
1126 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007

Microprocessor Verification via
Feedback-Adjusted Markov Models

Ilya Wagner, Student Member, IEEE, Valeria Bertacco, Member, IEEE,
and Todd Austin, Member, IEEE

Abstract—The challenge of verifying a modern microprocessor
design is an overwhelming one: Increasingly complex microarchi-
tectures combined with heavy time-to-market pressure have forced
microprocessor vendors to employ immense verification teams in
the hope of finding the most critical bugs in a timely manner.
Unfortunately, too often, size does not seem to matter in verifica-
tion, as design schedules continue to slip and microprocessors find
their way to the marketplace with design errors. In this paper, we
describe a novel closed-loop simulation-based approach to hard-
ware verification and present a tool called StressTest that uses our
methods to locate hard-to-find corner-case design bugs and perfor-
mance problems. StressTest is based on a Markov-model-driven
random instruction generator with activity monitors. The model
is generated from the user-specified template files and is used to
generate the instructions sent to the design under test (DUT). In
addition, the user specifies key activity nodes within the design
that should be stressed and monitored throughout the simulation.
The StressTest engine then uses closed-loop feedback techniques
to transform the Markov model into one that effectively stresses
the user-selected points of interest. In parallel, StressTest monitors
the correctness of the DUT response and, if the design behaves
against expectation, it reports a bug and a trace leading to it. Using
two microarchitectures as example testbeds, we demonstrate that
StressTest finds more bugs with less effort than open-loop random
instruction test generation techniques.

Index Terms—Architectural simulation, directed-random simu-
lation, high-performance simulation.

I. INTRODUCTION

M ICROPROCESSOR verification is one of the major bot-
tlenecks in the development of computing systems, in

terms of time and engineering effort. Recently, the International
Technology Roadmap for Semiconductors (an association of
semiconductor companies) assessed that it takes thousands
of engineer–years to develop top-end systems, yet processors
still reach the market with “hundreds of bugs” [2]. In the
microprocessor arena, more than twice as many resources are
spent on verification compared to design, bringing the design-
to-verification gap to crisis proportions. For example, Intel had
recently estimated that by 2007, microprocessors would require
2000 person–year of verification effort [14].

A variety of techniques have been deployed to efficiently and
effectively detect design errors in microprocessors. Simulation-
based random testing is a long-standing approach used to locate
design errors [4], [5], [10], [13], [16]. It generates random
instruction sequences that are then fed in parallel to a design

Manuscript received November 1, 2005; revised March 29, 2006. This paper
was recommended by Associate Editor N. K. Jha.

The authors are with the University of Michigan, Ann Arbor, MI 48109 USA.
Digital Object Identifier 10.1109/TCAD.2006.884494

under test (DUT) and to a known-correct golden model. Any
discrepancy between the two models indicates a design error.
This technique, however, tends to be myopic for complex
microarchitectures, where stateful logic blocks and complex
interactions require more simulation time than can be accom-
modated by time-to-market pressure.

Formal verification techniques have become a powerful
mechanism to deliver high-coverage verification. However,
the intractability of applying formal methods to complex de-
signs has limited the use of this technology primarily to the
analysis of individual components. For example, Intel invested
60 person–years of formal verification effort in the Pentium 4,
focusing mainly on the verification of floating-point units,
instruction decoders, and dynamic schedulers [4]. While this
investment proved to be quite effective, as no post-silicon bugs
were found in the formally verified portions of the design, the
limited scope upon which formal verification can be deployed
has not allowed this approach to replace simulation-based
random verification. Even with a substantial formal verification
team, the Pentium 4 was still primarily tested using simulation-
based constrained random validation.

The major drawback of the mainstream simulation-based
approach is the difficulty of producing effective stimuli for a
specific behavior of the circuit which the designer wants to test.
Consequently, to achieve good test coverage and expose hard-
to-find bugs, specialized hand-written tests must be developed,
or significant control must be exercised over the test generation
through human intervention. Unfortunately, hand-written test
cases are often not portable, even across multiple proliferations
of the same hardware design, and must be virtually recre-
ated from scratch each time. To enable accurate control over
constraint-based random test generation, a number of tools
have been developed. Some of these techniques involve the
use of program templates which define the structure of the
desired test, along with primitives to control the randomization
of the related data, such as opcodes, register operands, and
memory addresses [1], [3], [8], [12], [17]. Improvements on
these baseline techniques use coverage metrics to drive the
generation of the test programs either through Markov models
[15] (as in our solution) or with Bayesian networks [7].

In this paper, we introduce StressTest, a software tool which
employs an innovative approach to automatic test generation.
StressTest requires minimum interaction and control from the
user, and it is easily fine tuned and highly portable, since
it considers the DUT at a very high abstraction level. Our
approach only requires the engineering team to provide a
simple template describing the interface protocol of the design.

0278-0070/$25.00 © 2007 IEEE

WAGNER et al.: MICROPROCESSOR VERIFICATION VIA FEEDBACK-ADJUSTED MARKOV MODELS 1127

To assist the engineer in describing concise and meaningful
programs, our template language includes a number of helpful
features, including parameterized dependence variables. Using
this template, StressTest generates a very broad spectrum of
testing programs to verify the design. The underlying genera-
tion engine of StressTest uses a dynamically adjusted Markov
model representing the set of valid inputs for the design. This
engine implicitly limits the generator to only produce valid test
sequences, excluding the risk of false negatives. Additionally,
this approach combines advantages of both probabilistic and
self-guiding stimulus generation techniques, which allows us
to improve the design coverage while lowering the overall ver-
ification effort. Finally, the template-based approach allows for
a very compact representation, even for designs with complex
input constraints, and increases the portability and flexibility of
StressTest.

For guidance in the test generation, StressTest uses a novel
technique based on activity monitors, which are simulation
monitors that probe the internal state of the design at specific
points. A first selection of probing nodes is made by the user,
based on the key aspects or components, which, he wants to test.
These nodes typically include key internal signals that reflect
major changes in the design’s state or outputs (for instance, a
write-enable signal to the register file). StressTest complements
this user selection with additional probing nodes highly related
to the first ones so to achieve better performance and cover-
age. During simulation, StressTest observes the activity of all
the probing nodes. Closed-loop feedback techniques are used
to direct the test generator engine toward stimuli, generating
higher switching activity at the probing points. Unlike previous
approaches, which usually adjust the stimuli generator based
on the results of a full completed test run, StressTest is capable
of adjusting the Markov model dynamically during the test.
The use of activity monitors enables the StressTest to gradually
increase the stress on the tool-selected probing nodes and,
subsequently, on the user-specified nodes themselves. We find
that our approach achieves a better coverage for complex bugs
in fewer cycles than constrained open-loop random generation
techniques. Moreover, the addition of tool-selected probing
points is a key in boosting the StressTest’s performance and
in generating effective tests in an assertion-based verification
methodology.

