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ABSTRACT

During emulation and post-silicon validation of NoC-based
systems, lack of observability of the NoC’s internal operations
makes detection and debugging of functional bugs in the in-
terconnect a difficult task. To verify the correctness of the
control-flow portion of the NoC design, it’s common to run
tests that exercise the network functionality, while abstracting
away the data content of traffic. In this context, we propose a
methodology where network data packets are repurposed for
the storage of debug information collected during execution.
Upon error detection, the collected data can provide the visi-
bility needed to help debug the error. In particular, the debug
data analysis provides a reconstruction of network traffic, as
well as several statistics, such as packet interactions, sequence
of events within router, and packet latencies per router. In
our experiments, we found that this approach allows us to
reconstruct over 80% of the routes of observed packets.

1. INTRODUCTION
Networks-on-chip (NoCs) have become the prevalent com-

munication paradigm for current and future chip-multiprocessor
(CMP) and system-on-chip (SoC) architectures. To meet the
continously increasing communication demand, NoC designs
are growing in complexity. Router architectures often include
a number of advanced features, such as virtual channels and
intricate arbitration units. Moreover, a number of regular
and irregular topologies can render the packet flow and the
overall network subsystem extremely complex. In addition,
network complexity is further increased when deploying elab-
orate routing protocols that utilize network state to guide
routing decisions.

For these large CMP and SoC architectures, a great deal
of effort is spent in the functional verification process. More-
over, with the increase in size and complexity of these sys-
tems, along with shrinking time-to-market windows, a lot of
this effort is shifting towards the heavy use of emulation and
post-silicon validation to ensure functional correctness. Both
emulation and post-silicon validation provide orders of mag-
nitude speedups, relative to software-based simulations of the
design’s RTL description. However, they suffer from limited
observability of the design under test. Lack of visibility of
internal operations makes the detection, diagnosis and debug
of errors an extremely challenging process.

In our work, we aim to address the challenge of validating
the control-flow in the complete NoC subsystem on these fast
platforms. Verifying the functional correctness of the control
flow portion of a NoC essentially means validating all func-
tionality, and hence control decisions made in the network.
The NoC functionality is entirely dependent on the traffic
patterns observed and it is agnostic to the data content of the
messages. Therefore, specialized test cases can be run with
the goal of exercising as much of the network’s functionality
as possible. When running such tests, the data contents of
packets are effectively irrelevant. In this context, we propose

a methodology to greatly enhance the observability of the net-
work traffic and its internal state to facilitate the detection
and debug of control-flow functional errors. Our solution,
called DiAMOND, proposes to replace packets’ data contents
with debug information collected during the network’s exe-
cution. Along with this data collection mechanism, we in-
strument routers with small checkers that can detect various
functional errors. Upon error detection, the collected debug
data is analyzed by software-based algorithms running on the
CMP/SoC cores or off-chip. The information that can be
extracted from this data includes a detailed overview of the
paths of packets, analysis of performance metrics at internal
routers, as well as the sequence of events observed at a given
router during a given interval. Armed with this enhanced vis-
ibility of network behavior, verification engineers can localize
and debug functional (and in some cases performance) bugs.

2. RELATED WORK
Previous work on post-silicon validation of NoCs have pro-

posed various approaches to increase NoC observability. In
[1], authors instrument routers and network interfaces with
monitors. These monitors filter network traffic to identify
transactions of interest, as well as analyze performance and
validate data flow errors. Similarly, approaches proposed by
[2,3] add monitors to network routers that observe traffic and
abstract it into events or transactions. Our solution differs by
focusing on the validation of functional bugs in the control-
flow portion of NoC designs. It can also detect and debug
some types of performance bugs.

Other recent work proposes a post-silicon solution that re-
lies on taking periodic snapshots of traffic to reconstruct packet
paths and identify functional errors related to forward progress
[4]. By periodically sampling traffic, this solution has low er-
ror detection probability for bugs that are transient in nature,
such as misroutes or starvations. It also fails to detect other
types of bugs, such as dropped packets. In contrast, our ap-
proach achieves better error detection capabilities, as well as
provides greater observability of network traffic, as we can
reconstruct longer and more uniform routes for each packets.

