
High Radix On-Chip Networks at Incremental Reconfiguration Cost

Ritesh Parikh, Animesh Jain and Valeria Bertacco

Department of Computer Science and Engineering, University of Michigan
{parikh, anijain, valeria}@umich.edu

ABSTRACT
Networks-on-chip (NoCs) have become increasingly widespread due to
the extensive integration of components in modern chip multi-processor
(CMP) and SoC designs. A fundamental tradeoff in NoC design is the
radix of its constituent routers. While high radix routers enable a richly
connected and low diameter network, low radix routers provide simple
and low power designs.

In this work, we present HiROIC, a solution that provides high-radix
like performance at a cost similar to a low-radix network. HiROIC
leverages the irregularity in runtime communication patterns to pro-
vide short low-latency paths between frequently communicating nodes,
while infrequently communicating pairs take longer paths. HiROIC de-
ploys more links at a router than ports, binding ports to links at runtime
depending on the traffic demands. Our experiments on a 64-node CMP,
running multi-programmed workloads, show that HiROIC reduces av-
erage network latency by 19% over an area- and power- comparable
mesh NoC.

1. INTRODUCTION
As a result of increasing integration of components into CMP and

SoC architectures, NoCs have become the dominant choice for on-chip
interconnects, due to the highly concurrent communication paths and
better scalability they provide. Moreover, to keep up with the com-
munication demands of the cores/IPs on-chip, NoCs are increasingly
incorporating bulky and power-hungry resources, required to meet tar-
get latency and bandwidth goals.

One such design decision is the radix of the routers in a topology,
that is, the number of I/O ports that a router provides to connect links
to adjacent router. High-radix routers (>5 ports) provide low-diameter
topologies, enabling packets to traverse fewer routers to reach their des-
tination. However, the router components, such as crossbar and alloca-
tors, grow quadratically in area with the radix of the router. In addition,
high-radix routers lead to increased signal propagation latencies and
slower operating frequencies. Low-radix routers (e.g., mesh), on the
other hand, consume less power and can be clocked at a substantially
higher rate [15]. Unfortunately, low-radix topologies often lead to large
network diameters and large hop counts. Using low-radix routers par-
ticularly hurts performance when applications do not have sufficient
memory-level parallelism (MLP) to hide the higher latency.

With HiROIC (for High RadixOn-chip Networks at Incremental re-
Configuration Cost), we want to provide the best of both classes of
topologies: low and high radix. HiROIC provides an effective net-
work diameter at par with high-radix topologies, while only utilizing
resources comparable to low-radix routers. HiROIC exploits the non-
uniformity of communication patterns to provide short, low latency
paths only between heavily communicating nodes, while it forces the
low traffic source-destination pairs to use longer paths. Thus, on av-
erage, HiROIC provides a small hop count for packets traversing the
network. With the increasing integration of application-specific com-
ponents, the location and quantity of heavily used routing paths is likely
to be highly unbalanced both across and within applications. We there-
fore envision great potential for the deployment of HiROIC in upcom-
ing CMP and SoC designs.

HiROIC uses routing and topology reconfiguration to optimize for
high-volume source-destination pairs. At the heart of HiROIC is the
concept of port-link decoupling: network links are connected to routers’
ports only at runtime, and the binding is modified dynamically based
on the changes in traffic patterns imposed by the application. Our NoC
design includes low-radix routers, but abundant links, as in a high-radix
topology, so to potentially provide short paths between any source-
destination pair. In HiROIC, computation is partitioned into epochs of
execution, with port-link binding fixed during each epoch. At the end
of an epoch, the mapping is re-evaluated based on the observed traffic
patterns, and modified if there is space for improvements. While Hi-

ROIC’s wiring overhead is greater than conventional topologies (e.g.,
meshes), we observe that wires never constitute a timing bottleneck in
conventional router pipelines [9]. In addition, unused wires during an
epoch can be power-gated after the port-to-link binding is complete.
Note that, in most NoCs, each router has one local port (sometimes
more) connecting to the processing node(s). Since this connection is
essential to provide connectivity, we always dedicate one router port
for binding to the local node link. Thus, to simplify the discussion, in
the remaining of this paper we exclude the port connected to the local
link when reporting the radix of a router.