A. Contributions

The main contribution of this paper is the development of a
novel closed-loop random test generation methodology which
effectively produces adaptive instruction sequences to exercise
user-specified microarchitectural activity points. Additionally,
we present an innovative template-based approach to random
stimulus generation, which includes a flexible specification
technique and specialized dependence variables that can be
parameterized to produce a broad range of dependence and lo-
cality characteristics. The feedback for the stimulus generation
engine is provided by a combination of user-selected and tool-
generated activity monitors, which together produce a highly
accurate mechanism used to reinforce favorable stimuli. We call
the tool-generated activity monitors as “depth-driven,” because

they are selected based on their depth in the cone of logic of a
user-selected node. Our approach is novel.

1) The granularity of the closed-loop feedback adjustment is
much finer. In fact, we adjust the stimulus generation en-
gine after each simulation cycle, in contrast with previous
solutions which apply adjustments only after an entire test
completes or through human intervention.

2) We developed a simple but powerful language to describe
complex rules that must be enforced at the design’s
input in a constructive and straightforward manner, thus
simplifying the engineer’s job.

3) The stimulus generator is based on the high-level func-
tionality of the system under verification, not its circuit
structure. This enables the StressTest methodology to be
virtually independent of a particular implementation, and
thus more flexible and portable than other solutions.

All of these features contribute to the performance of the
developed software as well as its flexibility and portability.
The final contribution of this paper is insightful analysis of the
impact of StressTest simulation parameters on its performance
and quality of generated tests. Additionally, we evaluate our
verification techniques against a closed-loop and an open-loop
random instruction test generators, and show that our approach
can find more bugs in shorter time and produce more consistent
and predictable results than both other methods.

The remainder of this paper is organized as follows.
Sections II and III review related work on the subject and
provide an overview of StressTest. In Section IV, we de-
scribe the stimulus generation engine and discuss our template
framework, including special constructs to force dependence
between instructions. Section V presents depth-driven monitors
and shows how they narrow the search for hard-to-find bugs.
Sections VI and VII discuss our results through a case study
and performance analyses over two designs and a range of bugs.
Section VIII concludes and outlines future enhancements.

II. BACKGROUND AND PRIOR WORK

The issues, involved in developing and evaluating the perfor-
mance of different random test generators (RTGs) for processor
verifications, have been a strong focus in the academic commu-
nity and industry for quite a while. An overview of the area can
be found in [6] and [17], which discuss the general framework
of RTGs, compare random and directed testing approaches,
and identify several key properties that test generators must
have in order to simplify the verification task and improve
the performance. RTGs are shown to be useful if their output
is deterministic and reproducible, and if engineers have clear
and effective ways of biasing a test toward a specific area of
interest. Moreover, several key features can be exploited to
increase the usability of a generator and, thus, the productivity
of the verification process. These include grouping or collective
naming of sets of inputs with a short hand notation, the ability
to generate only valid input sequences, and, of course, the
availability of simple test specification languages. As shown
later, all of these features are included in our verification
tool. In addition to implementing these features, some of to-
day’s general-purpose RTGs attempt to dynamically direct the

1128 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007

verification process by analyzing the coverage achieved by each
generated test. Tools such as Specman Elite [9] and Vera [8]
provide on-the-fly data assertion and checking, and methods
to validate the generated tests. In both cases, the process is
directed by dynamically biasing a set of constraints, based on
the functional coverage or lack thereof, achieved by previous
tests. Although these tools simplify the engineer’s work through
powerful verification languages, most of the test setup and
decision process are still left to engineers, who must specify
functional test plans [9], or implement constraint adjustment
policies [8].

Typically, RTGs are deployed in conjunction with a golden
model of the design. A golden model is essentially an abstract
representation of the design, which may lack performance-
oriented features but has the same architectural state space as
the DUT. Therefore, it is possible to simulate design and golden
model in parallel, supplying both with the same stimuli and
observing the changes in their architectural state. Any discrep-
ancy between the two models flags a potential design error.
An alternative approach involves the use of hardware checkers,
or assertions, embedded in the design. Hardware checkers
monitor different activities of a design during simulation and
flag unexpected behaviors observed. Checkers are more suitable
for monitoring complex conditions that may arise in the control
portion of a design, while a golden model is a complete,
although simplified, description of the entire system’s function-
ality. While golden models are almost always available in the
context of microprocessor verification, hardware checkers have
started only recently to be developed.

A variety of research tools for directed random test gener-
ation have been developed in academia as well as in indus-
try. Most of them employ coverage-directed test generation
processes, as in StressTest, but use sophisticated techniques to
relate input generation to coverage, such as Bayesian networks
and computer learning approaches [7]. Some of these other
engines are aimed specifically at register-level representations
of a design, and focus on tag coverage [15] instead of functional
coverage as StressTest.

III. STRESSTEST STRUCTURE

StressTest provides a convenient platform for specifying the
set of valid inputs for a DUT by mean of templates. A number
of activity monitors observe a small set of relevant circuit’s
internal signals and drive the generator toward scenarios that
excite those signals. StressTest’s self-guiding generation engine
consists of two major components: a Markov model and a set of
activity monitors (see Fig. 1). The Markov model encapsulates
the set of legal inputs of the design as well as probabilities of
generating different sequences of inputs. The activity monitors
bind to several key nodes, or signals, of the design and evaluate
the “stress” on the design based on the switching activity of
these signals. The information collected by the activity moni-
tors is used as feedback to the Markov model, which adjusts
the probability to generate stimuli which maximize the stress
on these nodes. The signals selected for the activity monitors
drive the focus of the test generation and, consequently, which
components of the design will be most thoroughly tested.

Fig. 1. StressTest structure. Templates are used to create a Markov model
which generates valid stimuli: Templates’ transactions are mapped to the ver-
tices of the model. Stimuli are fed in parallel to the DUT and the golden model.
Activity monitors observe the behavior of the DUT during the simulation and
adjust the Markov model improving the quality of the stimuli. The outputs of
DUT and golden model are compared to expose bugs.

Therefore, in order to locate bugs within a critical component,
activity monitors should be selected from key signals which
activate the component and within the component itself.

As with other RTGs, the stimuli generated by StressTest are
supplied to both the DUT and a golden model, which is a func-
tional description of the design usually provided in a high-level
language such as C or C+. The output and the architectural state
of the two descriptions are monitored, and discrepancies are
flagged as potential design errors. For instance, in our tests on
microprocessor pipelines, the golden model was a single-cycle
functional model, and StressTest was connected to the external
instruction bus interface of DUT and golden model. Hence, nei-
ther of the models could detect that the instructions were pro-
vided by a test generator instead of main memory. This greatly
simplifies the test setup, allowing StressTest to reuse the frame-
work of the directed tests. When the correctness monitor detects
a mismatch in the architectural states of the two descriptions, it
halts simulation and outputs a trace leading to the problem.