A number of works have targeted emulation of networks-
on-chip [5–9], where authors proposed different ways to im-
plement an emulation platform that allows the modeling and
exploration of various NoC designs. Our work is complemen-
tary to these approaches. Independently of how the NoC is
emulated, we provide a methodology to collect debug data
from network routers to facilitate the debugging of functional
errors in the control flow portion of the design.

3. THE DIAMOND SOLUTION

3.1 Overview
The aim of DiAMOND is to provide observability of the

network’s operation to facilitate the diagnosis and debug of
functional errors in the NoC’s control flow. Tests used to val-
idate the NoC functionality aim at creating various network
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Figure 1: Overview of our solution. During NoC

execution, debug data is collected at every hop and

stored in the packet, overwriting data flits. Routers

are instrumented with hardware checkers that moni-

tor execution and flag functional errors. Upon error

detection, the debug data is analyzed to reconstruct

traffic and provide a number of relevant statistics.

traffic scenarios, while abstracting away the data content of
messages. When running such tests, our solution relies on
using the contents of packets to store debug data collected
during execution. As packets traverse the network, their data
content is substituted with debug information collected at ev-
ery hop, as illustrated on the left side of Figure 1. Once a
packet is delivered to its destination node, it is stored in the
local cache or memory associated with that node. In parallel
with debug data collection, small hardware checkers monitor
the network’s execution and detect functional bugs. Upon
flagging an error, execution is halted and the debug data that
has been collected in the caches is analyzed. This analysis
process is first carried out locally, where each processor core
examines the debug data of packets that were destined to it,
and then globally, where debug data from all nodes are ag-
gregated at a central location for a global overview of the
network’s behavior.

3.2 Debug Data Collection
Debug data is collected for every packet injected into the

network and at every hop during its flight from source to des-
tination. For every input buffer within the router, we add
a register, called log buffer, to store the collected debug in-
formation. In addition, we require each router to include a
packet counter (pckt cntr) that is incremented upon receiving
a packet. The log buffer is updated everytime a new packet is
at the head of its corresponding input buffer. The information
collected and stored in the log buffer consists of:

1. The router ID

2. Arrival timestamp (timestampA) that indicates the value
of the pckt cntr when the header flit of the packet was
received by the router.

3. Departure timestamp (timestampD) that indicates the
value of pckt cntr when the header flit was sent from the
router. Logging timestampA and timestampD allows us
to order packets passing through each router, as well as
reason about packet interactions within a router.

4. A third timestamp (pckt latency) that indicates the amount
of time (in cycles) the packet’s header flit remained in

the router. This timestamp allow us to analyze packet
latencies observed at interval routers.

5. The packet’s input port and input virtual channel.

6. The output port and virtual channel the packet requests.

Once the log buffer is complete, the debug data is written
to one of the packet’s body flits. The index of the flit to
be written is maintained by a counter (flit write index) that
is added to the packet’s header flit. A typical flit width in
NoCs is between 128 and 256 bits [10]. In our evaluation, we
assume a flit width of 128 bits and a log buffer size of 64 bits.
Therefore, the debug data collected at every hop occupies only
half a flit, with the remaining half written at the next hop.

R1 R2 R3 R4 R5 R6 R7

R1 R2 R4 R7

header

tail

dd-R1

R1 R7

R1 R5 R7

R4 R5

R4

dd-R5 dd-R6

dd-R7

tail

dd-R1

header

dd-R2

mode 1: Drop remaining 

mode 2: Drop at alternate hops

mode 3: Append

original packet

tail

data flit1

data flit2
dd-Rx = debug data collected at router x

tail

dd-R2

dd-R4dd-R3

dd-R1

header

tail

dd-R1

dd-R3 dd-R4

dd-R5

header

tail

header

dd-R5

dd-R6

tail

dd-R1 dd-R2

dd-R4

dd-R5

header

dd-R3

dd-R1

dd-R3

header

tail

dd-R1

tail

dd-R2

dd-R3

header

dd-R4

dd-R1

tail

dd-R2

dd-R3

header

dd-R4

dd-R1

tail

dd-R2

dd-R3

header

dd-R4

dd-R1

header

tail

dd-R1

header

tail

dd-R3 dd-R4

dd-R2dd-R1

header

Figure 2: The three modes of operation of debug data

collection.