In summary, our contributions are:
• A novel router architecture to mimic high-radix router’s behav-

ior, while consuming resources comparable to a low-radix router.

• A reconfiguration algorithm that predicts an application’s up-
coming communication needs and periodically adapts the net-
work topology to provide short paths between heavily communi-
cating source-destination pairs.

In our evaluation with non-uniform multiprogrammed workloads from
the SPEC CPU 2006 suite, HiROIC’s 64-node layout reduces average
network latency by 21%, compared to a baseline mesh.

2. RELATED WORK
Much of the research targeting performance improvements in NoC

designs has focused on: i) reducing the number of pipeline stages within
the router [12, 15], and ii) increasing the clock frequency of the router’s
operation [2]. Our work leverages an orthogonal approach to improve
performance – decreasing the average packet’s hop count. Previous
works that leveraged application-driven configuration for the NoC tar-
geted the design phase of the NoC, with no ability to reconfigure at
runtime. These solutions would characterize all applications that were
expected to run on the system and then, based on the analysis, optimize
the design’s: i) topology [17], ii) routing [13], iii) buffer sizing [8],
etc. In contrast, HiROIC adapts dynamically to changing application
patterns and reconfigures the topology at runtime.

Runtime reconfiguration solutions have also been proposed to op-
timize either power [11] or performance [6, 5]. All these techniques
provide valuable benefits and can be deployed concurrently with Hi-
ROIC, which targets dynamic topology reconfiguration to attain addi-
tional gains. There is also a body of work related to runtime topology
reconfiguration, whose goal, however, has been reliability. In these
solutions, for instance Ariadne [1] and uDIREC [14], the topology
changes upon a runtime fault, and the authors propose reconfiguration
techniques to update the routing function so to route around the fault.
In comparison, HiROIC’s key contribution is a dynamic topology re-
configuration solution for performance enhancement.

3. METHODOLOGY
In conventional networks, router ports have fixed one-to-one map-

ping with links. In contrast, we propose to provide more links than
those available in low-radix topologies, eliminating the traditional fixed
connections. At runtime, router ports are bound to a subset of the avail-
able links, based on the application’s communication demands. The
internal micro-architecture of the router is not modified, with the ex-
ception of the necessary updates to the routing tables, based on the se-
lected configuration. The left side of Figure 1 shows the schematic of a
four-port HiROIC-enabled router with the opportunity to bind to eight
links. The glue logic in the hashed area comprises multiplexers to com-
plete the bindings. The right side of the figure presents two examples
of port-to-link bindings for the router.

HiROIC’s Execution Flow. In HiROIC, the NoC’s execution is parti-
tioned into epochs. During each epoch, our traffic-statistics collection
framework monitors the density of communication between all source-
destination pairs. Our goal is to identify the pairs that transfer the ma-
jority of the traffic so as to minimize their hop count. In the rest of this



ports

ports
ports

ports

linkslinks

links

links

links

links

Examples

xbar

router

Glue logic 

Figure 1: Port-link decoupling. The router in the figure can connect up to four router ports
by selecting among eight links. Depending on the application’s traffic demands, it can adopt
different port-binding configurations, by simply assigning select signals of the multiplexers.
The right part of the figure shows two such possible bindings.

paper, we will refer to any such pair as the Frequently Communicating
Pair (FCP). At the end of each epoch, we analyze the composition of
the FCP set and determine whether a topology reconfiguration should
occur to improve on the current port-link binding. Figure 2 illustrate a
high-level overview of HiROIC’s execution flow.

Note that our approach strives to predict application’s demands based
on the traffic observations during the current epoch. This is a valid ap-
proximation, as long as our epochs are short compared to the frequency
of major phase changes in the application’s behavior. We observe that,
in practice, applications’ phases are at-least hundreds of thousands of
cycles long [4]; thus, in our evaluation we set the epoch length to
10,000 cycles, so to be able to quickly respond to significant traffic
pattern changes.

3.1 Topology Reconfiguration
To optimize the topology for high-volume communication patterns,

we perform the following steps: i) we collect traffic statistics over ex-
ecution intervals (epochs) to predict future traffic behavior, ii) we trig-
ger topology reconfigurations when we observe pattern changes, and
iii) we set port-link bindings at each router based on the new topol-
ogy planned. The hardware implementation of our scheme is discussed
in-depth in [7], and is not discussed in this document.