IV. STIMULUS GENERATOR

The stimulus generator engine of StressTest comprises an
adaptive Markov model whose vertices describe monolithic
blocks of stimuli or transactions. The transactions correspond-
ing to each vertex are generated based on the template files
provided by the user. Template files are loaded by the StressTest
at the beginning of each simulation run and are used to generate
the initial Markov Model. The probabilities associated with
the model’s edges are then adjusted over time based on the
direction from the activity monitors. Several reasons led us to
choose Markov models as the underlying engine for stimulus
generation. First of all, Markov models are simple to implement
and straightforward to train; second, they provide a convenient
abstraction for modeling instruction generation: Instructions (or
classes of instructions) constitute the vertices of the Markov
model, while programs correspond to paths in the model’s

WAGNER et al.: MICROPROCESSOR VERIFICATION VIA FEEDBACK-ADJUSTED MARKOV MODELS 1129

Fig. 2. Example of Markov model. The model has four vertices, each capable
of generating a particular instruction type. The sum of probabilities to transition
from a single vertex must be 1.0. In the example, once an arithmetic instruction
is generated, a branch has probability of 0.6 to occur, a load/store has probabil-
ity 0.3, while other instructions are less probable.

graph. In contrast, structures such as Bayesian networks must
be “trained” on an actual circuit to determine the cause/effect
relation between inputs and observed outcomes; therefore, un-
like Markov models, they depend on the circuit’s implemen-
tation. On the other hand, a noticeable drawback of Markov
models is their lack of “memory.” Each generated stimulus is
independent from past stimuli and relates only to the last vertex
visited in the model. Therefore, we introduced the concept
of dependence variables to provide deterministic dependences
between past stimuli and present input, as discussed later in
this section.

A. Markov Model

StressTest uses a Markov Model as the main engine for
generation of stimuli to the design. In general, a Markov model
is a directed graph, where each edge has an associated proba-
bility of transitioning from its source vertex to its sink vertex.
In StressTest, the nodes of the Markov model correspond to
valid stimuli or groups of stimuli for the design. During the
simulation, a stimulus associated with the current node is
generated and supplied to both DUT and golden model. Within
the framework of microprocessor verification, the stimuli cor-
responding to a single vertex can be individual instruction or
groups of instructions forming a program fragment. A single
vertex can represent a range of similar individual instructions
by parameterizing the various instruction fields. An example of
a simple Markov model for an abstract instruction set architec-
ture (ISA) is shown in Fig. 2. The vertices in this case represent
the different types of assembly instructions, such as branches,
arithmetic instructions, and so on. Edges are labeled with the
probability of being traversed. For instance, the probability of
generating a branch instruction after an arithmetic instruction is
p1 which is equal to 0.6. Note that the sum of the probabilities
associated with the outgoing edges from a given vertex must be
equal to one.

This Markov-model-based approach is not limited to mi-
croprocessors only and can be used to represent transactions
through an interface of any digital circuit. In our experiments,
we used mutually disjoint and cumulatively exhaustive ISA
partitioning, so that we could generate every instruction type,
increasing the possibility of catching a variety of design errors.
In simulations aimed at exposing a specific kind of bug, the

Markov model can be structured to contain only a small subset
of inputs representing distinct transactions. At the beginning
of a simulation, the model is a clique, with each transition
being equally probable. A starting vertex is selected at random;
the system produces the corresponding inputs and randomly
selects a transition to the next vertex. During the simulation,
probabilities associated with the edges are adjusted based on
the feedback from the activity monitors. StressTest allows for a
sequence of instructions to be associated with a single vertex.
When such a vertex is reached, the StressTest generates instruc-
tions until it reaches the end of the sequence, and only then it
transitions forward. This allows for generation of deterministic
instruction sequences. For instance, a vertex could map to
a sequence of a branch instruction followed by a noop to
generate legal assembly code for a microarchitecture relying
on the compiler to resolve control hazards. Notice that, since
the entire sequence is clustered into a single vertex, all the
activity observed when executing the sequence will affect the
probability of reaching that sequence again.

The probability adjustment algorithm considers a weighted
sum of the switching activity reported by the monitors and con-
verts it to a value which we refer to as “score.” The score is used
to adjust the probability associated with the edge E traversed
during the last transition. The update is computed as follows:
We first scale the score as a fraction of the maximum score
that all edges could achieve; then, we adjust the probability of
the relevant edge PE ; finally we readjust all the values so that
the sum of probabilities is normalized to one. The probability
increment is then

Pinc =
scoremonitor

scoremax ∗ Nedges

where Nedges is the number of outgoing edges from the ver-
tex under consideration and scoremax is the maximum score
achievable. The adjusted probability is the saturated sum

PE_new = max{Tsat, PE + Pinc}

where Tsat is the saturation threshold unique for the system.
We set the saturation threshold Tsat to a value slightly less than
one, so that we can always attribute at least a small probability
to any edge. Doing so guarantees that we never eliminate
potentially useful transitions from the system. In most of our
experiments, we set Tsat = 0.95, allowing other edges to have
a probability in the range [0.05/(Nedges − 1), 0.95]. If a vertex
has an outgoing edge with probability Tsat, then all other edges
are set at Pmin = (1 − Tsat)/(Nedges − 1).

The last phase of the probability adjustment requires that the
sum of the outgoing edges’ probabilities is renormalized. We
do so by decrementing all eligible edges (the ones with Pedge >
Pmin) by an amount proportional to Pinc. Specifically, we first
compute the “slack” available as

slack =
∑
i�=E

(Pi − Pmin)

where the contributing edges include all but the one we just
incremented (note that edges for which Pi = Pmin contribute

1130 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007

Fig. 3. Example of a template file. This file defines a Markov model with
two vertices: r-type-inst (register type instructions) and i-type-inst (immediate
type instructions). The vertices use five dependence variables declared at the
top. In particular, variable $dest-Index creates a potential dependence between
consecutive stimuli.

zero). The adjustment is then performed by decrementing each
Pi proportionally to their contribution to the “slack”

Pi_new = Pi −
(

Pi − Pmin

slack

)
∗ Pinc ∀i �= E.

This computation normalizes the probability while guarantee-
ing that each edge has Pi ≥ Pmin.

