterSynth (SignalMerge)
C1908 2518 6891 1352 828 284 (332)
C2670 6098 T/O 4467 2592 571 (665)
C3540 1925 6271 1140 1980 1059 (1094)
C5315 5183 T/O 3594 5882 1238 (1312)
C7552 5072 T/O 3644 4923 1311 (1387)

Runtime (s)
Truth table based Netlist based

FastShrink
Bench-mark Espresso Tool1 CleanSlate InterSynth (SignalMerge)
C1908 16.19 143.76 4.17 0.99 33.68 (0.32)
C2670 1494.51 T/O 45.26 34.81 54.13 (1.36)
C3540 29.12 193.69 3.55 2.01 115.4 (1.54)
C5315 635.17 T/O 27.70 25.04 179.56 (1.42)
C7552 911.54 T/O 35.39 26.68 150.51 (0.71)

All our solutions, CleanSlate, InterSynth and FastShrink, provide better synthesis quality with
significantly shorter runtime.

5.2 Comparison with Existing Tools

In this experiment we compared CleanSlate and InterSynth with Espresso and
a commercial tool (Tool1). We used the ABC system [ABC 2007] to implement
the interpolation-based procedure InterSynth for computing multievel repre-
sentations of Boolean functions that agree with the given on-set/off-set. The
results are verified by checking that interpolants are implied by the on-sets
and do not overlap with the off-sets. To avoid the influence of technology map-
ping on our experiments, we only used inverters and basic two-input gates.
To evaluate Espresso, which lacks a technology mapper, we fed the optimized
truth tables to ABC. We used 128 random patterns to generate the truth tables,
and summarized the results in Table V. CleanSlate and InterSynth outperform
Espresso and Tool1, producing the smallest netlists in just a small fraction of
the time. Moreover, in several cases Tool1 timed-out after one hour. We also
tried synthesizing from care sets of 256, 512, and 1024 random patterns us-
ing the same circuits. We found that CleanSlate can finish all the benchmarks
within 6.5 minutes, while Espresso and Tool1 timed-out after 1 hour for most
of the benchmarks.

To compare CleanSlate and InterSynth with traditional techniques based on
decision diagrams and sum-of-product manipulations, we conducted another
experiment that optimizes the truth tables using the MVSIS mfs command
[MVSIS 2005]. Since MVSIS requires don’t-care terms to be explicitly specified
in the input file when the PLA format is used, we reduced the truth tables to
include only the first 16 inputs so that the file sizes were reasonable. The results
are summarized in Table VI. From the table we can observe that MVSIS often
produces the smallest netlists. However, since runtime is also significantly
longer, this solution cannot scale to large designs. The results also indicate
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Table VI. Comparison of MVSIS and SWEDE

Bench- Number of cells after synthesis Runtime (s)
mark MVSIS CleanSlate InterSynth MVSIS CleanSlate InterSynth
C1908 773 1485 1693 37.20 0.14 1.79
C2670 4053 4675 9188 210.36 0.37 6.30
C3540 814 1232 1652 32.33 0.12 1.76
C5315 3425 3757 7508 203.79 0.41 4.54
C7552 3443 3820 7355 166.01 0.41 4.34

Due to input format limitations of MVSIS, the truth tables were reduced to contain only 16 inputs.

that CleanSlate outperforms InterSynth in every instance, suggesting that
CleanSlate may be more suitable for optimizing truth tables with fewer inputs.

Note that the complexity of the interpolation procedure, in the worst case, is
the same as that of Boolean satisfiability for circuit-based problems: exponen-
tial in the number of input variables of the circuit and in the number of logic
levels. However, in most of the practical cases, it works well because the num-
ber of conflicts (the metric that determines the number of resolution steps and,
therefore, the initial size of the interpolant) is relatively small. For the designs
synthesized by InterSynth in this experiment, there were no more than 5,000
conflicts, which led to initial interpolants whose size did not exceed 50,000 AIG
nodes.

Although CleanSlate and InterSynth, which operate from a truth table spec-
ification, produce comparatively better results than Espresso and commercial
tools, a comparison between Table V and Table I shows that the generated
netlists are still larger than the original ones. The reason is that the original
netlists are often produced from higher-level specifications which include con-
ceptual structures that lead to better optimizations. On the other hand, trying
to synthesize a compact netlist using only input and output values is much
more difficult. Therefore, if a netlist is available, the best optimizations can be
obtained through FastShrink, whose results are also shown in Table V.

SWEDE is based on signatures which can be calculated easily using simula-
tion. This makes SWEDE simple to use because designers only need to provide
input vectors to the circuits that belong to the care terms. Since signatures can
be represented compactly using bit-vectors and allow bit-parallel computation,
our solution is both fast and memory efficient. As our experimental results
show, we can handle half-million input vectors in less than three hours.