Statistics Collection Framework. Knowledge of traffic statistics is
necessary to predict application’s future communication demands. The
insight is that if few nodes are generating high traffic volume in one
epoch, they will continue to do so in the upcoming epochs as well.
This history-based prediction on the communication pattern helps in
optimizing topology for the next epoch. Our framework collects i) the
number of packets send between each source and destination, and ii)
each router’s maximum buffer occupancy [3] averaged over the epoch
duration. The maximum buffer occupancy metric is used as an indi-
cator of congestion in NoC. It is used to ensure that the reconfigured
topologies do not lead to congestion.

TheDecision Engine determines when to trigger the topology reconfig-
uration. At the end of each epoch, it analyses the data received from the
statistics collection framework and determines the pairs that are gener-
ating the most traffic in the NoC. These pairs are referred as the Fre-
quently Communicating pairs (FCP) in the rest of the paper. Topol-
ogy reconfiguration is triggered when the following conditions are met:
i) FCPs share more than a threshold percentage (Tth) of the total traffic,
ii) and the new FCPs are significantly different from the FCPs of pre-
vious epoch. The first condition ensures that there is sufficient traffic
irregularity in the network for HiROIC to be effective. The second con-
dition ensures that a topology reconfiguration is triggered only when
the current topology is not well suited for the predicted communication
patterns. Notice that setting Tth to a high value will prevent HiROIC
from adapting to communication demands quickly, whereas setting it to
a low value will trigger frequent reconfigurations, causing traffic sus-
pension and application slowdown. Therefore, a suitable value of Tth

is essential for the proper functioning of HiROIC.
As mentioned before, HiROIC utilizes the maximum buffer occu-

pancy metric [3] to detect congestion in the network. Congestion could

0

9 10 118

4 5 6

1 2

12 13 14

7

3

15

E
p

o
c
h

 d
u

ra
ti

o
n

Topology for current epoch

8 9

4 5

10

6

0 1 2

12 13 14

11

7

3

15

Statistics collection framework

Frequently communicating pairs during 

completed epoch

0 15

6 9

Epoch starts

Invoke topology reconfiguration

- Selection of high priority links

- Configuring rest of the topology

Topology for current epoch
Links enabled to reduce hop count for  

frequently communicating pairs

N
th

ep
o

ch
(N

+
1)

th
ep

o
ch

Topology reconfiguration phase 

Figure 2: HiROIC execution flow. Application’s execution is partitioned into epochs, dur-
ing each epoch, HiROIC monitors the NoC’s traffic patterns. At the end of the epoch, we
determine, based on the patterns observed, whether a topology reconfiguration is appro-
priate. If so, the new configuration aims at minimizing the distance between frequently
communicating pairs (FCPs).

lead to longer packet wait times, and hence application slowdowns.
Our analysis shows that a baseline 2D mesh network is better at bal-
ancing traffic than the irregular topologies realized at runtime by Hi-
ROIC. Therefore, upon detection of a congestion situation, indicated
by a high average value for the maximum buffer occupancy metric, the
NoC reverts back to the 2D mesh topology.

3.1.1 Reconfiguration Algorithm
After the FCP set is calculated and the decision engine triggers the

reconfiguration process, the reconfiguration algorithm determines the
link-port bindings that would minimize the hop count between the FCPs.
HiROIC’s topology reconfiguration falls under the category of con-
straint satisfaction problems (CSP), where the constraint is the avail-
ability of ports and their valid bindings with links. The topology recon-
figuration algorithm involves the following steps:

i. Port-link bindings for FCPs. After determining the FCP set at the
end of each epoch, the next step is to enable the NoC’s links that fa-
cilitate low-latency communication for those critical pairs. These links
are selected by traversing the network, router by router, and building
low-latency paths connecting the FCPs. First, the FCPs are grouped by
their destination routers, and one group is considered in a greedy fash-
ion before moving on to the next group. For each FCP entry within a
group, HiROIC attempts to enable all the links between the source and
the destination router. This is achieved by activating the appropriate
select signals on the multiplexers used to bind ports to links.