B. Template Files

We use a special template language to describe the stimuli
to generate at each vertex of the Markov model. StressTest’s
templates describe a short sequence of stimuli for each vertex,
as shown in the example of Fig. 3. Stimuli definitions are in
binary format and specify the values of each bit of the input
signals. Values can be specified as zero, one, or through a para-
metric field. Each bit field is identified by a single alphabetic
character repeated for the whole width of the field. Note that our
stimulus generator only describes legal input stimuli, requiring
no information about the DUT structure, making template files
highly portable among multiple designs. The user must only
specify the desired partitioning of the input set, and no explicit
sequencing control is required. In addition, StressTest templates
do not specify the biasing of input stimuli, since this is derived
during the simulation. This is different from industry tools,
such as Genesys-Pro [1], where sequencing control and biasing
information must be provided in the template to achieve high-
quality test sequences. The structure of our template files is
particularly suitable for describing ISAs and very structured
interface protocols. For instance, we could develop the template
for the simple DLX pipeline described in Section VII in less

than one person–week, and we could reuse much of the struc-
ture for the other testbench, an Alpha pipeline.

Template files can also force interactions between vertices,
allowing StressTest to generate stimuli sequences with complex
interdependences. To describe these interactions, we have cre-
ated a structure very flexible and easy to use, called dependence
variables. Dependence variables, declared at the beginning
of a template, generate values for the parametric fields, and
include special support for specifying locality and dependence
characteristics. These variables and their operation are detailed
in Section IV-C. Note that edges do not appear anywhere in
template files, since our Markov model always starts as a single
large clique. In designing the template language, we strove to
keep a simple and intuitive structure, since this is the only part
of StressTest which requires user input. In spite of its simplistic
structure, the template language retains the ability of describing
a very broad range of stimuli and many different interaction
constraints.

The template language allows to represent groups of stimuli
through multiple vertices, each using different parameters. This
enables the StressTest to associate distinct probabilities to
stimuli with different characteristics. For instance, arithmetic
instructions could be highly dependent on previous instructions
in one vertex, while nearly always independent in another,
allowing the activity monitors to selectively adjust transitions
to and from vertices with specific individual properties. An
example of a template file is given in Fig. 3. It defines five
dependence variables, each with different sets of parameters.
After the declarations, the template file contains the ver-
tices’ specifications, which correspond to nodes in the Markov
model. In the example, we define two vertices: r-type-inst and
i-type-inst, each generating a 32-bit input stimulus. Below the
bit structure definition, each of the fields is assigned a value
from dependence variables. For instance, vertex r-type-inst
binds field f to dependence variable r-funcs, while field f of
the i-type-inst vertex is bound to variable i-funcs.

C. Dependence Variables

Dependence variables, such as those declared at the top of the
template file in Fig. 3, provide a concise mechanism to specify
the generation of values from: 1) a list of constants; 2) a uniform
random distribution; 3) a randomly generated locality set; or
4) some combination of the previous three constructs. The
variables are used to pass information between the template’s
vertices and fields and create complex interactions, such as
locality and dependence between generated inputs. All of the
variables have global scope and can be accessed from anywhere
in a template file. The functional block used to generate a value
for a dependence variable is illustrated in Fig. 4. The underlined
labels in the figure represent the five declaration parameters of
a variable.

1) probCache is the probability that a read() to a depen-
dence variable will retrieve the value from the locality
cache.

2) cacheSize is the size of the locality cache, which contains
the most recently generated values that can be reused to
simulate locality and dependence.

WAGNER et al.: MICROPROCESSOR VERIFICATION VIA FEEDBACK-ADJUSTED MARKOV MODELS 1131

Fig. 4. Dependence variable functional block. A write() access to the variable
inserts a value in the cache. On a read(), the parameter probCache is used to
select whether the value should be generated randomly or retrieved from the
cache. In the latter case, the lambda parameter affects the distribution of the
selection from the cache. In the former, the distribution is uniform between
minVal and maxVal.

3) lambda represents the length of the locality window, and
it corresponds to the rate parameter to an exponential
distribution which selects the cache indexes: The larger
the value of lambda, the greater the probability that the
selection is skewed toward recent element inserted; the
smaller this value, the more uniform the distribution of
selection among all of the cached elements.

4) minVal and maxVal are the bounds over which the
uniform random samples are produced when the cache
is not used.

Some of the parameters can be omitted when declaring the
variables, in which case, a default value is used. For example,
minVal is omitted when declaring variable i-funcs in Fig. 3;
hence, the value of that parameter defaults to zero. When
the variable is read(), the returned value is either taken from
the sample cache with probability probCache, or produced
by the random value generator with probability 1-probCache.
Thus, by setting the parameter probCache to zero, we can
create a perfect random generator, as it is the case for variable
randIndex in Fig. 3. On the other hand, we can completely
disable the random generator and select values exclusively from
a predefined list similar to the case of variable i-funcs.

When a value is taken from the sample cache, lambda is
used as the parameter of an exponential distribution function
to generate the index of the cache entry storing the value to
return. Note that high lambda values correspond to a high
probability of generating low indexes, and thus retrieving more
recent data. When the value of lambda is small, cache reads
are almost uniformly distributed among all entries. Thus, it is
possible to control the level of locality in the sample cache
by varying lambda. In our context, this mechanism can be
used to control the degree of register dependence between the
generated instructions. For instance, in the example in Fig. 3,
there is a dependence between field d of r-type-inst and field
s of i-type-inst through destIndex. Moreover, the probability
distribution of the returned values allows to efficiently control
the strength of the dependence between instructions which
operate on the same register and, therefore, the “stress” on
the control and forwarding logic of such architectures. The

Fig. 5. Impact of activity monitors. A simulation using two activity monitors
observing register file and memory interface transforms a Markov model started
as a clique in (a) to the one generating dense register and memory writes in (b).
The diagram in (b) has extremely low probability associated with all edges but
the ones indicated.

constructs of sample cache and parametric fields proved to
be sufficient for representing any instruction in the ISAs that
we evaluated, due to the natural breakdown of the instruction
formats into fields which have a fixed number of legal values
and fields which can assume any value within a range. This is
especially true of any RISC ISAs, because of their structured
approach to instruction formats. For this family of ISAs, a large
number of instructions can be compactly represented with a
simple template file, using just a positional field notation, hence
minimizing setup time and verification effort.

V. ACTIVITY MONITORS AND FEEDBACK

This section presents the concept of activity monitors and
describe how they are used to close the feedback loop. We
also show how switching activity observed in the DUT can be
related to transitions in the Markov model, and how multiple
verification goals can be pursued simultaneously using this
concept. Finally, we present an approach for the automatic
extraction of additional relevant activity signals which allow to
increase the quality of the tests generated.

