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ForEVeR: A Complementary Formal and Runtime Verification
Approach to Correct NoC Functionality

RITESH PARIKH and VALERIA BERTACCO, University of Michigan, Ann Arbor

As silicon technology scales, modern processor and embedded systems are rapidly shifting towards complex
chip multi-processor (CMP) and system-on-chip (SoC) designs. As a side effect of complexity of these designs,
ensuring their correctness has become increasingly problematic. Within these domains, Network-on-Chips
(NoCs) are a de-facto choice to implement on-chip interconnect; their design is quickly becoming extremely
complex in order to keep up with communication performance demands. As a result, design errors in the
NoC may go undetected and escape into the final silicon.

In this work, we propose ForEVeR, a solution that complements the use of formal methods and runtime
verification to ensure functional correctness in NoCs. Formal verification, due to its scalability limitations, is
used to verify smaller modules, such as individual router components. To deliver correctness guarantees for
the complete network, we propose a network-level detection and recovery solution that monitors the traffic
in the NoC and protects it against escaped functional bugs. To this end, ForEVeR augments the baseline
NoC with a lightweight checker network that alerts destination nodes of incoming packets ahead of time.
If a bug is detected, flagged by missed packet arrivals, our recovery mechanism delivers the in-flight data
safely to the intended destination via the checker network. ForEVeR’s experimental evaluation shows that it
can recover from NoC design errors at only 4.9% area cost for an 8x8 mesh interconnect, over a time interval
ranging from 0.5K to 30K cycles per recovery event, and it incurs no performance overhead in the absence of
errors. ForEVeR can also protect NoC operations against soft-errors: a growing concern with the scaling of
silicon. ForEVeR leverages the same monitoring hardware to detect soft-error manifestations, in addition to
design-errors. Recovery of the soft-error affected packets is guaranteed by building resiliency features into
our checker network. ForEVeR incurs minimal performance penalty up to a flit error rate of 0.01% in lightly
loaded networks.
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1. INTRODUCTION

Current trends in microprocessor design entail the inclusion of an increasing number
of relatively simple processor cores communicating via an interconnect fabric. Corre-
spondingly, embedded systems deploy system-on-chip architectures, comprising several
IP components in one single chip. As a result, the demands for high bandwidth inter-
core communication have rapidly sidelined traditional interconnect architectures, such
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as simple buses, due to their limited scalability and performance. In contrast, networks-
on-chip (NoCs) are characterized by highly concurrent communication paths and better
scalability, and are thus becoming the de-facto choice for interconnect architectures.
Moreover, to keep up with the performance of the cores/IPs on-chip, NoC design is
becoming increasingly complex, employing various techniques to efficiently manage
high communication loads. In NoCs, data is transmitted as packets, that can further
be divided into smaller, fixed length blocks, called flits, for efficient transfer. Packets
injected via network interfaces (NI) are transmitted to their destinations through a
network of routers and links, abiding some routing protocol. The routers themselves
often include advanced features, such as pipelining, speculation, prioritization, com-
plex allocation schemes, etc., and are organized in a wide range of topologies, imple-
menting complex routing algorithms. With these advanced performance features, it
is a challenge to ensure correct functionality under all circumstances for the entire
network.

Despite massive industry efforts in verification, escaped functional bugs that man-
ifest at runtime are a reality. This is a prominent issue in processor designs, where
design bugs are often detected in the field after product release. We did a study on
the number of escaped bugs by compiling information collected from several processor
errata documents [Intel 2007, 2010]. The results of this study are shown in Figure 1 for
various generations of Intel processors. In the figure, we plot the number of bugs that
are discovered against a timeline. It can be seen that there has been a steady increase
in the number of bugs detected per month with each design generation, especially as
the designs moved to dual-core (Core 2 Duo) and multi-core (Core i7). We also observed
that as a result of the large number of interactions and the intricate communication
in modern multi-core CMPs, errors in the communication subsystem now account for
a significant portion of the reported bugs. For example, in the Core 2 Duo and Core i7,
at least 10% and 13% of the reported design errors are communication system related
[Intel 2007, 2010]. The erratas provide brief and product-specific description of the
bugs, and it is usually hard to partition them in subcategories. Note that, the reported
percentages cover bugs related to the entire communication infrastructure, including
communication protocols like cache coherence, message dependent deadlocks, and bugs
in both the implementation and protocols of on-chip communication fabric (bus in this
case). As CMPs transition towards more complex NoC-based interconnects, this trend
is expected to continue, with a lot of hard-to-find bugs rooted in the communication
infrastructure, and particularly in the implementation and protocols of the communi-
cation fabric, which is the target of this work.

Pre-silicon verification efforts are used to ensure correctness using a combination
of simulation based verification and formal methods. Simulation based verification,
though helpful in catching many easy to find bugs, will always be incomplete as it
cannot exhaustively test the countless different execution scenarios within a network.
However, formal methods such as model checking, are complete, but only effective in
verifying small portions of the design and they do not scale to verify end-to-end system
level correctness. Recently, the research community has started exploring runtime
verification solutions where the system’s activity is monitored at runtime, after product
deployment, and checked for correctness. Runtime verification can reduce the cost of
design bugs that escape design-time verification by detecting their occurrence and
preventing the corruption of network/processor state, loss of data and/or failing of the
entire system. Their cost, however, includes silicon area for runtime monitoring and
recovery, dedicated design effort and often a performance impact on the overall system
due to continuous monitoring activities.

To counter the shortcomings of design-time verification, a simplistic approach would
be to naı̈vely safeguard against all possible failure scenarios at runtime. Such an

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3s, Article 104, Publication date: March 2014.



ForEVeR: A Complementary Formal and Runtime Verification Approach 104:3

Fig. 1. Bugs discovered after deployment for few
Intel processors. The discovery rate increased
drastically from uni-core to multi-core processors.
A significant percentage of the bugs relate to the
interconnect.

Fig. 2. ForEVeR’s verification guidelines. State
explosion avoided by (i) verifying routers indi-
vidually, (ii) breaking specification into simple
subproperties, and (iii) checking liveness require-
ments at runtime.

approach would be expensive in area cost and the corresponding design modifications
may be intrusive, further complicating the design. ForEVeR’s approach is based on the
insight that although formal methods do not scale to the complexity of entire NoC, yet
they are complete and can ensure component-level correctness, which in turn could
greatly reduce the burden on runtime bug detection and recovery. Thus, ForEVeR
proposes a complementary functional verification solution for networks-on-chip, which
leverages formal techniques for individual network routers and components, and
runtime verification for the network-level. ForEVeR’s runtime modules are designed
to protect only those aspects that cannot be formally proven to work correctly. In
this manner, the silicon area and design-time effort dedicated to runtime verification
directly benefits from the designers’ ability to formally verify.

ForEVeR also detects and recovers from network corruptions because of soft errors:
an increasing concern with waning reliability of silicon. Recent studies [Dixit and Wood
2011; Nightingale et al. 2011] confirmed the alarming rate of soft errors affecting both
logic and memory components. NoCs are susceptible to soft errors as they occupy a
significant portion of the on-chip real estate [Vangal et al. 2008; Wentzlaff et al. 2007],
and additionally, they suffer from single event upsets (SEUs) due to crosstalk and
coupling noise in link wires. ForEVeR protects the NoC against soft errors affecting all
component types (control, datapath and links), and does so by mostly reusing hardware
dedicated to our design error detection and recovery scheme.

1.1. Complementary Verification: Motivation

Model checking, the most widely adopted formal verification technique in industry, has
been successfully applied to verify many component-level designs [Foster et al. 2006;
Brayton and Mishchenko 2010]. However, model checking suffers from state space
explosion when used on large systems. To determine the appropriate granularity for
applying formal methods to NoC verification, we performed a case-study on a simple
2×2 mesh NoC design, with 5-port wormhole routers [Dally and Towles 2003]. We wrote
System Verilog (SVA) properties describing high-level network behavior and tried to
formally verify them using Synopsys Magellan. For example, we verified the property
that “network does not drop any flits.” To this end, a traffic generator injected one data
packet and a SVA property tested for a single packet ejection from the NoC within a
time window. The model checking engine was unable to complete the task. Therefore,
to avoid state explosion, we experimented with properties that can be verified at the
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router-level. However, formal verification would fail even in these scenarios if properties
were not specified carefully. In general, it was hard to verify liveness properties, and
bounded properties with a large time bound.

However, in our subsequent efforts, we were successfully able to verify router-level
specifications by breaking them down into simple subproperties. An example of the
property: for instance, “router does not drop any flits,” is shown in Figure 2. For this par-
ticular example, we also decoupled the liveness requirement (“flit leaves eventually”),
with the property we targeted to verify (“router does not drop any flits”). Our analy-
sis led us to three important guidelines that form the basis of ForEVeR: i) verifying
properties at router-granularity is tractable, in contrast to monolithic network-level
verification, ii) broad-scope properties can be tackled by breaking them into simple
subproperties, and iii) formal verification is inadequate in proving liveness or large
time-bound properties: the bugs that cannot be exposed in the process are good candi-
dates for runtime detection and recovery.

1.2. Contributions

ForEVeR (Formally Enhanced Verification at Runtime for NoCs) targets functional
bugs in the NoC fabric, and it is a solution independent from topology, router archi-
tecture and routing schemes. Leveraging the synergy between formal and runtime
verification, ForEVeR can detect and recover from all types of functional errors in the
interconnect, including bugs that stall the forward progress of the network, for in-
stance, deadlock. The runtime component of ForEVeR also enables the designers to
deliberately implement aggressive allocation, routing or prioritization schemes, that
may occasionally lead to starvation, deadlock or livelock. If these scenarios are rare,
the overall performance improvement outweighs the recovery overhead. To the best of
our knowledge, ForEVeR is the first work to provide correctness guarantees in NoCs
via complementary use of formal verification and runtime validation. Moreover, For-
EVeR comes at a small area cost of 4.9% for an 8×8 mesh interconnect, while incurring
a minimal performance impact only when an error manifests. Finally, ForEVeR also
protects the NoC against soft errors, utilizing the same detection and recovery hard-
ware used for ensuring NoC correctness. With only a few hardware enhancements,
ForEVeR can provide soft error coverage comparable to state-of-the-art reliability
techniques.