It is not always possible to enable the shortest paths between all
FCPs. This is because HiROIC’s architecture is limited by: i) the num-
ber of available router ports, and ii) the flexibility provided by the glue
logic binding links and ports. Therefore, a check is performed after
enabling each link to determine that these constraints are not violated.
If any constraint is violated for any port-link along the path of an FCP,
then all the links bound for that path are released.

ii. Port-link bindings for non-FCPs. It is often the case that we can
enable all the links required to provide shortest paths for the FCPs, and
still have several disconnected ports in a number of routers. Therefore,
the second phase in a topology reconfiguration binds the free router
ports to available links. This again is achieved by traversing the net-
work, router by router. Each router chooses among the locally-available
port-link bindings in a greedy fashion. This process is repeated until the
current router has successfully bound all its ports, or when all port-link
binding options are exhausted. While this does not lead to an optimal
mapping, it provides an acceptable solution for the latency of infre-
quently communicating source-destination pairs.

iii. Routing in the new topology After the generation of the new topol-
ogy is complete, all routing paths must be updated. To this end, we
leverage Ariadne’s route-reconfiguration algorithm [1]: Ariadne was
proposed for reconfiguration around faulty components and, due to the



(a) 2D mesh topology (b) x-y plane of 3D torus 

topology

(c) x-y plane of 4-ary 4-fly 

flattened butterfly topology

x-dimension
y-

di
m

en
si

on
routers used for illustration

Figure 3: Organization of links and routers in proposed physical topologies. We con-
sider two topologies for links: a 3D torus and a flattened butterfly. For simplicity of illustra-
tion, the figure shows the x- and y- dimension connections only for the bold colored routers.
3D torus routers have two connections in each dimension, while a 4-ary 4-fly flattened but-
terfly has routers with three connections in each dimension.

increasing reliability concerns with shrinking transistor sizes, we as-
sume a functionality similar to Ariadne to be already present on-chip.
Ariadne leverages the up*/down* algorithm [16] for routing in irregu-
lar networks, while proposing a quick and lightweight distributed im-
plementation to update routes upon each topology change. Ariadne is
reported to reconfigure a 64-node network in only ∼4K cycles, and it
is therefore an ideal fit for HiROIC, if reconfiguration is triggered once
every few epochs.

4. PHYSICAL TOPOLOGIES
We refer to a particular arrangement of physical links and ports, in-

dependently of any binding, as a physical topology. In physical topolo-
gies, links are available in accordance to a high radix topology (e.g.,
3D torus), while ports are those of a low radix router (e.g., 2D mesh
routers). In our evaluation, we consider two such topologies: both use
routers with only four ports as in a mesh. We argue that, due to the
similar router structure, both topologies have power and area character-
istics similar to a 2D mesh network. Thus, all performance analysis is
against a 2D mesh topology. A traditional 2D mesh has a one-to-one
binding between ports and links, as depicted in Figure 3(a). In contrast,
we implement HiROIC with the following physical topologies:

Adaptive 3D Torus. The average hop count between the nodes of a 3D
torus is substantially lower than that of a 2D mesh. This is due to the
higher (six) radix of its constituent routers, as shown in Figure 3(b). We
propose a HiROIC-enabled adaptive 3D torus physical topology that
organizes links as in a 3D torus, while maintaining radix-four routers.

Adaptive Flattened Butterfly. A flattened butterfly further reduces
the average hop count compared to a 3D tori. For our 64-node NoC, a
4-ary 4-fly flattened butterfly arranges the routers in three dimensions,
with direct links between routers on the same (x, y), (y, z) or (z, x) di-
mensions, as shown in Figure 3(c). Our second physical topology is an
adaptive flattened butterfly (radix=9) topology with radix-four routers.

Link 1

Link 2

Link 3

Link 4

Link 5

Link 6

m
ux

mux

m
u

x

m
ux

mux

m
u

x

(a)

Glue logic

Router

Link 1

Link 2 Link 3

Link 4

Link 5Link 6

m
ux

mux

m
ux

(b)

Glue logic

Router

mux

Figure 4: Glue logic for an adaptive 3D torus router. At the end of a topology reconfigu-
ration, the glue logic select signals implement the new port-link bindings.