6. CONCLUSIONS

To reduce circuit design complexity in the multibillion transistor era, SoC and
embedded systems heavily rely on reuse and third-party IP components. Often,
the design environment surrounding such components uses only a fraction of
the functionality that these general-purpose components implement. The un-
used logic in these circuit blocks not only occupies valuable die area but also
consumes more power, hurting the circuit’s performance and quality. Hence,
new synthesis optimization opportunities are available in simplifying these
components to the subset of functionality required by the system they are em-
bedded in. Surprisingly, existing synthesis tools perform poorly in this context,
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which typically involves a small care-set and a very large don’t-care set. To ad-
dress this problem, we proposed a new tool called SWEDE, and provided three
new synthesis techniques which can specialize a circuit using external don’t-
cares: FastShrink, CleanSlate, and InterSynth. Unlike traditional synthesis
tools that pursue maximal use of don’t-cares by explicitly branching on differ-
ent don’t-care assignments, our greedy algorithms (SignalMerge and the first
phase of CleanSlate) implicitly exploit the fact that most terms are don’t-cares
and quickly generate a small netlist. Further circuit optimization is performed
by our ShannonSynth technique and the second phase of CleanSlate. This
novel synthesis flow allows SWEDE to scale better when massive don’t-cares
exist. In addition, SWEDE can reuse existing verification environments, such
as direct test or constrained-random testbenches, for circuit customization.
Therefore, it can make sure whatever verified by the testbenches is still correct
in the customized circuits. Since such testbenches exist in most verification
flows, SWEDE can be adopted easily in most designs. As our empirical results
indicate, SWEDE provides comparable or better synthesis quality than state-
of-the-art tools while running 10X faster. In fact, SWEDE can handle designs
as large as 30K cells with 0.5M care-set vectors in a few hours, demonstrating
its superior scalability and efficiency.

We discussed a number of new applications enabled by SWEDE, including
new system design paradigms and solutions to current engineering problems.
These new applications promise to produce circuits that run faster, consume
less power, and can be used as inexpensive back-up modules for larger circuits
that may fail during operation.

REFERENCES

ABC. 2007. Berkeley logic synthesis and verification group, ABC: A system for sequential syn-
thesis and verification, release 80308.

AUSTIN, T. M., BERTACCO, V., BLAAUW, D., AND MUDGE, T. N. 2005. Opportunities and challenges for
better than worst-case design. In Proceedings of the Asia and South Pacific Design Automation
Conference (ASP-DAC’05). 2–7.

AUSTIN, T. M., LARSON, E., AND ERNST, D. 2002. SimpleScalar: An infrastructure for computer
system modeling. IEEE Comput. 35, 2, 59–67.

AVERY. 2008. Avery design systems. http://www.avery-design.com/.
BERTACCO, V. 2005. Scalable Hardware Verification with Symbolic Simulation. Springer.
BERTACCO, V., AUSTIN, T., AND WAGNER, I. 2007. Bug underground project.

http://bug.eecs.umich.edu/.
BRAYTON, R. K., GAO, M., JIANG, J.-H. R., JIANG, Y., LI, Y., MISHCHENKO, A., SINHA, S., AND VILLA, T.

2002. Optimization of multi-value multi-level networks. In Proceedings of the IEEE Interna-
tional Symposium on Multiple-Valued Logic (ISMVL’02). 168–177.

CHANG, K.-H., BERTACCO, V., AND MARKOV, I. L. 2009. Customizing IP cores for system-on-chip
designs using extensive external don’t-cares. In Proceedings of the Conference and Exhibition on
Design, Automation and Test in Europe (DATE’09). 582–585.

CHOUDHURY, M. R. AND MOHANRAM, K. 2009. Masking timing errors on speed-paths in logic circuits.
In Proceedings of the Conference and Exhibition on Design, Automation and Test in Europe
(DATE’09). 87–92.

CONSTANTINIDES, K., PLAZA, S., BLOME, J. A., ZHANG, B., BERTACCO, V., MAHLKE, S. A., AUSTIN, T. M.,
AND ORSHANSKY, M. 2006. BulletProof: A defect-tolerant CMP switch architecture. In Proceed-
ings of the International Symposium on High-Performance Computer Architecture (HPCA’06). 5–
16.

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 3, Article 26, Publ. date: May 2010.



Logic Synthesis and Circuit Customization • 26:23

CRAIG, W. 1957. Linear reasoning: A new form of the Herbrand-Gentzen theorem. J. Symb. Logic
22, 3, 250–287.
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