2. RELATED WORK

NoC Correctness. Very few research works have proposed complementary use of formal
and runtime techniques. Among them, Bayazit and Malik [2005] leveraged hardware
checkers in model checking to avoid state explosion by validating abstractions at run-
time. However, Bayazit and Malik [2005], unlike ForEVeR, cannot be directly applied to
ensure NoC correctness. Another work proposed property checking at both design-time
and runtime [Tsiligiannis and Pierre 2012]. However, as recovery from design errors
in not supported, this is not a complete correctness solution.

NoC simulator distributions [Dally and Towles 2003; Fazzino et al.], RTL simulation
and emulation platforms [Hammami et al. 2012] are widely used for performance and
functional verification. However, both simulation and emulation techniques are inher-
ently incomplete, since they cannot check all possible execution scenarios. In contrast,
formal techniques can provide the guarantees of complete correctness; however, they
either cannot be automated, as in theorem proving or they are limited by the state
explosion problem, as in model checking. This has led designers to use formal verifi-
cation exclusively for small portions of NoC designs [Kailas et al. 2009] or to verify
the abstracted model of the implementation [Chatterjee et al. 2012; Borrione et al.
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2007; Holcomb et al. 2011]. Other works [Borrione et al. 2007; Verbeek and Schmaltz
2012] utilize theorem proving to guarantee NoC correctness and are also able to ver-
ify liveness properties like deadlock-freedom [Verbeek and Schmaltz 2011]. However,
these abstracted NoC models, often do not model advance features like virtual chan-
nels, flow control techniques, etc. Moreover, properties proven over the abstracted NoC
model cannot guarantee correctness of the actual microarchitectural implementation.
In contrast, ForEVeR guarantees the correctness of all the executions of the NoC im-
plementation, and also enables designers to deploy aggressively designed NoCs that
are not exhaustively verified.

Ensuring the runtime correctness of NoCs has been the subject of much previous
research, focusing on a variety of aspects. Several of these works target deadlock, a
prominent issue in adaptive routing. Traditionally, the deadlock problem in NoCs is
overcome by deadlock avoidance [Starobinski et al. 2003; Dally and Seitz 1987; Lin
et al. 1994], or through detection [Martinez et al. 1997; Lopez et al. 1998] and re-
covery [Anjan and Pinkston 1995]. Other works tackle a wider, still incomplete, set
of NoC errors through end-to-end detection and recovery techniques, and are sur-
veyed in [Murali et al. 2005]. The most common among these is the acknowledgement-
based retransmission (ACK-Retransmission) technique, where error detection codes
are transmitted along with data packets, to check for data corruption at the receiver.
An acknowledgement is sent back after each successful transfer. In case of failure,
the sender times out and retransmits the locally stored packet copy. Apart from
large storage buffers and performance degradation due to the additional acknowl-
edgement packets, this approach is incapable of overcoming deadlock, livelock and
starvation errors. Moreover, since it uses the same untrusted network for retransmis-
sion, ultimately it cannot guarantee packet delivery. In contrast, ForEVeR safeguards
against all kind of functional bugs, including, i) bug manifestations that cause data
corruption, such as, dropped, duplicated or misrouted packets, and ii) bug manifes-
tations that stall the forward progress of the network, such as, deadlock, livelock,
and starvation. In addition, ForEVeR is an end-to-end solution leveraging hardware
units mostly decoupled from the primary NoC and requiring minimal changes to the
primary NoC.

SafeNoC [Abdel-Khalek et al. 2011] is an alternative end-to-end runtime solution for
NoC correctness, which uses a secondary verified network to transfer data checksums
for error detection. During recovery, in-flight data is collected and send to the processors
that reconstruct the original data packets in software. Although, ForEVeR shares with
SafeNoC the use of a secondary network, its complementary verification technique
provides a low overhead solution that guarantees NoC functional correctness under all
execution scenarios. SafeNoC, being a pure runtime solution, exhibits high area and
design overhead, and in addition, it has several failure scenarios. First, it provides
no protection against dropped packets or flits. Second, it cannot recover from errors
arising from aliasing of signatures and, finally, the reconstruction algorithm does not
guarantee completion. Several orthogonal runtime verification proposals [Austin 1999;
Meixner et al. 2007; Wagner and Bertacco 2007] focus on microprocessor correctness.
In general, these solutions monitor the operation of untrusted components, switching
to a verifiable degraded mode upon detection.

Finally, ForEVeR’s detection mechanism relies on the use of router-level runtime
monitors, when formal methods fail to ensure router correctness. Runtime checkers
has been proposed for various purposes, like soft-error induced anomaly detection
in NoCs [Prodromou et al. 2012; Park et al. 2006] or post-silicon debug and in-field
diagnosis [Boule et al. 2007]. In contrast, ForEVeR leverages specialized hardware
monitors coupled with recovery support, specifically for NoC correctness.
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NoC Reliability. The most common reliability techniques augment NoC packets with
ECC information that can be checked on an end-to-end or a switch-to-switch basis
[Murali et al. 2005; Dutta and Touba 2007]. ECC codes can also correct a few bit
errors, beyond which the system relies on costly data retransmission using a backup
copy. Retransmission schemes cannot tackle all erroneous scenarios, especially the
ones arising from control logic malfunction, for instance, deadlock. Aisopos and Peh
[2011] proposed to retransmit clean copies of data directly from the memory subsystem,
alleviating the need of large backup buffers. However, the required changes to the cache
coherence protocol present a design and verification challenge. Further, their solution
also cannot recover from deadlock scenarios. A technique to recover from soft errors
in both the router’s data-path and control logic was presented in Park et al. [2006]. It
uses switch-to-switch ECC and retransmission for data-path errors, while the router
control logic is protected with hardware checkers. Deadlocks due to soft errors are
broken by using additional buffers at each router port. However, this approach leads
to a prohibitive area overhead (as we will show in Section 7.5), especially for networks
with large data packets. In contrast, ForEVeR does not require backup data storage for
soft error recovery, and it can also overcome forward progress errors such as deadlock.
Additionally, ForEVeR also protects both the router data-path and control logic against
soft errors, at low design complexity.

3. METHODOLOGY

ForEVeR addresses the correctness of a NoC by attacking the problem both at design-
time and at runtime. During system development, ForEVeR recommends a methodol-
ogy for formal verification of the individual routers’ properties that do not require any
network-wide knowledge. Specifically, ForEVeR’s router-level verification ensures that
routers maintain packet integrity. In the case that even individual network routers are
too complex to be amenable to formal verification, ForEVeR proposes runtime hard-
ware to monitor only those aspects of the routers’ functionality that could not be verified
during system development.

To complete the protection against design errors, the network-level behavior is moni-
tored at runtime, assuming correctness of operations internal to the individual routers.
Specifically, ForEVeR’s network-level runtime hardware detects errors that stall NoC’s
forward progress, and in addition, it also provides a mechanism to recover from such
errors, once the hardware monitors expose the occurrence of an anomaly. ForEVeR
leverages the same network-level recovery mechanism to also overcome functional
errors that are flagged by the router-level runtime monitors.

As discussed in Borrione et al. [2007], the functional correctness of a NoC can be
organized along four high-level requirements. Three of them can be satisfied by guar-
anteeing their validity locally at each network router: no packet drop, requires that
no packet is lost while traversing the network; no data corruption states that pack-
ets’ payloads should not become corrupted while traveling from source to destination;
finally, no packet create requires that no new packet is generated within the network
(packets can only be injected from network’s source nodes). If each individual router
satisfies these properties, then they hold for the NoC system as a whole, since network
links are simple wires and cannot embed functional bugs that corrupt, create or drop
packets. Finally, the last requirement (bounded delivery), specifies that each packet
is delivered to its intended destination within a finite amount of time and it ensures
that there is forward progress in the transmission. This last requirement cannot be
validated locally, since it affects the entire network.

To this end, Figure 3 shows a high level overview of the hardware additions re-
quired by ForEVeR and, in particular, it highlights the components required to enable
bounded delivery. Partially verified routers are connected together to form a NoC that
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Fig. 3. High-level overview of ForEVeR. A combination of router-level verification/runtime-monitoring and
network-level detection and recovery ensures correct NoC operation. All components in purple indicate
ForEVeR hardware additions. The figure also highlights ForEVeR’s hardware additions for soft-error
protection.

is completed by detection and recovery logic. Runtime checkers and recovery logic are
used at the router-level to protect complex router components against design flaws
(if they cannot be formally verified at design-time). In addition, the primary NoC is
augmented with a lightweight checker network, used to transmit advanced notifica-
tions to the monitors at the destination nodes. During recovery, the checker network
is also used to reliably deliver in-flight data packets to their respective destinations.
Note that each component of a router can be classified as i) verified at design-time,
ii) monitored at runtime or iii) providing advanced performance features to be disabled
during recovery.

Figure 3 also highlights ForEVeR’s soft-error protection scheme. We make the follow-
ing observations to provide a cheap soft-error protection solution with ForEVeR: first,
the router-level monitors designed to detect anomalous behavior due to design errors,
can also prevent the network from entering an unrecoverable state on soft error man-
ifestation. Second, ForEVeR can provide low-cost soft error resilience by utilizing the
same recovery hardware to reliably transmit the soft-error affected packets. Finally, to
protect the recovery hardware (e.g., checker network) itself against soft errors, simple
ECC and duplication based techniques can be leveraged without significant overhead.
Overall, with these hardware modifications, ForEVeR can provide soft-error coverage
comparable to other state-of-the-art techniques.