As discussed before, the glue logic incorporates multiplexers to de-
couple the traditional port-link binding. The size and the number of
multiplexers affect how many links a particular port in the router can
choose from. Full flexibility in link-port bindings allows a port to con-
nect to any link. However, full flexibility results in large area overhead.
We therefore decided to limit the number of links a port can choose
from. For example, in an adaptive 3D torus topology, each output port
can connect to one of three output links (one in each dimension) as

(a) Processor @2GHz

Cores
2-wide fetch/commit

64-entry ROB

coherence 4-hop MESI, 64B block

L1 cache
Private: 32KB/node

ways:4 latency:2

L2 cache
Shared: 256KB/node

ways:16 latency:6

Memory
Distributed: 1GB/bank

banks:4 latency:160

(b) Network @2GHz

Topology 8x8 mesh, 128 bit links

Pipeline 3-stage VC flow ctrl

VCs 4 VCs/port, 8 flits/VC

Routing up*/down*, XY

Routing- Ariadne [1]: new

Update up*/down* routes

Workload
multi-programmed:

SPEC CPU 2006

Simulation 10M cycles

Table 1: Experimental CMP: configuration of processor and network.

shown in 4(a). With these restrictions, each output link can connect to
one of two ports, and therefore six 2:1 multiplexers are sufficient for
the output glue logic. For the input glue logic, each input port can bind
to one of three links, resulting in four 3:1 multiplexers, as shown in
Figure 4(b).

5. EXPERIMENTAL RESULTS
We evaluated HiROIC on a cycle-accurate trace-driven multi-core

simulator [3]. Table 1 shows the characteristics of the processors and
the NoC we evaluated. We ran all experiments considering a 64 core
system as a baseline with 3-stage pipelined routers in the network. We
implemented the HiROIC scheme over the adaptive 3D torus and adap-
tive flattened butterfly topologies. All our comparisons are against a
baseline 2D mesh topology. Finally, we used the up*/down* routing
algorithm [16] to navigate the packets within the NoC.

5.1 Synthetic Traffic
Our first set of experiments injects the NoC with synthetic normal

random traffic. HiROIC is not supposed to trigger topology reconfigu-
ration for normal random traffic because all pairs have similar amount
of traffic between them, resulting in absence of frequently commu-
nicating pairs. We observe that our algorithm indeed did not invoke
any reconfigurations for normal random traffic, leading to our adaptive
topologies behaving exactly as a 2D mesh.

We also created synthetic directed traffic to gain more insights into
the strengths and limitations of our scheme. Our synthetic directed
workloads consist of 20 phases, each of which lasts 50 epochs and has
a number of frequently communicating pairs (FCPs). The new FCP set
is randomly selected after each phase. Other network nodes produce
traffic at low injection rate (0.005 flits/node/cycle). Figure 5 compares
the average latency of the topologies under consideration with directed
traffic using 15 FCPs. On the x-axis we sweep the injection rate for the
FCPs.

To compare latency improvements, we define three traffic load levels
for the FCPs: low, medium and high. Low traffic corresponds to 0.1
flits/node/cycle, and it is the lowest injection rate used in our experi-
ments. The medium and high injection rates are defined as the injection
rates where the network latency for the 2D mesh is 1.5× and 2× that
of the low-load latency. We observe that the latency improvement over
2D mesh for the adaptive 3D torus is 22.7%, 29.3% and 36.9% for low,
medium and high injection rates, respectively, while the corresponding
latency improvements for the adaptive flattened butterfly are slightly
better at 30.8%, 35.6% and 37.8%. This experiment proves HiROIC’s
potential in providing significant reduction in network latency in the
presence of traffic imbalance.

100

a
v
g

. 
p

a
c

k
e

t 
la

te
n

c
y
 (

c
y
c

le
s
)

Number of FCPs= 15
2-D Mesh

20

40

60

80

0 0.1 0.2 0.3 0.4 0.5

a
v
g

. 
p

a
c

k
e

t 
la

te
n

c
y
 (

c
y
c

le
s

Injection rate for FCPs

2-D Mesh

Adaptive 3-D Torus

Adaptive Flattened Butterfly

Figure 5: Average network latency with directed traffic. The plot compares the average
network latency for three topologies under directed traffic with increasing injection rate
for the FCPs. HiROIC provides low-latency paths between FCPs, resulting in significant
overall latency improvements.