A. Activity Monitors

In designing StressTest, we made an assumption that many
bugs arise from complex interactions between instructions,
which create high activity at the interface between design units
and control blocks. Thus, we are more likely to find bugs by
generating patterns that cause a high level of activity in those
signals, rather than by simulating random input sequences.
The activity monitors are responsible for identifying interesting
input sequences which occurred by chance, and for reinforcing
the appropriate transition edges, so that those sequences may
occur more often. Fig. 5(a) illustrates the approach on one of
the microprocessor cores that we targeted in our experiments.
The Markov model sends stimuli, in the form of instructions,
to the DUT. At each cycle, the activity monitors assess the
control signals in the DUT for specific activities of interest.
In particular, they monitor a set of “pressure points,” that is,

1132 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007

user-specified relevant nodes within the design. A monitor for
a single bit pressure point simply tracks its switching activity
by counting the number of transitions occurred at the node due
to the past stimulus. A monitor for a vector signal computes
the sum of the single bit transitions and scales it by the
vector’s width. We found it useful to have the possibility to
control a monitor through an enabled signal. For instance, in
our experiments, the activity monitor for the memory interface
would only be enabled if a memory transaction was executed
during a cycle. Our activity monitors let us accurately recreate
a range of real-world typical “stresses,” such as high physical
register file pressure, recurring dependent instructions in the
register renamer, or high cache miss rates.

One challenging aspect of implementing the activity mon-
itors was in maintaining the association between a particular
Markov model transition and the resulting activity event. The
challenge exists because input stimuli are generated many
clock cycles before the corresponding activity can be observed.
To maintain this binding, we use a small cache where we
store a map of recently generated instructions and transitions
leading to them. When sampling an observed activity at a
pressure point, we also track the opcode of the instruction in
the corresponding pipeline stage. The opcode is used to match
an 〈instruction, transition 〉 pair from the small cache. Once a
transition is retrieved, the proper probability adjustments are
applied. If more than one match is found, all the matches are
adjusted. We found that multiple matches occur with less than
3% frequency, making the inaccuracy negligible.

Fig. 5 shows an example with two activity monitors and
their impact on a Markov model. In the experiment, a Markov
model for an Alpha ISA is used to generate stimuli for a
testbed microarchitecture. Two activity monitors are engaged:
a memory access monitor, which encourages frequent memory
accesses, and a register file monitor, to push for the generation
of tests with many accesses to the register file using diverse data
values. In the initial Markov model [Fig. 5(a)], each transition
is equally probable. However, due to the adjustment dictated
by the activity monitors, after 8000 cycles of operation, a
few transitions have much higher probability compared to the
others. Fig. 5(b) shows the few high probability transitions that
are left. As shown, the Markov model quickly morphs into a
graph which generates many memory accesses due to the edges
pointing toward the load/store generation node. Moreover, the
use of instructions with immediate operands increases the range
of values written to registers (immediate fields have random
values), thereby reinforcing the monitor on the register file.
Shift and multiply operations contribute to this monitor, too,
by generating high variations in the computed output values.
Finally, branches and jumps are less frequent since they cause
little excitement in the register file.

The flexible construct of activity monitors enables the
StressTest to aim for multiple verification goals simultaneously.
For instance, the example above targets both registers and
memory activity. When targeting multiple goals as in the ex-
ample, StressTest computes a “score” (see Section IV-A) which
is a weighted sum of the activity reported by the individual
monitors. While this approach is often fruitful in discovering
complex bugs due to unforseen components interactions (as

we experienced in our experiments), it could theoretically lead
to inadequate exercising of individual coverage targets. If this
latter scenario occurred, StressTest could be easily adopted to
focus on one verification goal at a time by using dynamic
weights in computing the activity monitors’ score. This flex-
ibility enables the application of StressTest in a wide range
of contexts. For instance, if a cycle-accurate description of
the DUT is available, activity monitors can be used to target
performance bugs. In this case, a bug can be found by ob-
serving the difference in performance of the golden model and
DUT. Other examples include generating frequent collisions
among packets routing through a network switch and checking
correctness of the switch operation at high utilization points,
or “stressing” a pipeline recovery mechanism with frequent
mispredicted branches. In general, the “pressure points” to
monitor during simulation should be selected based on the
role they play in the operation and state of the DUT. For
example, in our experimental evaluation, we selected three
pressure points located at the register file interface, memory
access control logic, and program counter control logic. The
three corresponding activity monitors would tune the system to
generate a wide variety of tests.

B. Depth-Driven Activity Monitors

We found experimentally that a small number of key activity
points are sometime insufficient in directing the verification
process toward interesting scenarios. The reason lies in the
coarse “scores” collected when the system is run with few
monitors showing bipolar behavior (very low or very high ac-
tivity). The result is that, often, the model would “saturate” and
produce very similar stimuli corresponding to the highest scores
possible without exploring the surrounding areas of relatively
high activity. To correct these situations, we expand the pool
of user-selected pressure points with additional circuit nodes
selected automatically by StressTest. The additional pressure
points are nodes that directly influence the activity of the user-
selected pressure points. For instance, if a pressure point is
produced in the circuits’s netlist as the logic AND of two other
signals, then StressTest would add activity monitors for the two
signals as well. It is obvious that generating high activity for
the two additional signals would enforce StressTest’s ability to
stress the user-selected pressure point.

Another context where this technique is useful is an
assertion-based verification methodology. Selecting the output
of an assertion, or a checker, as a pressure point, would not pro-
vide any relevant feedback to StressTest’s stimulus generator. In
fact, the output of the checker would only transition once at the
end of the simulation when a design error is uncovered. In this
scenario, the use of additional pressure points in the logic cone
of influence of the assertion is critical for the StressTest to be
effective. In general, increasing the number of sampling points
produces activity scores with fine-grain resolution, which reach
smoothly the goal of interest. The additional pressure points are
identified by the StressTest by analyzing either the circuit struc-
ture or the behavioral register transfer level (RTL) description
of the DUT, which ever is available. We call “depth-1 signals”
those signals which are direct inputs to the block whose output

WAGNER et al.: MICROPROCESSOR VERIFICATION VIA FEEDBACK-ADJUSTED MARKOV MODELS 1133

Fig. 6. Depth-driven activity monitors. StressTest complements the set of
user-selected pressure points with additional nodes to refine the granularity of
the measured activity scores. In the example, signal mem_wr is selected by
the user; signal store and stall are identified as a depth-1 signals, based on the
assign statement in the RTL description. Similarly, store_byte and store_word
are depth-2 signals.

Fig. 7. Pipeline snapshot for case study Schematic of the five-stage pipeline
used for the case study. The bubbles show the instructions exposing the design
error: A branch instruction dependent on a load is stalled in Decode stage, and
when the forwarded value shows that the branch is taken the instruction in Fetch
should be squashed.

correspond to a user-selected pressure point. Here, a block
could be a simple logic gate, a logic/arithmetic expression, or
a control statement, depending on which DUT description is
available. By expanding this construction recursively, “depth-2
signals” are signals in the cone of influence of depth-1 signals,
etc. Activity monitors connected to these StressTest-selected
pressure points have a lower impact in the activity score
(see Section IV-A). More precisely, their weight is inversely
proportional to their depth. Fig. 6 shows an example of how
these additional pressure points are identified and connected
to activity monitors. In the example, signal mem_wr is a user-
selected pressure point, two additional monitors are created by
analyzing the RTL description of the DUT.