4. ROUTER CORRECTNESS

A correctly functioning router should ensure that packet’s integrity is maintained while
each packet is transfered within the router. This can be achieved by guaranteeing that
routers do not drop any individual packet’s flits and that flit ordering from head to
tail is preserved during the transmission in a wormhole fashion. In this section we
discuss how to organize the formal verification of the router at design-time. In the
case that some aspects of the router cannot be proven correct, we propose runtime
hardware to monitor and correct any related functional bug. We discuss our ideas for
a fairly complex and generic 3-stage pipelined router that is input-queued and that
uses virtual channel (VC) flow control, look-ahead routing and switch speculation. A
high-level schematic of this router is shown in Figure 4(a). The datapath components
consist of input buffers, channels and crossbar, and are controlled by input VC control
(IVC), route computation unit (RC), VC allocator (VA), switch allocator (SA), output
VC control (OVC) and buffer manager.
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Fig. 4. ForEVeR’s hardware overview. (a) Router additions. VC allocator (VA), switch allocator (SA) and flow
control units are monitored by runtime checkers. To implement recovery, each NoC router is augmented
with VC and speculation disablers, along with a token manager and a recovery FIFO controller. (b) Network
interface additions. A counter, timer and zero set register is used to detect undelivered packets at the
network-level. (c) Checker router. A packet-switched router designed with simple muxes and flow control is
used in a ring topology to support the recovery process.

Table I. Organization of Router’s Formal Verification

correctness goal property to be verified #sub-prop time(sec)
no packet drop * incoming valid flit written to buffer 4 90
(datapath and router
activity control)

* buffer operates as FIFO 20 660
* all flits are transferred from input to output channel 17 170

no packet create * no flit/packet duplication at IVC 4 30
(control components) * no flit/packet duplication at crossbar 1 10

* no flit/packet duplication at OVC 2 10
no data corruption
(interactions of concurrent
components)

* valid body flits follow valid head flit in order
(leaving IVC)

25 1,800

* valid body flits follow valid head flit in order
(leaving crossbar)

5 350

* valid body flits follow valid head flit in order
(leaving OVC)

5 200

4.1. Formal Verification

The verification process can be efficiently partitioned into three subgoals: i) ensuring
that no flit is dropped (no packet drop), ii) showing that no flit is created or duplicated
(no packet create), and iii) ensuring that packets maintain integrity as they travel
through the router (no data corruption). For the first subgoal, we must verify that all
valid flits received at input channels are written into valid buffer entries, that the
buffers operate in a FIFO manner, and that each flit, after gaining access to the output
channel, moves from input buffer to the output channel in a fixed number of clock cycles
(depending on the router pipeline depth). To accomplish the second subgoal, we verify
that flits are not duplicated as they travel through the various stages of router pipeline
(IVC, crossbar and OVC). We also verify that these stages do not create flits out of
thin air. The third subgoal encompasses the behavior of entire packets, rather than
individual flits, ensuring that all body flits belonging to any particular packet should
follow that packet’s head flit in a wormhole order, as the packet traverses the router’s
datapath. We pursued the formal verification of the router design that we used in our
experimental evaluation, using the structure described above and Synopsys Magellan,
a commercial formal verification tool. Table I summarizes our subgoals, how many
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properties were proven for each of them and how much computation time they required.
Properties were described as System Verilog Assertions and verification executed on
an Intel Xeon running at 2.27 GHz and equipped with 4GB of memory. For instance,
the property incoming valid flits written to IP buffer’ holds if i) all incoming flits have
always a valid VC tag, ii) the corresponding VC buffer has a free slot (no overflow),
iii) the flit contents should only be written to the specified slot of the requested VC
buffer, and iv) invalid flits should not be written to any VC buffer. Note that we do
not need to verify the route computation module, as our network-level detection and
recovery scheme handles possible escaped bugs in this module.

4.2. Runtime Verification

When not all router-specific properties can be verified, ForEVeR provides a runtime
solution to complement the design-time effort and still guarantee router-level correct
functionality. In a router microarchitecture, the control components manage the flow
of packets and flits through the datapath components: from input channels to out-
put channels via input buffers and crossbar. Typically, the datapath components are
fairly simple and can be completely verified at design-time. Verification of the control
components presents a greater challenge. Particularly, components that control the
interactions between multiple router activities are more likely to be beyond the ca-
pability of design-time verification [Foster et al. 2006]. In the context of a router, the
interactions between packet flows are handled by route computation (RC), VC alloca-
tion (VA) and switch allocation (SA) units. These units rely on information provided
by the buffer manager, used to transmit buffer availability information among neigh-
boring routers. Other control units, such as input (IVC) and output (OVC) VC control,
operate mostly on local data, and hence can often be formally verified using traditional
formal verification tools. We therefore focused on designing generic runtime monitors
for VA, SA, and buffer management units (as indicated in Figure 4(a)). Note that the
route computation unit does not need to be protected, because its activity is monitored
as part of our network-level solution.

4.2.1. Detection and Recovery. VC and switch allocator. A design flaw in a VC allocator
may give rise to various erroneous conditions, some of which are tolerable, as they either
do not violate router correctness rules, or are effectively detected and recovered by the
network-level correctness scheme. Assignment of an unreserved but erroneous output
VC to an input VC is an example of such an error as, in the worst case, it may only lead
to misrouting or deadlock, which can be detected and recovered by our network-level
correctness scheme. Starvation is another example that needs no detection or remedy
at the router level. Critical errors, that is, errors that threaten data integrity, arise
when an unreserved output VC is assigned to two input VCs, or an already reserved
output VC is assigned to a requesting input VC. This situation will lead to flit mixing
and/or packet/flit loss. Similar to the VC allocator situation, a design flaw in a switch
allocator may or may not have an adverse affect on ForEVeR’s operation. To monitor
VCs and switch allocators at runtime, we propose the use of an Allocation Checker (AC)
unit, a simplified version of a unit proposed in Park et al. [2006] for soft error protection.
The AC unit is purely combinational and it performs all comparisons within one clock
cycle. It simultaneously analyzes the state of VC and switch allocators for duplicate
and/or invalid assignments. If an error is flagged, all VC and switch allocations from
the previous clock cycle are invalidated. Flits in flight in the crossbar are discarded
at the output. To avoid dropping flits during the invalidation/discard operation, an
extra flit storage slot per input port is reserved for use during such emergencies. To
implement this runtime monitor, VA, SA, and crossbar units are modified to accept
invalidation commands from the AC.
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Buffer management. A design error in buffer management can lead to either buffer
underflow or overflow. Input buffers can be easily modified to detect and refuse com-
munication during an underflow, thus not loosing or corrupting any data. On the other
hand, a hardware checker is used to detect buffer overflow errors. Additionally, each
input port is equipped with two emergency flit storage slots. Upon receiving a flit when
the corresponding buffer is full, the communicating routers switch to a NACK-free
variant of ACK-NACK flow control, that guarantees freedom from buffer overflows
using a simple scheme. The emergency slots are reserved for flits in flight during this
event. During this NACK-free flow control operation, a flit awaiting acknowledgement
is retransmitted every two cycles (round trip latency of the links). This scheme, though
detrimental for performance, is extremely simple and can be implemented with lit-
tle modification to the baseline buffer management scheme. In addition, the router
operates in this simple and verified mode only during recovery, switching back to its
high performance mode after recovery is complete. Note that, to safeguard against all
errors, at most two emergency slots per input port are required and this storage can
be implemented as a simple shift register. In addition, the cost of this extra storage is
amortized across multiple VC buffers in a single input port.

4.2.2. Degraded Mode. When a bug is detected by the hardware monitors, the router
switches to a degraded mode with formally verified execution semantics, by either
disabling complex units or replacing vital ones with simpler counterparts. This mode
is equipped with bare-minimum features to support the network-level recovery, initi-
ated immediately after discovering a bug. During network-level recovery, packets stuck
within main network routers are drained sequentially over the verified checker network
to their intended destinations. Therefore, in the degraded mode, a main network router
should be able to advance flits through its pipeline and drain them one-by-one over the
checker network. However, packet-level interactions between subsequent routers, such
as route computation and VC allocation, are unnecessary during recovery and are dis-
abled to reduce complexity. In addition, advanced “performance only” features, such
as switch speculation and prioritizing mechanisms are disabled. Switch allocator and
buffer manager must still work properly to drain packets affected by the bug occur-
rence. To this end, the SA is replaced by a simple spare arbiter that allocates only a
single output port to a single input port at each cycle, eliminating concurrent interac-
tions. Similarly, the buffer management scheme is replaced by an acknowledgement-
based control discussed earlier, to prevent flit loss. The resulting degraded router has
significantly less concurrency, making it amenable to formal verification.

5. NETWORK CORRECTNESS

As discussed in Section 3, at the network level we must guarantee that all packets are
delivered to their intended destination within a bounded amount of time. Specifically,
our network-level solution must detect and recover from design errors that inhibit
forward progress in the network (deadlock, livelock and starvation) or cause misrouting
of packets. To achieve this, ForEVeR augments the design with a lightweight and
verifiable checker network that operates concurrently with the original NoC, providing
a reliable fabric to transfer notifications and packets to be recovered. A notification
only carries the packet’s destination address, and therefore, our checker network is
lightweight and simple. It is organized in a ring topology, comprising of single-cycle
latency, packet-switched routers (Figure 4(c)). The design and analysis of the checker
network is detailed in Section 5.3. Finally, the network interface logic is augmented
with notification generation and monitoring hardware to enable concurrent operation
of the main and the checker network, as shown in Figure 4(b).

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3s, Article 104, Publication date: March 2014.



ForEVeR: A Complementary Formal and Runtime Verification Approach 104:11

Fig. 5. ForEVeR network-level (runtime) verification scheme. (a) Detection. The counter at destination NI is
incremented (decremented) upon notification (data packet) arrival, and recovery is triggered if zero is not
observed during a check epoch. (b) Recovery. All packet injections are suspended during the network drain
phase, while remaining packets are recovered via the checker network during the packet recovery phase.

5.1. Detection

During normal operation, each packet transmitted on the primary network generates a
corresponding notification over the checker network, directed to the same destination.
Each destination maintains a count of outstanding packets expected via the primary
network, decrementing the count upon each packet reception. Operation is organized
into ‘check epochs’, time intervals of fixed length: a distributed detection scheme mon-
itors that, during each check epoch, a value zero is observed at least once at each
counter. If that is not the case, recovery is initiated, extracting all in-flight packets
from the primary network and delivering them reliably through the checker network.
Figure 3 shows how the checker network interfaces with the primary network via
the network interface units, which also include the logic for detection and recovery
initiation.