5.2 Multiprogrammed Workloads
We also evaluated our proposed scheme with a set of multi-program-

med workloads consisting of 35 applications from the SPECCPU 2006
benchmark suite. The experiments were conducted across 60 multi-
programmed workloads, with each workload consisting of 15 copies
each of 4 unique applications. The studied applications exhibit a wide
range of cache misses per kilo instructions (MPKI) values: the MPKI
metric directly correlates to the amount of traffic sent through the NoC.
Some workloads use applications with similar MPKI values, causing
all cores to inject similar amount of traffic on the NoC. We further
divide such workloads into two categories: the LL category workloads
use applications with lowMPKI, while the HH category workloads use
applications with high MPKI. We also use imbalanced workloads, in
which the MPKI values among the applications differ substantially. We
group such workloads under the LH category, as they use applications
with both low and highMPKI.

Figure 6 compares the network latency of a 2D mesh against the
HiROIC-enabled adaptive 3D torus and adaptive flattened butterfly un-
der multi-programmed workloads. As expected, HiROIC provides the
highest latency improvements for LH category workloads: average la-
tency reduction over 2D mesh is 21.4% and 21.2% for adaptive 3D
torus and adaptive flattened butterfly, respectively. HiROIC also pro-
vides good improvements for workloads in the LL category: 18.5%
and 17.0% latency reduction over 2D mesh for adaptive 3D torus and
adaptive flattened butterfly, respectively. This is because network trans-
missions are scarce in such workloads, and only a small subset of appli-
cations produce significant traffic within a given computational epoch
(in contrast to all applications producing traffic all the time). Therefore,
HiROIC optimizes the NoC topology to provide short communication
paths to and from the active subset. Finally, we observe the smallest
gains for workloads in the HH category, as most nodes generate heavy
traffic, leading to a larger than optimal FCP set. For workloads in the
HH category, the average latency improvement for adaptive 3D torus
and adaptive flattened butterfly over 2D mesh, is 17.0% and 16.7%,
respectively.

Our evaluations with multi-programmed workloads do not yield re-
sults as promising as the directed traffic evaluation of Section 5.1. The
primary reason for this is the organization of the underlying CMP sys-
tem. Our baseline CMP uses a shared and distributed L2 cache architec-
ture, and therefore L1 cache misses are uniformly distributed over the
entire CMP. As a result of this distribution, the majority of the traffic in
the NoC is uniform, and HiROIC is not able to optimize communica-
tion paths aggressively, leading to sub-optimal results. However, with
a growing adoption of application-specific accelerators on-chip [10],
only a small subset of which will be active at any point in time, we
expect a greater imbalance in communication for future architectures.
The scenario is expected to be similar to our synthetic directed traffic
experiments from Section 5.1 and thus we expect HiROIC to provide
even better benefits in future architectures.

40

0

5

10

15

20

25

30

35

40

LL HH LH Average

A
v

e
ra

g
e

 n
e

tw
o

rk
 

la
te

n
cy

(i
n

 c
y

cl
e

s)

Types of workloads

2D Mesh Adaptive 3D Torus Adaptive Flattened Butterfly 

Figure 6: Average network latency under multi-programmed workloads. The results
are presented for 2D mesh, adaptive 3D torus and adaptive flattened butterfly topologies
under three different types of workloads. HiROIC is most effective for workloads in the
LH category due to high traffic imbalance. Both adaptive 3D torus and adaptive flattened
butterfly show similar latency improvements over 2D mesh.

5.3 Overheads
Area and Power Overhead. The addition of small multiplexers (typ-
ically 2:1 or 3:1) around the router core is significantly cheaper than
increasing the number of ports. Apart from that, Ariadne-style route-
reconfiguration can be implemented at a cheap cost of 2%. How-
ever, this cost can be neglected if the CMP already accounts for fault-
tolerance and has Ariadne-style route-reconfiguration logic. All other

HiROIC components are extremely lightweight, with small counters,
comparators and adders added to each router. A lightweight distributed
implementation of our reconfiguration algorithm is discussed in [7].
Compared to modern routers, with deep buffers and many virtual chan-
nels, HiROIC’s controller logic overhead is negligible.

The addition of multiplexers and additional wires can lead to an in-
crease in power dissipation. However, wires that are not used during
an epoch of execution, can be power-gated to eliminate any additional
leakage power consumption. In addition, the amount of dynamic power
overhead due to longer wires is negligible, compared to the dynamic
power spent in reading and writing buffers, traversing the crossbar, etc.
Fortunately, HiROIC reduces the amount of dynamic energy spent on
each packet traversal by reducing the average packet hop count. Thus,
we argue that HiROICmore than compensates for the increase in power
dissipation due to multiplexers and long wires.