In the case of packets that do not have enough flits to store
the collected debug information, we provide three solutions
for our approach, depending on the needs of the verification
methodology in use: drop remaining, drop at alternate hops,
and append. Figure 2 illustrates the behavior of each mode.

3.2.1 Drop Remaining

During drop remaining, when the number of hops in a
packet’s path exceeds the available flits in the packet, ad-
ditional debug data is dropped. This mode of operation is
simple to implement at the expense of low observability for
packets with long routing paths.

3.2.2 Drop at Alternate Hops

When the space in the packet is exhausted, new debug
data overwrites older debug data, creating an every-other-hop
scheme. As opposed to drop remaining, this mode provides
a longer and more uniform overview, even of long routing
paths. Moreover, data belonging to the alternating missing
hops can be partially reconstructed or extrapolated from the
debug data that remains. For example, the output port re-
quested along with the router ID can be used to determine
the downstream router, for which we have no log.

3.2.3 Append

We also provide a mode of operation that allows routers
to append new flits to the packet. While this mode provides



the complete path of a packet, it requires additional hard-
ware to add the new flits. It also alters the network’s original
execution by creating longer packets.

3.3 Error Detection
We propose the use of a fine-grain detection approach that

relies on adding small checkers to the NoC routers. These
checkers monitor the network’s runtime execution for signs of
erroneous behavior, while targeting a wide range of functional
bug manifestations detailed below.
Deadlock and starvation: A common technique to de-
tect blocked packets uses counters, one for each input buffer.
While a header flit is at the head of an input buffer, the corre-
sponding counter is incremented in every cycle. If the counter
exceeds a user-defined threshold, it flags an error [11].
Livelock: A common approach to detecting a livelock adds
a hop counter to the header flit of every packet. The counter
is incremented at every hop and a livelock is flagged if the
counter exceeds a pre-defined threshold [12].
Dropped and duplicated packets: To detect dropped
packets, we utilize the approach proposed by [13], where a
packet counter is maintained per router. The counter is in-
cremented upon receiving a tail flit and decremented upon
sending one. If packets are not dropped, then the counter
should reach a value of zero at some point within a checking
window. Similarly, a packet counter reaching a negative value
is used to identify packet duplication or creation.
Dropped and duplicated flits: In order to identify dropped
and duplicated flits within packets, we require the addition of
a size field to the header flit. A simple counter and compara-
tor added to every input buffer checks whether the number of
flits observed matches the size field.
Misrouting: Misrouting errors can be detected by simple
checkers either at destination nodes or internal nodes. The
exact checker implementation at internal routers is depen-
dent on the routing protocol. For example, for deterministic
routing or for minimal routing algorithms, a simple lookup
table or assertion can detect such errors [13].

3.4 Debug Data Analysis
Once an error has been flagged, execution is halted and the

collected debug data is processed in two steps:

3.4.1 Local Processing

During this phase, the contents of each local cache are indi-
vidually analyzed. By examining the contents of every packet,
its path through the network can be reconstructed. In ad-
dition, by examining the pckt latency timestamps recorded,
network performance can be analyzed. Periods that exhibited
high packet latency can be identified along with the routers
where this high latency was recorded. Finally, by comparing
a packet’s requested output port and output virtual channel
within a router relative to the input port and input virtual
channel of the downstream router, functional bugs in switch
arbitration logic can be flagged.

3.4.2 Global Processing

Data from all local caches are aggregated at a central lo-
cation and grouped per router. Using the timestampA and
timestampD counters, each router’s data is sorted by increas-
ing time. The sorted information basically encapsulates the
series of packets and events witnessed by each router dur-
ing execution. This, in turn, gives insights regarding packet
interactions within routers, allowing us to reason about the
source of the error observed. Since each router’s timestampA

and timestampD represent the value of the router’s packet
counter, these timestamps do not have a notion of physical
time. Therefore, the arrival and departure of packets from
different routers can not be correlated. However, by lever-
aging techniques similar to those used in ordering events for
distributed systems [14], we can still construct a partial order
of events by using packets as points of reference.

4. EXPERIMENTAL EVALUATION
We modeled an 8x8 mesh network using the cycle-accurate

Booksim simulator [12]. Our baseline router architecture con-
sisted of an input-queued virtual channel router, with 5 input
ports and 2 virtual channels per port. We ran both random
directed traffic, as well as network flow traces from the PAR-
SEC benchmark suite [15]. For the PARSEC network flow,
traffic consisted of 1 flit control packets and 5 flit data packets.