All design errors preventing forward progress result in packet(s) trapped within the
network, consequently, the detection mechanism should be capable of detecting such
scenarios. Moreover, it should entail minimal area overhead and design modifications.
Our notification message architecture satisfies both these requirements and it allows
detection of a bug occurrence because any unaccounted packet at destination will lead
to a counter with an always positive value. This reasoning, however, assumes that no-
tifications are always delivered ahead of the counterpart main network packets during
normal operation. Otherwise, our detection scheme may exhibit false negatives. We
leverage the low latency property of our checker network to consistently deliver noti-
fications before the corresponding main network packets, and keep the false negative
rate under check.

Figure 5(a) illustrates the hardware implementation and execution flow of our de-
tection scheme. The detection algorithm increases the counter at the local destination
node for each notification received, and decreases it for each packet received. In ad-
dition, it stores in a separate register, reset at the beginning of each check epoch,
whether a zero has been observed. If, at the end of a check epoch, any network node
has not yet observed a zero, then recovery is initiated. The implementation requires
a counter connected to both the primary and the checker network, a timer to track
epochs and a zero-observed storage bit. We study in Section 7.2 how the epoch length
affects the accuracy of detection. Finally, design errors leading to misrouting of packets
are detected by checking the destination node address of the packet requesting ejection
against the local node address. In NoC architectures that do not augment packet head-
ers with destination information, ForEVeR incurs an additional overhead of inserting
the destination node address in each packet header.
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5.2. Recovery

When an error is reported either by the router-level runtime monitors or by the
network-level detection scheme, the NoC enters a recovery phase, consisting of a net-
work drain step followed by a packet recovery step, as illustrated in Figure 5(b). During
network drain, the network is allowed to operate normally to drain its in-flight packets,
while no new packets are injected. If recovery was initiated by a router-level checker,
then that router operates in degraded mode during this phase. At the end of this phase,
which runs for a fixed time length, recovery terminates if all destinations have received
all their outstanding packets. This situation indicates that recovery was triggered by
a false detection, which can be caused, for instance, by an always positive counter be-
cause of high traffic. Note that false positives only impact the system’s performance,
but not its correctness.

The subsequent phase, packet recovery, recovers all remaining outstanding packets.
To this end, a token is circulated through all routers in the NoC via the checker
network, and NoC routers can only operate when they hold this token. In addition, all
VC allocators are disabled to prevent the processing of new packets. When a router
receives the token, it examines all its VC buffers sequentially to find packet headers. If a
header is found, the corresponding packet is extracted and transmitted over the checker
network, as shown in Figure 5(b). Since key router functionalities are still active in
the degraded mode, the packet can be safely delivered to its destination through the
checker network. The token circulates through all routers retrieving packets from one
router at a time. Retrieving all packets may require repeating the looping of the token
through all routers more than once, as some packets may become available for retrieval
only after other packets have been extracted. Note that we do not drain a packet when
its head flit is not at the front of the buffer upon arrival of the token. Thus, the design
complexity of the corresponding FIFO buffer is kept low by utilizing only one read and
one write pointer. The hardware components required to provide recovery are shown
in Figure 4(a) and include: a token manager, a virtual channel allocation disabler
(VC-DIS) and a switch speculation disabler (SPEC-DIS) for each router, to prevent the
processing of new packets during recovery.

Due to the limited bandwidth of the checker network, each primary network flit is
transmitted as several checker packets. To this end, each main network flit is disas-
sembled into multiple checker packets before injection into the checker network. These
checker packets are assembled back together at the destination nodes. Slight modi-
fications are required to the checker network and small disassembling/reassembling
units are added to the network interfaces, to support the recovery operation. However,
during recovery, only one router can be transmitting a packet to a single destination,
greatly simplifying the disassembling → transmission → reassembling process.

5.3. Checker Network

A suitable checker network should have three main properties: i) it should be formally
verifiable; ii) it should have a low latency; iii) and finally, it should incur a low area
overhead. A formally verifiable network should present a simple router and network ar-
chitecture and a simple routing algorithm. In contrast, a naı̈ve solution to consistently
deliver notifications before their counterpart data packets arrive through the primary
network, may require complex router and network designs that are area-intensive
and difficult to verify. Fortunately, exploiting the nature of traffic flowing through the
checker network (i.e., notifications), we are able to design a network satisfying both
these conflicting requirements. Note that these properties are not a strict requirement
for the correctness of our solution. However, not meeting them leads to additional costs
in area, development time and performance. For instance, a checker network that does
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not deliver notifications before their corresponding data packets, may result in an er-
ror going undetected over multiple epochs. In such a scenario, error detection latency
is affected, but NoC correctness is still guaranteed, as explained in Section 7.2. The
checker network, therefore, is tailored to the characteristics of the primary network,
so to minimize the occurrence of such cases.

The checker network is used exclusively to transmit notifications to their destina-
tions. The notifications contain no data, only including destination address (6-bits for
a 64-node NoC) and a valid bit. Having to transmit only packets of uniform, small
sizes presents many advantages, that can be leveraged to design a simple and effi-
cient NoC architecture. First, packet-switched routers can be utilized, without large
buffers or many wires between routers. This eliminates the need for complex switching
techniques for buffer and/or wire cost amortization, including circuit switching, store-
and-forward, virtual-cut through, wormhole and virtual channel switching, which all
require a substantial amount of control and book-keeping hardware for proper function-
ing. Additionally, such simple router design can be implemented to have single-cycle
latency, as we discuss below. Second, the small fixed-size packets require no packetiza-
tion hardware at the network interfaces (NIs) and fully utilize the available bandwidth
on packet switched networks (no bandwidth fragmentation). Finally, since the notifica-
tions are not stored at destinations, multiple notification can be ejected simultaneously,
without requiring any additional buffering.

Based on these observations, our checker network should be packet-switched, with
channel/buffer allocation and traffic transmission performed at packet granularity. To
further simplify the design, we chose a ring topology for the checker network, leveraging
a simple, single-cycle latency, packet-switched buffer-less router, based on the solution
proposed in [Kim and Kim 2009]. All the nodes in the network are connected in a
bidirectional ring. A predetermined allocation ensures that there is no contention for
network resources in routing a packet from source to destination; therefore, pipeline
registers at the router inputs are sufficient to ensure lossless transmission. To this
end, once a packet is injected into the network, it has priority over other packets that
are trying to enter the network, and thus the packet is guaranteed to make progress
toward the destination. For each packet, a decision is made to inject it in one ring
or the one in the opposite direction based on minimal routing distance. Each packet,
once in the network, keeps moving forward through the same ring until it is ejected
at its destination. Two packets traveling on separate rings may try to eject at the
same node in the same cycle, causing contention for the ejection port. This is resolved
by providing a separate ejection port for both ring directions at each node. The valid
bit from ejection ports connects to the detection counter, while the destination ID is
discarded at ejection. The checker router architecture is shown in Figure 6(a), and the
checker network normal operation is shown in Figure 6(b).

Ring topologies suffer from higher hop-counts when compared to common topologies
like meshes, but in our system this is mitigated by three factors: i) the checker routers
have a single-cycle latency, ii) there is no contention within the checker network,
and iii) in contrast to notifications, the main network transfers large data packets
(e.g., cache lines) that are typically divided up into long wormholes. As a result, the
checker network design presented above consistently delivers notifications before their
counterpart data packets arrive via the primary network. In exceptional situations,
when notifications lag data packets, our scheme may produce a false negative detection
result. In general, however, our scheme has a certain amount of tolerance to having a
few notifications lagging behind and this rarely leads to false negatives. When it does,
false negatives only increase the detection latency and do not affect the correctness of
our scheme as we guarantee no loss of flits/packets, and the data would eventually be
delivered in an uncorrupted state to the correct destinations upon error detection.
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Fig. 6. ForEVeR’s checker network: architecture and operation. (a) Router Architecture. Single cycle latency
and packet switched. Packets are guaranteed to move forward once inside the network. Packets waiting
injection have lower priority and there is no contention for ejection. (b) Normal Operation. Notifications
are transmitted in both ring directions and multiple sources-destination pairs are active simultaneously.
(c) Recovery Operation. Only the clockwise ring is used to transmit disassembled main-network flits, that
are then reassembled at the destination’s NI. Additionally, only one source can be sending packets to one
destination at any time.

Fig. 7. Fraction of packets or notifications delivered first. The checker network delivers almost all notifica-
tions before their counterpart primary network packets. The effect is more pronounced at higher injection
rates and for larger main network packets.

We ran experiments by injecting uniform traffic with varying packet sizes into the pri-
mary network and simultaneously injecting one notification into the checker network
for each primary network packet. At the destination, the notifications were matched
with corresponding data packets, and the following statistics were logged: i) which
network delivered the packet or notification first (main or checker), and ii) the time
difference between corresponding deliveries. Figure 7 shows the fraction of packets
delivered first by each network for varying injection rates. If the main network uses
short packets (Figure 7(a)), the majority of the notifications are delivered before the
corresponding main network packets. However, there is a non-negligible fraction of
packets (10–35%) for which the main network delivers first. Also, note that due to bet-
ter congestion management in the ring, a larger fraction of notifications are delivered
first when the main network is subjected to heavy traffic. Moreover, when the main
network packets are larger (16 flits, Figure 7(b)), the checker network is comparatively
less loaded and hence more than 99% of the notifications make it to their destina-
tion before the main network packets at any injection rate above 0.008 packets per
node per cycle. In summary, the majority of the notifications are delivered ahead of
their corresponding network packets under all conditions, with an additional marked
improvement on notifications being delivered first when packets are large and the
network is under heavy traffic load.

Figure 8 plots the distribution of notification-main packet deliveries for a range
of delivery time differences. A positive time-difference indicates that the notifications
arrived first. For small main network packets (4 flits, Figure 8(a)), most notifications are
delivered 0–50 cycles ahead of the main network packets. Few main network packets
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Fig. 8. Distribution of notification-main packet pairs over a range of delivery time differences at heavy
injection. The checker network delivers almost all notifications before their corresponding network packets.