VI. CASE STUDY

In this section, we present a simple case study of how
StressTest is used to detect an error related to a specific
instruction dependence. The design under consideration is a
five-stage MIPS pipeline similar to the one described in [11],
whose simplified structure is reported in Fig. 7. For this design,
branches are resolved in the decode stage and always predicted
as not taken. When a branch instruction follows a load, it
is possible to have a race condition if the load’s destination

matches the branch’s condition register. In this case, the correct
execution of both instructions requires to stall the pipeline
for one cycle after load, so that the proper value can be read
from the memory before it is tested for the branch. When the
condition is finally evaluated, the branch is in the decode stage
and the instruction at the fetch stage might need to be squashed
if the branch was mispredicted (i.e., it is taken). A schematic
of the specific situation is presented in Fig. 7. Note that both
squashing and stalling should occur in the same clock cycle.
However, due to an implementation error, the priority of the
control signals (stall and squash) was incorrectly encoded and
a stall would prevent the existence of a simultaneous squash.
This encoding error allows the instruction following the branch
to be executed causing an error. Given the very specific setup
required to expose the problem, it would be unlikely to generate
a test for it in a purely random verification environment. In
fact, we would need to: 1) generate the proper sequence of
instructions; 2) have a dependence between load and branch;
and 3) have the branch be taken. A best case probability of all
these conditions is computed as follows.

1) If we were to group instructions in four classes—loads,
branches, noops, and all others—then the probability of
generating the required sequence is: pseq = 1/4 ∗ 1/4 ∗
3/4 (note that the last instruction can be anything but a
noop). Any other grouping would lead to an even lower
probability for the desired sequence.

2) The probability to generate a dependence between the
load and the branch is 1/Nregs. The architecture in [11]
has 32 registers; hence, pdepend = 1/32.

3) The probability of the branch being taken requires the
two branch operands to have the same value. If the
comparison is between two distinct registers, then this
probability is (1/2)32, which is negligible (each register
stores 32-bit values). However, if the register operands of
the instruction are the same, then the branch is always
taken. Now, the probability of generating a branch where
the operands are the same register is ptaken = 1/32.

By putting all together, the probability of generating the desired
snippet of assembly program is

P = pseq ∗ pdepend ∗ ptaken = 4.57763672 ∗ 10−5.

Hence, we can calculate the average number of cycles of
random simulation before the sequence is generated as the
expected value of a geometric distribution

Cyclesavg =
1 − P

P
= 21844.

On the other hand, in StressTest, information passing between
load and branch instructions can be setup by proper dependence
variables. For example, if lambda = 2, and cacheSize = 5, the
average distance between dependent instructions is 1.2, which
means that virtually every pair of instructions depend on each
other, exactly what we need in this case. Even if we offset that
by setting probCache = 0.5, hence there is 50% probability of
not exploiting locality, the probability of having a dependence
between a load and a branch is still significantly higher than
1/32. Similarly, if the same dependence variable is used for both

1134 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007

operands of the branch, the probability of them being equal is
much higher than 1/32. Finally, since the Markov model stores
paths leading to favorable activities, by using a memory inter-
face activity monitor and a branch logic one, the probability of
having a load/branch/!noop sequence is much higher than that
of a random approach. We found experimentally that, with the
setup described, the StressTest was capable to expose the design
error after only 126 simulation cycles using a range of initial
condition seeds. In addition, note that in using this setup, the
StressTest can generate longer dependence intervals and, thus,
discover further potential bugs in the control logic. To conclude,
the setup presented was simplified for presentation purposes;
a full design scenario would penalize random simulator even
further, while StressTest could still use all of its tuning features
to narrow down on critical scenarios.

VII. EXPERIMENTAL RESULTS

In this section, we first introduce our experimental evaluation
framework and the test designs we used for the analysis. We
then provide insights on a range of aspects in StressTest:
the impact of the various parameters involved in dependence
variables and a study of the convergence of the initial stimulus
generator to a stable Markov model. Section VII-D evaluates
the performance of our proposed technique against an open-
loop random instruction generator, comparing both coverage of
bugs and number of simulated instructions required to expose
those bugs. Finally, the last part of this section reports on
the impact of depth-driven activity monitors on the speed of
convergence of the system on a range of design errors.

A. Experimental Testbeds

To evaluate the performance of StressTest, we conducted a
series of simulations on two processor core designs described
in Verilog RTL. The two systems have both five pipeline stages.
The first is based on the MIPS-Lite ISA, and branches are
resolved in the ID stage. The second design runs an Alpha
ISA with branches resolved in the EX stage and has two-cycle
store instructions. We also built single-cycle golden models
(that is, functional descriptions) for both systems to evaluate
the correctness of the designs. The DUT and the golden model
were connected to independent data memories and interfaced
to StressTest through the instruction bus. We connected the
two implementations, DUT and golden model, through a small
Verilog testbench interface. We also implemented the stimulus
generator (template file parser and Markov model data struc-
ture) and the activity monitors (analyzing the activity on the
pressure points) in a C++ program. Sampling of a switching
activity at the pressure points was accomplished through Vera’s
binding constructs [8], which work as a glue between the
Verilog description and StressTest’s C implementation. We
selected a range of pressure points to connect to the activity
monitors, including key register file interface signals, memory
system interface, branch/jump resolution logic, and pipeline
stalling and flushing logic. The selection was driven by the
wide variety of potential design errors that we were hoping to
uncover in the testbed designs. To target more specific bugs,

Fig. 8. Results of two sample runs with different values of cacheSize
and lambda. The arrows represent dependences among instructions in a
sequence. Note how larger values of lambda generate shorter dependence
intervals. A larger cache size allows for more complex dependence patterns.
a) CacheSize = 20, lambda = 0.1. b) CacheSize = 10, lambda = 5.0.

Fig. 9. Average distance between dependent instructions. Higher values of
cacheSize and lower values of lambda result in larger intervals between
dependences.

users would choose activity monitors at very similar points. The
activity feedback from the DUT was observed using Vera and
then passed to C functions for adjusting the Markov model.