PARSEC drop drop at
append

network flow remaining alternate hops

blackscholes 83.2% 96.3% 100%
bodytrack 85.0% 97.1% 100%
dedup 84.4% 96.8% 100%
ferret 84.5% 96.9% 100%
freqmine 83.8% 96.6% 100%
streamcluster 84.3% 96.8% 100%
swaptions 84.2% 96.8% 100%
vips 81.4% 95.4% 100%
x264 83.0% 96.2% 100%
average 83.76% 96.54% 100%

uniform traffic
87.1% 97.8% 100%

packet size = 5 flits

Table 1: Average path reconstruction

4.1 Path Reconstruction Results
We first examined the observability gained from our solu-

tion by evaluating the fraction of the path that can be ob-
served for each packet, as shown in Table 1. For the PAR-
SEC network flow, data packets consist of 3 body flits and can
carry complete debug data from 6 routers along their path,
providing a percentage of path reconstruction of 83.76% on
average during the drop remaining mode. The drop at alter-
nate hops mode provides higher path reconstruction results,
as new debug data replaces older data by over-writing only
the second half of each body flit. Moreover, routers pertaining
to the alternate missing hops are extrapolated. Note that, for
the PARSEC network flow, we are not able to collect any de-
bug data for the 1 flit control packets during these two modes.
Finally, for the append mode, we achieve 100% path recon-
struction for both control and data packet, as expected. How-
ever, the append mode introduces a performance overhead, as
longer packets increase network congestion and can slow down
execution. Consequently, this mode may also expose different
bugs than the original application. For the PARSEC network
traces, the average network latency increases by 1.5-2 times
relative to the baseline.

4.2 Case Study: Analysis Results
Packet interactions. Our solution allows us to examine
packet interactions within routers, as well as construct a par-
tial overview of global network behavior. Debug data from all
nodes is sorted by increasing timestampA values, allowing us
to order packet arrival and departure to and from each router.
As an example, figure 3 shows the packets traversing router0
and router1 in the first 100 cycles of running uniform traffic at
an injection rate of 0.19 flits/node/cycle. Since each router’s
pckt cntr operates independently, the timestampA values are
not synchronized across routers, preventing the establishment



of a complete global order of events across the network. How-
ever, by leveraging common packets as points of reference, we
can establish a partial order. For example, in Figure 3, packet
132 is a common packet between routers 0 and 1. Based on
that, events relating to packets 31, 87 and 62 in router0 (i.e.
the events that occurred before sending packet 132) happened
before events associated with packet 143 in router1.
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Figure 3: Example of reconstruction of packet inter-

actions. TimestampA values are used to construct

the sequence of events observed in each router.

Latency at internal routers. Typically, during the per-
formance validation of NoCs, the debug information that can
be collected relies on an end-to-end analysis of latencies and
throughput. However, our solution has the benefit of provid-
ing performance statistics at internal routers. By examining
the pckt latency field recorded in the debug data, we can study
the average and maximum packet latencies observed at every
router and throughout the network’s execution. We can also
plot the average packet latencies observed within each router
during a specific testbench execution. For example, Figure
4 shows this information for the dedup benchmark, where we
can observe that router 49 exhibits the highest average packet
latency compared to other routers. Using such results, we can
identify potential performance bottlenecks in the network.
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Our scheme also allows examining packet latency values
over time and per router. For example, Figure 5 shows the
variation in packet latencies observed at router 49 through-
out the execution of dedup. Based on that, execution periods
of interest can be identified for further analysis, such as the
period highlighted in Figure 5, where we record the first sig-
nificant latency increase.
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5. CONCLUSION
We presented DiAMOND, a debug solution for the post-

silicon validation and emulation of networks-on-chip. Tar-
geting the functional validation of the control-flow portion
of NoCs, we log debug data during network execution and
store them by replacing the data content of packets. Upon
bug detection, the collected debug data provides increased
observability of network traffic, allowing in most cases over
80% reconstruction of the paths of packets. DiAMOND also
provides several functional, as well as peformance, statistics.
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