(11% of total) are delivered before their corresponding notifications, and a negligible
number of main network packets (<0.5%) are delivered more than 25 cycles before their
notifications. Our detection scheme is tolerant to a few main network packets delivered
early, when the notifications follow shortly after (<25 cycles later). In Section 7.2, we
describe a technique based on delayed counter update to eliminate false negatives.
As can be noted from Figure 8(b), the complete distribution is positive for networks
with large packets, with only a negligible number of main network packets (<0.2%)
delivered ahead of their notifications.

Recovery operation. As mentioned earlier, during recovery, each main network flit
is transmitted in multiple segments through the checker network. The network in-
terfaces house the dis-assembling/reassembling logic to support recovery. The checker
network recovery operation and logic is greatly simplified because only one router is
transmitting packets to a single destination at a time. To this end, the checker net-
work’s channels include additional dedicated wires for head and tail indicators that
are used during recovery operation. The checker packet with head indicator carries the
destination address and reserves an exclusive path between the source and the desti-
nation. All intermediate valid packets traversing the ring network are ejected at the
same destination until a packet is received with a tail indicator. Moreover, all transmis-
sions on the checker network during recovery occur in the same (clockwise) direction
to avoid wormhole overlap of two packets. In contrast to normal operation, the address
field is not discarded on ejection, as it contains data in body/tail checker packets. In
our evaluation system of 64 nodes, the checker network channel is 8 bits wide, with
6 bits for address and 1 bit each for head and tail indicators. Thus, each 64-bit pri-
mary network flit is partitioned into 12 checker networks packets (1 head, 11 body/tail)
when transferred on the checker network. We expect design errors to manifest infre-
quently, and thus this serial transmission scheme, while slow, it should not significantly
affect overall system’s performance. The operation of the checker network during re-
covery is illustrated in Figure 6(c).

5.4. Verification of ForEVeR’s Recovery

All components involved in the detection and recovery processes must be formally veri-
fied to guarantee correct functionality. Detection leverages the checker network and the
counting and timing logic in the network interfaces. Recovery uses again the checker
network and the interface between primary and checker routers for packet draining.
To verify the correctness of the checker network, we need to show that it delivers all
packets to their intended destination in a bounded amount of time, as discussed in
Section 3. We partition this goal into four properties: injection, guaranteeing correct
injection of packets into the network; progress, ensuring packets advance towards their
intended destinations; ejection, proving timely ejection of packets; and data integrity,
ensuring that data remains uncorrupted throughout. We verified all four properties
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Fig. 9. Reliable checker network design. Switch-to-switch single error correction ECC (12-bit codeword, 8-bit
data) to protect checker network data and TMR to protect the packet-valid bits.

using our formal verification setup, with the maximum time of 156 seconds spent in
verifying the progress property.

As discussed in Section 4.2.2, during recovery, the NoC routers operate in a barebone
mode with all complex hardware units disabled, thus making the verification task
much less challenging. To ensure correct recovery, we have to verify that routers fairly
take turns in retrieving valid packets from their respective buffers. To this end, we
check the following aspects: i) fairness and exclusivity during extraction (fairness) to
guarantee that routers take turns in transmitting packets on the checker network.
ii) We also verify that complete packets are extracted (complete packet), emptying the
buffer completely (buffer empty). We also check that iii) only valid packets are recovered
(valid packet). The model checking engine verfied each property in less than 50 seconds.

6. PROTECTION AGAINST SOFT ERRORS

ForEVeR includes features to protect against soft errors affecting both the router dat-
apath and control components. Further, it does not require any costly backup data
storage and retransmission. Our scheme, however, still relies on end-to-end ECC for
fixing one-to-few bit data corruptions. We leverage an end-to-end locality-aware ECC
scheme [Shamshiri et al. 2011], that together with clever data-bits/checksum inter-
leaving, can correct multiple bit errors in main network packets. Reliability-oriented
modifications to ForEVeR are focused on two aspects: i) enhancing the checker network
reliability, and ii) ensuring that integrity of data is always maintained within the main
network routers. The second aspect allows us to get rid of the backup storage, and
instead drain the erroneous packets via the reliable checker network. Note that from a
soft error perspective, integrity of a packet is not affected by few data-bit corruptions,
as end-to-end ECC can still successfully reconstruct the original packet. Based on the
insight that severe data corruptions are only caused by errors in router control logic,
while link and datapath related errors only affect single (or few) bit(s), we can preserve
data integrity by only protecting the router control logic.

As previously mentioned, in order for ForEVeR to function properly, the checker
network should always deliver unaltered packets to correct destinations. To this end,
we augment the checker network with a switch-to-switch single-error-correct (SEC)
ECC code. We assume that, due to the small channel width of the checker network,
in the worst case, only a single bit can be affected per notification. For our 8-bit wide
checker network, a 12-bit wide codeword is required for SEC capability. Additionally,
the packet-valid bit is protected by triple-modular redundancy (TMR), to prevent from
errors in the ECC output and to avoid transmission of an invalid packet. Thus, the sum
total channel width of the reliable checker network is 15 bits (12 codeword, 3 packet-
valid TMR). Figure 9 shows the architecture of the reliable checker router. Checker
network packets are encoded before injection and are decoded at ejection. Further, at
each checker network hop, the packets go through single-error correction phase, before
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they are written to the checker router register. Finally, the packet-valid bit is protected
with TMR. Note that we are still able to maintain the checker network simplicity, and
the reliable design also supports our correctness goals.

As we do not backup clean packet copies at network ends like the retransmission
scheme [Murali et al. 2005], we must guarantee that the main network never jeopar-
dizes packet integrity. Remember from Section 4, that we augmented our routers with
runtime monitors to prevent them from entering an erroneous state. These checkers
are very similar to the ones used in Park et al. [2006] and can also be leveraged to
detect anomalies due to soft errors. Note that we detect the anomalous behavior before
the network goes into an unrecoverable state (for instance, by dropping a flit) and
prevent any data loss/corruption by provisioning only a little emergency storage, as
explained in Section 4. Although, majority of the soft error bugs can be overcome by
restarting the router operation after soft-error manifestation, we opt for network-wide
recovery (Section 5.2) initiation at each error detection. This is because our hardware
monitors cannot diagnose the source of error (design bug or soft error), and thus our
scheme sticks to a uniform measure in avoiding any unrecoverable state, that is, trig-
ger a network-wide recovery. It should be noted that in rare conditions, soft errors
can also lead to forward progress bugs, such as deadlock. Fortunately, our end-to-end
counter-based detection scheme (Section 5.1) detects the bug in such a case. During
recovery, all main network packets are delivered reliably over the checker network to
their final destinations. Since our checker network is protected against soft faults, the
data finally delivered is always error-free. The performance and area impact of our
reliability scheme is evaluated in Sections 7.3 and 7.4, respectively.

7. EXPERIMENTAL RESULTS

We evaluated ForEVeR by modeling a NoC system in Verilog HDL, as well as a cycle-
accurate C++ simulator, both based on Dally and Towles [2003]. The baseline system
is an 8×8 XY-routed mesh network, routers have 2 VCs and 8-entry buffers per VC,
similar to the router design described in Section 4. In addition, the NoC is augmented
with a checker network and with the detection and recovery capabilities described in
the previous sections. The Verilog implementation was used to formally verify the NoC
routers and the recovery components. To this end, we specified properties as System
Verilog Assertions and verified them with Synopsys Magellan, a commercial formal
verification tool. ForEVeR’s area overhead was estimated using synthesis results from
Synopsys Design Compiler targeting the Artisan 45nm library. The link area for both
the main and checker network was estimated using tile dimensions published for
an experimental chip from Intel [Vangal et al. 2008]. We also evaluated the power
overhead of our design by modeling both main and checker routers in Orion2.0 [Kahng
et al. 2009]. The C++ simulator was used to assess the accuracy of the network-level
detection scheme and to evaluate the performance impact of the recovery process.
This process was triggered by functional bugs that we inserted in the baseline model
to evaluate our solution. The framework was analyzed with two different types of
workloads: uniform random traffic, as well as applications from the PARSEC suite
[Bienia et al. 2008].

7.1. ForEVeR Operation

To analyze ForEVeR’s performance impact and its ability to recover from various types
of design errors, we injected 9 different design bugs into the C++ implementation of
ForEVeR, as described in Table II. Bugs 1–6 are errors that inhibit forward progress,
bugs 7–8 are misrouting errors, whereas bug 9 is an error that affects router operation
while it is servicing a packet. We ran PARSEC workloads while triggering one dis-
tinct bug during each entire execution and varying the trigger time (5 trigger points,
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Table II. Functional Bugs Injected in ForEVeR and Average Packet Recovery Time

Bug name Bug description recovery time
deadlock some packets deadlocked in the network 4,821 cycles
livelock some packets in a livelock cycle 3,084 cycles
VA vc strv input VC never granted an output VC 2,827 cycles
VA port strv no input VC in a port granted output VC 3,055 cycles
SW vc strv one input VC never granted switch access 2,123 cycles
SW port strv no input VC in a port granted switch access 2,490 cycles
misroute1 one packet routed to a random destination 1,724 cycles
misroute2 two packets routed to random destinations 1,810 cycles
router bug hardware monitors in routers detect a bug 1,764 cycles

average 2,633 cycles

10,000 cycles apart), the location of bug injection (10 random locations) and packet size
(4, 6 and 8 flits). ForEVeR was able to detect all design errors with no false positives
or negatives and correctly recover from them, executing all workloads to completion
and delivering all packets correctly to their destinations. Each recovery entailed a
performance overhead, due to network drain and packet recovery activities. Once an
error is detected, recovery is triggered by initiating the network drain phase, where
the primary NoC was allowed to drain for a fixed period of 500 cycles, a parametric
value that we set conservatively by simulating the draining of a congested network. If
the network was not drained completely within this time interval due to a bug, packet
recovery is initiated, incurring an additional performance impact but still guaranteeing
correct operation. Table II reports the additional average packet recovery time incurred
for each bug, averaged over all benchmarks, packet sizes, activation times and loca-
tions. Note that, apart from forward progress errors that are detected at the network
level, routing errors are caught at incorrect destinations, while errors affecting router
operation are uncovered immediately by the hardware monitors.