B. Dependence Variables: Parametric Evaluation

The first set of experiments evaluates the impact of the pa-
rameters involved in a dependence variable. To this end, we set
up an experiment on our Alpha pipeline testbench: The template
file includes only one dependence variable, which is used to cre-
ate a dependence between the source and destination operands
in sequences of instructions. We fixed probCache = 1,
and we used a range of cache sizes and lambda values for the
dependence variable. For each simulation produced with this
setup, we recorded the average distance between dependent
instructions, that is the average interval between the insertion of
a value into the locality cache and the retrieval of that value. In
addition, we disabled activity monitors for this experiment, so
that the sequence of instruction generated would be unchanged
across different runs, as long as we started with the same
random seed. Portions of sequences generated in two of such
runs are shown in Fig. 8. It can be noted that the run, shown
in part (b), has many more dependent instructions very closely
spaced. This is due to the smaller value of cacheSize and larger
value of lambda. The average dependence distance is plotted
as a function of lambda and cacheSize in Fig. 9. The results
of this analysis allowed us to better select the configuration
of dependence variables for the experiments presented in the

WAGNER et al.: MICROPROCESSOR VERIFICATION VIA FEEDBACK-ADJUSTED MARKOV MODELS 1135

Fig. 10. Impact of activity monitor’s weights on the Markov model stability.
The diagram shows that the Markov model consistently converges to a stable
form over time (simulation cycles). Each trend line has been generated using
different weights for three distinct monitors: Memory accesses (Mem), register
file (Reg), and branching (Branch). A value zero in the legend means that the
corresponding monitor is suppressed. Note that the Markov model stabilizes in
all cases and that higher weights result in faster stabilization.

following sections. Specifically, knowing that our testbed de-
signs are five-stage pipelines with 32 registers, we were only
interested in generating dependences between pairs that were
four instructions apart or less. A lambda value of two provides
a majority of dependence intervals within our range of interest.
Also, we set the locality cache size to 20, so that we could
have a broad set of values available. Larger values of lambda
are more suitable for longer pipelines.

C. Stability of the Activity Monitors

The objective of our second set of experiments is to evaluate
the change of the Markov model over time during simulation.
More specifically, we study if the model converges to a stable
shape (that is, if the probabilities associated with the transitions
stabilize) in the long run, or if it keeps oscillating. In addition,
we evaluate the impact of simultaneous multiple activity
monitors on the stability of the model. We generate stimuli for
a RISC pipeline for 3000 cycles and observe the probabilities
marking the edges of the Markov model every 200 cycles.
After the simulation, we calculate how much, on average, the
values associated with the transition edges changed during each
200-cycle interval. The Markov model used for our experiments
includes only three vertices, each representing a different class
of instructions, namely, memory operations (loads and stores),
register-to-register instructions, and branches. We also used
three distinct activity monitors, practically corresponding to
each of these instruction types: a memory accesses monitor, a
register file one, and a program counter control monitor. We
ran several simulations varying the weights assigned to each
monitor, effectively changing the impact of the activity ob-
served. The results of this experiment are shown in Figs. 10 and
11. Fig. 10 shows that the model stabilizes for all the scenarios
(a range of different weights associated with the activity moni
tors) that we explored within 2000 cycles (probability variation
is below 0.02 on average). This consistent stabilization of
the Markov model has both advantages and drawbacks. The
advantage is that a particular “path” is set up within 2000
simulation cycles, and from then on, sequences of instructions
with similar structure are generated repeatedly. However, since
the various operands of the instructions are generated via

Fig. 11. Impact of the monitor’s weight on stimuli generated. The graph re-
ports the distribution of the stimuli among three types of instructions: Register,
memory, and branch. The experiment is set up with three activity monitors,
a memory (M), register access (R), and branching activity (B). Each bar
considers a distinct setup with different weights associated with the monitors.
The analysis shows that a higher weight results in a larger fraction of the stimuli
generating activity for it.

dependence variables, different dependence combinations are
still explored, which is crucial for thorough testing. On the
other hand, the Markov model would not transition to another
stable point any longer, because the activity feedback forces it
to remain stable. Therefore, after a while, the simulation starts
losing diversity. As expected, higher weights cause the Markov
model to converge faster, since activity scores are higher.

During this set of experiments, we also monitored the num-
ber of each type of instruction generated during a simulation
run. Ideally, a high weight on a memory access monitor should
lead to generating more load/store instructions. A high-weight
register file monitor should provoke many register-type instruc-
tions, and the PC control logic monitor should generate many
branch instructions. Fig. 11 shows the relative distribution of
each type of instruction generated during simulation. When
the weights are all zero (as in the leftmost bar), the model
does not receive any feedback and instructions are roughly 1/3
of each type. It is also evident from Fig. 11 that the relative
frequency of occurrence of each instruction is related to the
weight associated with a particular activity monitor reinforcing
the corresponding type of instruction. Note also that when the
weight of the memory interface activity monitor is increased
from one to two, the number of loads and stores increases,
because of the stronger reinforcement connected to the corre-
sponding Markov model edges.

D. StressTest Coverage Density and Performance

We now examine the coverage density and performance of
StressTest compared to other approaches based on random
simulation. The techniques we compare are: plain random
simulation, simple constrained generation, Open-Loop, and
StressTest. For each approach evaluated, we quantify the effort
(in simulation cycles) required to expose bugs and analyze
how many bugs the technique is capable to expose. The test-
benches used for these experiments are the DLX and Alpha
processors described in Section VII-A. The set of tests for
the DLX design consists of 30 distinct versions of the DLX
core, each containing a different bug. Bugs vary from simple

1136 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007

(such as incorrect operation for a given arithmetic opcode)
to complex ones, involving forwarding logic and interactions
through memory. Ten of the simplest bugs for DLX were taken
from a testsuite that is part of an advanced hardware verification
course at the University of Michigan, while the others were
handcrafted for the experiment. For each of the buggy variants
and techniques we considered, we performed 25 runs using
distinct random seeds, and we evaluated the average effort and
standard deviation. In each run we simulated for a maximum
of 75 000 cycles, or less, if the bug was exposed sooner. We
selected the number of distinct seeds and the length of the
simulation runs to ensure stabilization of the Markov model and
to permit each experiment to complete in less than 3 h. The set
of tests for the Alpha design used ten buggy variants including
moderate and very complex bugs, mostly very specific corner
cases in the pipeline’s forwarding logic. The four techniques
we compared in the analysis are the following.

1) Random utilizes only a static evenly distributed Markov
model of the ISA for the instruction generation and does
not collect feedback from the DUT. It also uses several
dependence variables, but without caching. Random rep-
resents a capable open-loop testing solution.

2) Simple relies on a feedback-adjusted Markov model,
based on activity feedback from the DUT. However, it
still does not use caching for the dependence variables.

3) Open-Loop is an open-loop setup which uses depen-
dence variables with caching, but does not have activity
feedback, so the Markov model has evenly distributed
edges across the entire simulation.

4) StressTest is the full-fledged implementation using both
a feedback-adjusted Markov model and dependence vari-
ables with caching. Variables are used to transfer destina-
tion register indexes to source register fields and to share
arithmetic immediate values and memory and branch
offsets among the instructions in the same test.