Transition between topologies. Draining all packets in-flight during
topology transition is essential because wormhole packets can be phys-
ically distributed over multiple port buffers connected via links. In our
evaluation, the average number of cycles required to drain packets per
topology reconfiguration across all the workloads is 35 for the adaptive
3D torus topology. This overhead is small compared to our computa-
tional epoch length of 10,000 cycles, and we account for this overhead
in our results.

6. CONCLUSION

HiROIC provides performance similar to high-radix (> 5 ports) NoC
topologies using resources comparable to low-radix topologies (<= 5
ports) by optimizing for critical high-volume communication paths at
runtime. In HiROIC, links are deployed abundantly for rich connec-
tivity as in high-radix topologies, while the number of router ports is
kept low. Router ports bind to links at runtime in accordance to a dis-
tributed traffic analysis heuristic implemented at each router. Our ex-
periments show that HiROIC reduces average network latency by 19%
compared to an area- and power- comparable mesh on SPEC2006 mul-
tiprogrammed workloads. When using non-uniform synthetic traffic,
the latency reduction is in the 30-38% range.

Acknowledgements: This work was supported in part by C-FAR, one
of the six SRC STARnet Centers, sponsored by MARCO and DARPA,
and NSF grant #0746425.

7. REFERENCES
[1] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco. ARIADNE: Agnostic

reconfiguration in a disconnected network environment. In Proc. PACT, 2011.

[2] J. Balfour and W. Dally. Design tradeoffs for tiled CMP on-chip networks. In Proc.
ICS, 2006.

[3] R. Das, S. Narayanasamy, S. Satpathy, and R. Dreslinski. Catnap: energy
proportional multiple network-on-chip. In Proc. ISCA, 2013.

[4] A. Dhodapkar and J. Smith. Comparing program phase detection techniques. In
Proc. MICRO, 2003.

[5] M. Faruque, T. Ebi, and J. Henkel. Configurable links for runtime adaptive on-chip
communication. In Proc. DATE, 2009.

[6] B. Fu, Y. Han, J. Ma, H. Li, and X. Li. An abacus turn model for time/space-efficient
reconfigurable routing. In Proc. ISCA, 2011.

[7] A. Jain, R. Parikh, and V. Bertacco. High-radix on-chip networks with low-radix
routers. In Proc. ICCAD, 2014.

[8] A. Kahng, B. Lin, K. Samadi, and R. Ramanujam. Trace-driven optimization of
networks-on-chip configurations. In Proc. DAC, 2010.

[9] T. Krishna, C.-H. Chen, W. Kwon, and L.-S. Peh. Breaking the on-chip latency
barrier using SMART. In Proc. HPCA, 2013.

[10] M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks. The accelerator store: A
shared memory framework for accelerator-based systems. ACM Trans. Archit. Code
Optim., 8(4), 2012.

[11] H. Matsutani, M. Koibuchi, H. Amano, and D. Wang. Run-time power gating of
on-chip routers using look-ahead routing. In Proc. ASPDAC, 2008.

[12] R. Mullins, A. West, and S. Moore. Low-latency virtual-channel routers for on-chip
networks. In Proc. ISCA, 2004.

[13] M. Palesi, R. Holsmark, S. Kumar, and V. Catania. IEEE Trans. Parallel and
Distributed Systems, 20(3), 2009.

[14] R. Parikh and V. Bertacco. uDIREC: unified diagnosis and reconfiguration for frugal
bypass of NoC faults. In Proc. MICRO, 2013.

[15] L.-S. Peh and W. Dally. A delay model and speculative architecture for pipelined
routers. In Proc. HPCA, 2001.

[16] M. Schroeder et. al. Autonet: A high-speed, self-configuring local area network using
point-to-point links. IEEE Trans. Selected Areas in Communication, 9(8), 1991.

[17] M. Stuart, M. Stensgaard, and J. Sparsø. The ReNoC reconfigurable
network-on-chip: Architecture, configuration algorithms, and evaluation. ACM
Trans. Embed. Comput. Syst., 10(4), 2011.