On average, ForEVeR spends approximately 2,633 cycles in packet recovery for each
bug occurrence. This value is primarily affected by the number of packets that must be
recovered; thus, bugs affecting a large portion of the network, such as an entire port
(VA port strv), take more time to recover than bugs that influence smaller portions,
such as only one VC (VA vc strv). Similarly, deadlock errors that may affect many
packets, require the largest recovery time. We observed the worst case recovery time of
30K cycles across all our simulation runs, including all packet sizes and both uniform
and application traffic. A key aspect of ForEVeR design is that it incurs no overhead
during normal operation, spending time in recovery only on bug manifestation. There-
fore, it can afford a longer recovery time as design bugs manifest infrequently.

Bugs that typically escape into production hardware are extremely rare corner-case
situations buried deep in the design state space, that were not uncovered by extensive
pre-silicon and post-silicon validation efforts. Hence, it is safe to assume that these bugs
are extremely infrequent as they have escaped months of verification efforts. Therefore,
even though more than 100 bugs were discovered in the latest Intel chips (Figure 1)
after production, released bug patches (mostly software based) do not lead to significant
slow down in overall performance. In perspective, ForEVeR’s recovery penalty of 2.6K
cycles on average is insignificant even for a unrealistic bug rate of one error every
5 minutes. For a 1 GHz NoC, exhibiting an error rate of one error every 5 minutes, this
translates to a negligible performance penalty, less than one hundred millionth (10−8).

To closely study the relationship between recovery time and number of flits recovered
via the checker network, we injected a varying number of packets in the NoC, and
prevented them from ejection at the network interfaces. The network-level detection
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Fig. 10. ForEVeR’s packet recovery time. ForEVeR’s recovery overhead increases almost linearly with the
number of flits stuck in the primary NoC that must be transmitted reliably through the checker network.
Worst case packet recovery time of 45K cycles is observed in this limit study.

scheme flags an error after the second epoch due to unaccounted primary network
packets at destinations, thus triggering a network recovery. Concurrently, we noted
the time required to drain all stuck packets through the checker network. Figure 10
plots our results for varying packet sizes, reporting packet recovery time vs. number of
extracted flits. As seen from the figure, packet recovery time varies almost linearly with
the number of stuck flits, requiring less than 45K cycles, even in the worst case. Note
that in this artificial scenario, we are intentionally jamming the main network with
many more flits than usual network occupancy at any instant. Thus, this serves as a
limit study, and in practice ForEVeR’s packet recovery time is limited by 30K cycles, as
seen by our results on recovery from desgin bugs.

7.2. Network-level Detection Accuracy

ForEVeR’s runtime performance overhead is affected by the accuracy of its detection.

False positives. False positives occur when an unnecessary recovery is triggered in
absence of a bug occurrence, and they are due to inaccuracies in the runtime monitors.
The corresponding recovery consists of the execution of a network drain phase, where
all in-flight packets are delivered to their correct destination nodes. At that point
no packets remain in flight, thus there is no packet recovery phase. Note that, a
false positive in the detection mechanism does not affect the network’s correctness but
only its performance. The false positive rate of the detection scheme depends on the
duration of the check epoch, relative to traffic conditions. Note that false positives are
triggered when the destination counter is non-zero for an entire check epoch; hence a
heavily loaded network will trigger more false recoveries as unaccounted notifications
accumulate at destinations while their corresponding packets are being delayed due
to congestion in the network. Intuitively, a longer check epoch would reduce the false
positive rate by allowing more time for packets to reach their destinations. Figure 11(a)
shows the decrease in false positive rate with increasing check epoch size. The false
positive rate drops to a negligible value (less than 0.1%) beyond a certain check epoch
size (Epochmin), whose value depends on network load. Indeed, a heavily loaded network
exhibits a higher false positive rate than a moderately loaded network, and hence a
heavily loaded network requires a longer Epochmin to practically eliminate all false
positives. Extensive simulations indicate that Epochmin rises to intolerable values only
when a network is operated at loads well past its saturation. However, NoC workloads
are characterized by the self-throttling nature of the applications, which prevents them
from operating past saturation loads [Nychis et al. 2010].

False negatives. False negatives might cause an error to go undetected for a few
epochs. But, since we guarantee no loss of flits/packets, the data would eventually
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Fig. 11. Analysis of false positive and negative rates with uniform random traffic. (a) False positive rate of
ForEVeR vs. check epoch size. The figure plots the false positive rate vs. check epoch size, for various packet
sizes. The false positive rate drops rapidly with longer check epochs and decreasing network load (difference
shown with red mark) . (b) False negative rate of ForEVeR vs. primary network offset under low latency uniform
traffic with a packet size of 4 flits and check epoch length of 300 cycles. False negatives decrease when the
delay from when monitor counters receive a notification to when they update the counter value increases.

be delivered in an uncorrupted state to the correct destinations upon error detection.
Hence, such a scenario will only increase detection latency without affecting correct-
ness. Consider the case when a packet is stuck within the NoC (forward progress error).
Ideally, its destination counter will not observe a zero value for the entire epoch and
hence recovery would be triggered. However, in a realistic scenario, some other network
packets may be delivered to the same destination ahead of their notifications, causing
the counter to record a zero value. In such a case, recovery will not be triggered even
when the network is in an erroneous state. Therefore, to avoid false negatives in the
detection scheme altogether, the checker network should be constrained to deliver all
notifications before their corresponding data packets arrive via the primary network.
If this cannot be guaranteed for a baseline checker network design, it is still possible
to satisfy the constraint by considering design alternatives, such as bundling together
multiple notifications before transmission, or using multiple checker networks, etc. As
was noted in Section 5.3, our baseline checker network almost always delivers notifica-
tions ahead of data packets, except for very low traffic load situations, where primary
network packets take shorter routes through the primary NoC, while notifications
travel longer routes in the ring-based checker network. To counter these cases, the
decrementing of the monitor counters on main packet arrival can be delayed by an
amount determined by the maximum latency difference between primary and checker
networks at zero load (we call this value counter update delay). In other words, on a
main network packet arrival, the counter value is decremented counter update delay
cycles later, instead of immediately. This artificially gives the checker network packets
counter update delay additional cycles to catch up with the main network packets that
may arrive ahead in time. We ran low traffic load simulations using uniform traffic
with a small packet size (4 flits) and a short check epoch of 300 cycles. With this setup
the primary network is only lightly loaded, and hence, has a greater chance of creating
false negatives. Figure 11(b) plots the maximum consecutive false negatives observed
over 10 different seeds for different counter update delay values. The reported false
negative rate falls quickly and is completely eliminated at a delay of >20 cycles. Note
that the maximum delivery time difference between primary and checker network at
zero-load was 18 cycles in our simulations.

Optimal epoch length. To calibrate the check epoch parameter, we ran rigorous sim-
ulations using both uniform random traffic and PARSEC benchmarks. After operating
ForEVeR normally for a preset length of time, a random data packet is dropped to
emulate the impact of an error in the primary network; we then calculate the false
positive and negative rate for a range of check epochs.
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Fig. 12. Impact of traffic load and packet size on Epochmin. a) Epochmin and network latency with increasing
traffic load: Epochmin length is within tolerable limits for all but deeply saturated networks. b) Epochmin
variation with packet size at different network loads: Epochmin decreases with larger packets.

Fig. 13. Epochmin for varying packet sizes with PARSEC benchmarks. Epochmin is within 1,500 cycles for
packets up to 8 flits long over all PARSEC benchmarks studied (corresponding to an average network latency
of 800 cycles).

Figure 12(a) plots Epochmin (necessary to minimize the false positive rate) and the
average network latency as network load is increased, under uniform network traffic.
Epochmin exhibits a slow increase with rising injection rate up to network saturation,
and a steep rise afterwards. From the plot, a worst case Epochmin of 7K cycles is suffi-
cient to eliminate all false positives when the network is in deep saturation, operating
at an average latency of about 4 times the zero-load latency. Figure 12(b) presents a
similar study plotting Epochmin at low, moderate and high injection rates for four dif-
ferent packet sizes. The plot indicates that Epochmin decreases with increasing packet
size. For similar loads, a network using larger packet sizes has fewer in-flight packets
causing fewer notifications to accumulate at destinations, and hence lower Epochmin
values.

PARSEC benchmark traces for evaluation of our detection and recovery scheme were
extracted from a 64 core CMP system, using our baseline NoC using 4-flit data packets
and running PARSEC workloads. The average network latency across all benchmarks
for these traces was 26 cycles. However, to examine our scheme under more demanding
conditions, we decreased the channel width of our baseline NoC, effectively increasing
the packet length and network load. Using the same traces, we used these longer data
packets (due to decreased channel width) to unrealistically stress the network during
simulation. It should be noted that such high load scenarios (average network latency
up to 1,600 cycles) should never arise in practice because of the self-throttling nature of
the applications. Figure 13 plots Epochmin with different packet sizes for the PARSEC
benchmarks, showing that, in practice, a zero false positives rate can be achieved with
small check epoch length.
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Fig. 14. Average network latency vs. flit error rate for varying injection rates. Minimal latency impact is
observed up to the flit error rate of 0.01%. More flits are transferred via the reliable checker network on
recovery initiation for high injection runs, and hence the latency degradation increases with injection rate.

7.3. Soft Error Protection

The performance of soft error recovery schemes depends on the soft-error rate (SER).
The greater the SER, the larger the performance penalty on network operation. For
NoC specific experiments, average network latency with varying flit error rates, is a
well accepted metric to judge the quality of a recovery solution [Murali et al. 2005]. Flit
error rate is defined as the probability of one or more errors occurring in a flit. Errors in
a flit may be caused, either by soft error-induced malfunction of router control logic, or
data bit-flips in router datapath/links. Assuming equal logic, memory and link SER, we
make a simplifying estimate that the probability of a flit error being caused by control
logic-malfunction is proportional to the silicon area percentage dedicated to control
components. We conducted an area analysis of the components of our baseline router,
and observed that approximately 14% of the area is dedicated to control components,
while the rest is attributed to datapath and links. Further, since we rely on end-to-end
correction of data corruptions occurring while traversing the links or datapath compo-
nents, there is no network performance penalty for such errors. However, if an error in
control logic is detected by router-level hardware monitors or the notification counting
scheme, ForEVeR freezes the router pipeline and drains all the packets residing in the
main network via the checker network. The corresponding recovery time is significant,
and hence performance suffers on frequent recovery triggers.

We ran simulations injecting errors in flits with varying probability. The simulator
classified the injected flit errors as control-induced, with 14% probability. The remain-
der were tagged as performance-neutral datapath-induced errors, as they are cor-
rectable by end-to-end ECC. However, the control-induced errors triggered a network-
wide recovery, causing a performance hit. Figure 14 shows the average network latency
with increasing flit error rate, for varying loads of uniform random traffic. Naturally,
with the increasing flit error rate, the average network latency suffered. However, the
effect on average network latency was tolerable (11% worse for 0.1 flits/cycle/node in-
jection rate) up to the flit error rate of 0.01%, beyond which the latency degradation
was quick. We also observed that the latency degradation was more drastic for higher
injection rates. This is because more main network flits are transferred via the re-
liable checker network on recovery initiation for high injection runs. Finally, unlike
retransmission schemes based on sending acknowledgement messages during normal
operation [Murali et al. 2005; Aisopos and Peh 2011], our scheme does not introduce
any extra traffic into the main network, and hence does not incur a performance hit
in absence of errors. We conclude that ForEVeR’s soft-error protection is suitable for
networks operating at high load and expecting a flit error rate of less than 0.001%
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Table III. ForEVeR Area and Power Overhead

(a) area: router level correctness (b) area: network level correctness (per router)

design area (μm2) % NAND2 design area (μm2) % NAND2

baseline rtr (logic+link) 138K (78K+60K) 100 144K token mgr & rec. sup. 1,300 1.0 1.35K

flow ctrl & storage 6,071 4.4 6.33K NI additions 1,550 1.1 1.62K

VA & SA monitor 1,053 0.8 1.10K chk rtr (logic+link) 3.9K (0.3K+3.6K) 2.8 4.07K

overhead 7,124 5.2 7.44K overhead 6,748 4.9 7.05K

(c) area: soft error protection (d) power: checker network overhead

design area (μm2) % NAND2 design power (mW) %
rel. chk rtr (logic+link) 7K (1K+6K) 5.2 7.39K baseline rtr (logic+link) 219 (190+29) 100

reused hardware 8,974 6.5 9.37K chk rtr (logic+link) 5.2 (3.0+2.2) 2.4
overhead 16,049 11.6 16.76K rel. chk rtr (logic+link) 8.3 (4.6+3.7) 3.9

(worst-case latency degradation of 7%), while ForEVeR can sustain a flit error rate of
up to 0.01% for networks operating at low load.

7.4. Area and Power Results

A central goal in designing ForEVeR is to keep silicon area and power dissipation at
a minimum. The amount of hardware required to implement router-level correctness
varies with the designer’s ability to verify different router components, as formally ver-
ified functionalities need no protection at runtime. Thus, we present the area overhead
for network-level and router-level correctness separately. On the other hand, since For-
EVeR’s power dissipation is dominated by switching activity in the checker network,
we only report power corresponding to the checker network. As a reference, we provide
the number of NAND2-equivalent gates for each component, in addition to exact area
and percentage overheads. Table III(b) reports additions for network-level correctness,
summing up to a 4.9% area overhead over the primary network router. The overhead
is due to additions in each router, contributing 1.0%, and to each network interface
and checker router, which, combined, are responsible for the remaining 3.9%. Note
that the link length between neighboring main network routers (and checker network
routers) is estimated based on tile dimensions published in Vangal et al. [2008] and
scaled to 45nm technology. Subsequently link area and power estimates were obtained
from Orion2.0 [Kahng et al. 2009], assuming a switching activity factor of 0.5.

Table III(a) reports the overhead for ForEVeR’s router-level hardware monitors and
reconfiguration hardware, accounting for 5.2% additional area over the baseline router.
Flow control reconfiguration and extra storage required to avoid dropped flits costs
4.4%, whereas VA and SA checkers, along with a spare arbiter (Section 4.2.2) and
other reconfiguration support, result in 0.8% overhead. In our framework, we were
able to formally verify the baseline router completely, and hence we only incurred the
network-level area cost (4.9%).

We also modeled ForEVeR’s soft error protection hardware in Verilog and synthesized
the design to estimate the area overhead. Soft error protection additions to baseline
ForEVeR were detailed in Section 6. Table III(c) shows the area overhead of soft-
error specific components, as well as the comparison to baseline ForEVeR. The reliable
checker router costs 5.2% of the baseline main network router area, in contrast to 2.8%
for the baseline checker router. The additional area is predominantly attributed to the
wiring overhead incurred in transmitting the codeword and TMR valid bits. Note that
the reported checker router area accounts for the switch-to-switch ECC protection. The
other overheads (6.5%) are shared between reliable and baseline ForEVeR designs. In
summary, reliable ForEVeR leads to an area overhead of 11.6%, in contrast to 4.9%
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Table IV. Comparison of ForEVeR Against Purely Runtime Solutions

type of design errors protected area overhead performance overhead SEU protection
forward duplicate/ correctness storage link normal recovery data control

solution progress drop pkt guarantee buffers wires operation operation path path
ForEVeR yes yes yes none low no impact short yes yes
SafeNoC yes no no high moderate no impact intractable no no
ACK-Ret no yes no very high none high impact short yes yes
Park-06 no no no very high none low impact low impact yes yes

for network-level correctness in baseline ForEVeR. Note that an additional 5.2% area
overhead is incurred for runtime router-level correctness if main network routers are
not fully verified in baseline ForEVeR, making reliable ForEVeR only slightly more
expensive than baseline ForEVeR (11.6% vs. 10.1%). The reported area numbers do not
account for end-to-end ECC in the main network, assuming that the main network is
already equipped with ECC units to overcome link cross-talk errors.

From the power analysis reported in Table III(d), we observe that the baseline
checker router dissipates 5.2mW power on average, while the reliable checker router
dissipates 8.3mW power on average. Thus, the checker router accounts for only 2.4%
(3.9% for the reliable version) of the main network routers’ power dissipation. We expect
this overhead figure to be an order of magnitude less than other runtime techniques
that employ large buffers [Murali et al. 2005; Park et al. 2006] or high-bandwidth
secondary networks [Abdel-Khalek et al. 2011]. ForEVeR leverages formally verified
components within the router to recover from design errors; thus keeping area and
power overhead low when compared to purely runtime verification techniques [Murali
et al. 2005; Abdel-Khalek et al. 2011]. Without leveraging the design-time verification
effort, we would require much more additional hardware and complexity to provide
similar functional correctness guarantees. In addition, ForEVeR’s soft-error protection
scheme mostly reuses the hardware required for runtime verification, to keep the area
and power overhead at check.

7.5. Comparison against Purely Runtime Solutions

Table IV outlines the qualitative comparison of ForEVeR with other pure-runtime
schemes. The comparison is with the following runtime solutions: i) SafeNoC [Abdel-
Khalek et al. 2011], which uses a dedicated network to transmit packet checksums to
detect and recover from design errors, ii) ACK-Retransmission [Murali et al. 2005],
which maintains a fresh copy of injected data until it receives a positive acknowledge-
ment from the destination, and iii) Park-06 [Park et al. 2006], which utilizes various
microarchitectural modifications to overcome soft errors both in router datapath and
control-logic. We compare the four schemes on four aspects: protection against de-
sign errors, area overhead, power overhead and resilience against soft errors. Only
ForEVeR can guarantee complete correctness, while others fail to overcome either
forward progress bugs or drop/duplicate packets or both. ACK-Retransmission, for in-
stance, cannot recover from bugs like deadlock and livelock, and even for other bugs
it uses the same untrusted network to retransmit data upon error detection, possibly
incurring the error again and again. Therefore, the delivery of the retransmitted data
in ACK-retransmitted cannot be guaranteed.

ForEVeR does not need to buffer main network packets to support its detection
and recovery operation. However, storage of notification packets at injection ports is
required in our checker network architecture. The notifications only store the destina-
tion address (6-bits), and hence are considerably small as compared to main network
packets. In our simulations, the worst-case storage required at checker network injec-
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Fig. 15. Storage requirement. ForEVeR requires minimal storage only for notifications waiting injection.
SafeNoC stores signatures and packets until their counterpart arrives. ACK-Retransmission maintains a
backup copy, while Park-06 requires escape buffers at each router FIFO to break deadlock cycles.

tion port was 11 notifications when operated beyond saturation. As on-chip network
do no operate beyond saturation [Nychis et al. 2010], this adds up to only 9 bytes of
storage for the worst case, almost the same as one main network flit of 64 bits. Thus,
the amount of notification storage required is insignificant.

In contrast, SafeNoC utilizes buffers at destination nodes to store checksums and
packets waiting for their counterparts, while ACK-Retransmission maintains large
source node buffers for all in-flight packets. Finally, Park-06 [Park et al. 2006], re-
quires additional buffering at each router FIFO to overcome deadlocks caused by soft
errors, such that the total buffer size is large enough to accommodate the remaining
flits of a packet allocated to the FIFO and still have one empty slot. Naturally, the
storage requirement grows with larger packets. Moreover, this additional buffering is
required at each VC for each input port. We ran stress tests on the NoC using uni-
form traffic to calculate the maximum buffering required over time for the SafeNoC
and ACK-Retransmission solution. For SafeNoC, we observed the maximum number of
outstanding checksums and data packets at any time, and for ACK-Retransmission we
noted the maximum number of data packets in-flight. Buffer requirements for Park-06
can be calculated using the analytical equations provided in Park et al. [2006]. Figure 15
shows the results of our study and plots the worst case buffering required at each node.
Note that ForEVeR requires no additional buffers, while all others require substantial
buffer space for proper operation. The buffer requirements for ACK-Retransmission
and Park-06 grow substantially for large packet sizes, while SafeNoC requires buffer-
ing for ∼40 flits/node independent of packet size. Note that provisioning for buffers to
store 50–100 flits at each node can be prohibitively expensive for a constrained NoC
environment. For instance, for data packets of 16 flits, the buffers in SafeNoC, ACK-
Retransmission and Park-06 alone result in 12.5%, 37% and 26% area overhead over
our baseline NoC, respectively. ForEVeR, however, does use some additional wires on
a separate checker network, but since the transmitted notifications contain no data,
we can design an area-efficient checker network, as described in Section 5.3. In con-
trast, SafeNoC uses a similar checker network to transfer larger (16–32 bit) checksum
packets, while the ACK-Retransmission and Park-06 solutions do not use a separate
checker network to overcome errors.

On the performance front, neither ForEVeR nor SafeNoC has any impact during
normal error-free NoC operation, whereas ACK-Retransmission and Park-06 create
additional traffic due to end-to-end and switch-to-switch acknowledgements, respec-
tively. During recovery, all techniques other than SafeNoC can quickly recover from
anomalous behavior. SafeNoC runs a packet reconstruction algorithm in software, that
can be exponential in the number of flits to be recovered and reassembled in the worst
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case. Finally, ACK-Retransmission and Park-06 can provide the best protection against
soft errors, while SafeNoC has no mechanism to overcome soft errors. In contrast, as
demonstrated in Section 6, ForEVeR with a few modifications can be leveraged to
overcome all kinds of soft errors. In summary, the low area and performance over-
head, combined with the ability to protect against both design and soft errors, makes
ForEVeR the most complete runtime solution.

8. GENERALIZING FOREVER

In this section, we discuss how ForEVeR’s approach of complementary verification can
be generalized to a number of current and future NoC and router designs.

8.1. Other NoC Designs

Both network-level detection and recovery schemes of ForEVeR can be generalized to
any NoC design/architecture. At the most basic level, ForEVeR’s network-level verifi-
cation scheme checks if packets are delivered in time to the correct destinations via
the main network: the defining property of any correctly functioning network. Further,
ForEVeR’s network-level correctness hardware is independent and mostly decoupled
from the NoC design. Therefore, ForEVeR is agnostic to NoC topology, and the rout-
ing and congestion management schemes employed, as long as the checker network,
used both during detection and recovery, can adapt to consistently deliver notifications
ahead of main network packets. To this end, we leverage the observation that the
checker network is simply just wires, muxes and registers with trivial control logic. A
recent work [Krishna et al. 2013] reports that wires can carry signals up to 11 hops
within a single main router clock cycle. The main router cycle period is usually deter-
mined by the complex allocation step and causes this imbalance in the router pipeline.
Hence, if need be, the checker network without any complex control logic, can be clocked
at a higher rate as compared to the main network router. In our evaluations, we used
a high-performance main network with VCs, speculation and prioritization, and our
checker network, clocked at the same frequency as the main network, sufficed to de-
liver notifications as required. Therefore, we anticipate that the basic checker network
design would be sufficient for most NoC designs. However, if its performance lags be-
hind, it can be tuned to the needs of the main network by supporting wider channels
and multiple simultaneous transmission.

8.2. Other Router Designs

ForEVeR’s router-level correctness ensures that the integrity of main network pack-
ets is maintained throughout the transfer. The no packet drop, no packet create, and
no data corruption properties, proven over individual routers, are sufficient to ensure
packet integrity. It should be noted that most hard-to-find bugs stall forward progress
by causing starvation, deadlocks, etc.: bugs such as these are easily detected and
corrected by our network-level recovery scheme. Therefore, formal verification alone,
is adequate to prove the data integrity properties in most cases. For example, the
formal verification plan developed in accordance to the guidelines of Section 4, was
successful to verify our fairly complex baseline router. Although our baseline router
implementation is completely formally verified, we further designed generalized hard-
ware monitors to be able to extend ForEVeR’s detection scheme to more complex router
designs that may be outside the scope of formal verification. These hardware monitors
for router-level detection along with some recovery hardware, provide protection to
router components that handle complex interactions and the flow of data, such as the
resource allocation and buffer management units. They also enable architects to deploy
routers with aggressive and complex performance features that are not guaranteed to
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Fig. 16. Mainstream router microarchitectures. Generally, complexity increases moving left-to-right in the
chart. We formally verified a VC router and designed runtime monitors to generalize to more complex router
organizations.

be completely correct. Be it via formal verification or runtime monitors, our verification
plan focuses on the movement of data through the datapath components, making sure
data integrity is maintained at each move.

Data integrity, the objective of router-level verification, is harmed only when a data-
path resource is assigned incorrectly to moving data. Arbiters and allocators, working
on the information provided by the flow control units, manage the resources within
the network. If data integrity properties are not fully verified via formal verification,
arbiter/allocator decisions that can potentially jeopardize data integrity, are detected
by the generic Allocation Checker (AC) unit, described in Section 4.2.1. If an error is de-
tected, the allocation/arbitration decision is invalidated. However, due to the pipelined
nature of routers, this might lead to loss of data. Emergency buffer space is reserved to
avoid data loss due to invalidated control decisions. Based on the router pipeline, few
emergency buffers suffice to ensure no data loss as recovery is initiated immediately
after error detection.

ForEVeR can be generalized to all mainstream router designs, as they have a similar
underlying structure, with control components managing the flow of data through the
data-path components (channels, buffers, and crossbars). Router microarchitectures
differ from each other in the manner they control the flow of data through each data-
path component. Figure 16 shows most mainstream router microarchitecture classes
and the associated complexity trends. Note that the baseline router used as a case-study
throughout this paper, is typically the most complex. In this section, we will consider
flow control options over each datapath component and will show that ForEVeR is
equally applicable to all design choices. We try to cover a broad class of router designs
in this study:

1. Channels. Allocation of channels can be done either at packet level, as in wormhole
flow control or at a flit level, as in virtual channel flow control. Typically, verification of
flit level allocation schemes is more challenging than packet level allocation schemes,
as it increases the interactions between multiple data transmissions. We designed a
successful formal verification plan for flit-level channel allocation and alternatively
designed an AC unit to avoid over-subscription of channels. For channels allocated at
packet level, an easier formal verification plan or a simpler hardware monitor would
suffice to avoid over-subscription. Note that, for our baseline design, checking the
validity of SA automatically ensures that at most one flit will travel via the output
channel in any cycle. Other designs are also possible (output queued routers with VCs,
or separate crossbar ports for VCs), where a separate arbiter controls the access to the
channel. Fortunately, our generic AC unit can be used to check for over-subscription of
the channel by this arbiter too.
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2. Buffers. Similar to channels, correctness of buffer management schemes is easier
to ensure for microarchitectures with packet-level flow control as compared to flit-level
flow control. In our experiments, we again verified a flit-level buffer management policy,
which is expected to be more challenging to verify than packet-level buffer manage-
ment policy. Additionally, all mainstream buffer management policies (credit-based,
ON-OFF, ACK-NACK) can be designed to fall-back to a safe interrouter transmission
scheme described in Section 4.2.1, on error detection.

3. Crossbar. Access to the crossbar is exclusively managed by the Switch Allocation
(SA) unit. We were able to formally verify that allocations issued by SA preserve data
integrity, and additionally we designed an AC unit to check for violations to be able to
generalize to SA designs beyond the scope of formal verification. As an example, the
SA unit for a crossbar with a dedicated port for each input VC, manages increased
request-grant combinations, and hence is more complex. If such a design is beyond the
scope of formal verification, AC unit can detect violations at runtime.

Certain router design choices directly affect the ease of verification. For example,
many router designs employ VCs to decouple the dependency between channels and
buffers, allowing multiple interleaved packet flows through the same channel. A VC
allocation (VA) unit is responsible for managing buffering resources for these inde-
pendent packet flows. Our VA allocation unit was formally verified to preserve data
integrity, and an AC unit was designed to generalize to more complex router designs, for
instance, high radix routers with many VCs. Additional complexity is also introduced
if packets are transferred through routers’ buffers in a wormhole fashion. A correctly
functioning wormhole routing architecture should ensure that all body flits follow the
decisions that were made on the head flit. As described in Figure 2, this requirement
can be broken down into easy-to-verify subproperties and then verified using available
formal verification tools.

Finally, during packet recovery, data stored in the main routers’ buffers is trans-
mitted reliably over the checker network to the final destination. Therefore, we need
to guarantee basic router functionality to safely salvage packets from the routers. To
ensure this, basic router components (input ports, buffers, arbiters, crossbar) required
for bare-bone functionality are formally verified. These components are common to all
router architectures, while many of the features that are design-specific tend to be
performance oriented: these types of features are disabled during recovery. Thus, our
verification flow could be used to ensure bare-bone functionality for any router.

In summary, we show that ForEVeR can protect most major classes of router architec-
tures against design errors. Additionally, by leveraging ForEVeR’s guidelines to devise
a formal verification plan and designing runtime monitors for resource management
units, correctness guarantees can also be ensured for unconventional router designs,
such as the flit reservation router [Peh and Dally 2000].

9. CONCLUSIONS

In this work, we presented ForEVeR, a complete verification solution that complements
the use of formal methods and runtime verification to ensure functional correctness
in NoCs. Formal verification is used to verify simple router functionality, leveraging a
network-level detection and recovery scheme to provide NoC correctness guarantees.
ForEVeR augments the NoC with a simple checker network used to communicate noti-
fications of future packet deliveries to corresponding destinations. A runtime detection
mechanism counts expected packets, triggering recovery upon unusual behavior of the
counter values. Following error detection, all in-flight packets in the primary NoC are
safely drained to their intended destinations via the checker network. ForEVeR’s detec-
tion scheme is highly accurate and can detect all types of design errors. The complete
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scheme incurs only 4.9% area cost for an 8×8 mesh NoC, requiring only up to 30K
cycles to recover from errors. ForEVeR hardware can also be leveraged for protecting
the NoC against soft-errors. With an area cost of 11.6% over the baseline NoC, ForEVeR
experiences minimal performance impact up to the flit error rate of 0.01% at low net-
work loads.
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