The tests’ setup uses an initial Markov model with 7 and 11 ver-
tices for DLX and Alpha, respectively. Each vertex represents
a particular class of instructions. No single vertex included
multiple instructions, since the ISAs did not impose any se-
quencing constraints on the input, i.e., branches did not require
a noop instruction to follow. The dependence variables were
set with cacheSize = 20 and lambda = 2.0, values which we
derived from the analysis described in Section VII-B. We also
set probCache = 0.66, allowing random values to be freshly
generated in 30% of the uses of dependence variables, to in-
troduce variation in the generated test programs. Variables that
store static information, such as opcodes, had probCache = 1.0
and lambda = 0.1, so to obtain a uniform random distribution
among the values in the cache (which was initialized with all
the legal opcodes in the ISA). We used three activity monitors
located at the memory control logic, the register-file interface,
and the PC control logic. We used an analysis similar to that
of Section VII-C to select a set of weights for the monitors,
and finalized them to 2, 1, and 2, respectively. In setting up the
experiments for each of the four random testing techniques, we
exposed bugs by running in lockstep with a golden model and
flagging any discrepancy in the committed results by comparing
register file, program counter, and memory writes.

Fig. 12. Effort versus bugs covered for the DLX processor. The diagram com-
pares four random testing-based techniques in their effectiveness at uncovering
design errors. StressTest and Open-loop can expose more bugs than Simple and
Random, and StressTest can do faster than all other techniques.

Fig. 13. Effort versus bugs covered for the Alpha processor. The diagram
compares four random testing-based techniques in their effectiveness at uncov-
ering design errors. StressTest can expose more bugs in less time than all other
solutions.

Figs. 12 and 13 show the results of the four random test
generation approaches applied to the DLX and Alpha processor
pipelines. For each of them, the graph illustrates the cumulative
effort (in total runtime) versus the total number of bugs de-
tected. To distinguish between easy-to-find bugs from harder
ones, we have sorted them in ascending order of total number of
instructions required to locate a bug. As a result, the bugs on the
left part of the graph were easier to locate than the bugs on
the right. When a technique was incapable of finding some of
the bugs (for instance, random), the curve stops short. In addi-
tion, we are only showing the 15 hardest bugs in Fig. 12, since
the performances were virtually indistinguishable for simpler
bugs. As shown in Fig. 12, StressTest and Open-Loop achieve
better coverage than Random for the DLX processor, detecting
five extra bugs. StressTest is also far more efficient than Open-
Loop at detecting all the bugs, requiring approximately half the
time. Interestingly, Simple appears to be the worst approach,
despite of its use of activity feedback. We believe that this is due
to the inability of generating interesting correlations between
instructions due to the lack of caching in dependence variables.

The experiment led to exposing three hidden bugs in the for-
warding logic of the DLX pipeline, which initially was assumed
to be correct. Although this design was a subject of verification
projects for several years, these bugs were unknown, until we
exposed them with the StressTest.

1) Forwarding through Reg.0. Register 0 in a DLX ar-
chitecture should always retain the value zero. When
forwarding through this register, the second instruction
should always receive a zero value, no matter what the

WAGNER et al.: MICROPROCESSOR VERIFICATION VIA FEEDBACK-ADJUSTED MARKOV MODELS 1137

Fig. 14. Effort versus bugs covered for StressTest with depth-driven activity
monitors (DLX processor). The diagram compares a range of depths for the
activity monitors and shows that depth-driven activity monitors allow StressTest
to find complex bugs faster.

first instruction computed. However, the original design
allowed bypassing, and the value forwarded to the second
instruction would be the result of the first instruction’s
operation. Most experiments with Random and Simple
could not locate this bug because the generated operand
fields had a very small chance of creating the depen-
dences through register 0 necessary to expose the bug.

2) Stalling logic. Because of the timing between memory
accesses and branch resolutions, it is possible in DLX to
create a scenario where the pipeline is stalled due to mem-
ory contention while its front-end is being flushed due to
a mispredicted branch. We found that our initial pipeline
design ignored pipeline flushes in this context, allow-
ing the instruction following the mispredicted branch to
proceed to execution. An analysis of this situation is
discussed in the case study of Sections VI.

3) Forwarding through unused register. Some MIPS instruc-
tions use only one source register, which is ignored
in the execution and memory stages. However, when a
dependence through this register existed, the forwarding
logic would still trigger and forward the bogus value to a
following instruction. Dependence variables played a key
role in discovering this bug.

The features which led to find these bugs were: 1) simulating
the DUT in lockstep with the golden model to check correct-
ness; 2) generating instructions using templates; and 3) passing
information between instructions using dependence variables.
Without these techniques, the bugs would have been extremely
hard to find and would have required significant user effort
in directing the test toward them. Fig. 13 shows the results
of the same experiment on ten variants of the Alpha pipeline,
each including a different bug. Again, we computed average
cumulative effort and sorted the bugs from easiest to hardest.
The analysis confirms once again that the advanced features of
StressTest are critical in exposing the more complex bugs.

E. Depth-Driven Activity Monitors

We also investigated the impact of the depth-driven activity
monitors on the performance of StressTest. We used the same
30 variants of DLX cores and ten of Alpha pipelines and
compared the full-fledged StressTest used for the previous
section against StressTest with depth-driven activity monitors
of depths 1, 2, and 3. The experiment setup was the same as

Fig. 15. Effort versus bugs covered for StressTest with depth-driven activity
monitors (Alpha processor). The diagram compares a range of depths for the
activity monitors and shows that depth-driven activity monitors allow StressTest
to find complex bugs faster.

TABLE I
DEVIATION FROM THE MEAN (CYCLES)

the one in Section VII-D. Figs. 14 and 15 show the results for
DLX and Alpha pipelines, respectively. Note that in both cases,
deeper monitors perform better for harder bugs, but perform
slightly worse for medium-difficulty bugs. For example, in
Fig. 14, the performance of StressTest up to bug 25 is better than
other approaches, but it is worse for all other harder bugs (26
and up). The reason lies in the amount of additional information
which is accrued by the depth-driven monitors: Easier bugs are
usually exposed by simpler scenarios which can be reached by
watching only a handful of critical signals, and additional infor-
mation is just “distracting” the system. However, in harder bug
scenarios, any available additional information is helpful
in narrowing the bug scenario. Finally, Table I reports the
standard deviation from the mean number of simulation
cycles (to locate bugs) that was encountered for each of the
experiments. We performed the comparison using the last bug
index which was exposed by all the techniques. Table I shows
that StressTest finds bugs more consistently than Random and
other techniques which rely mostly on chance. Additionally,
the table illustrates that the deviation is reduced with increasing
activity monitors’ depths, implying that observing more signals
leads the StressTest to narrow design errors more precisely and
consistently.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach to constraint
random validation. The approach, implemented in a tool called
StressTest, is a closed-loop technique based on a Markov
model which generates instruction sequences based on tem-
plates. These templates are designed by verification engineers
to resemble legal directed tests. Our template language is

1138 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007

particularly expressive, in that, it supports the generation of a
wide range of input types with varied dependence and locality
characteristics and can be used in the verification of processor
cores or other digital circuits. Moreover, the verification engi-
neer needs to identify the key activity signals in the design, i.e.,
signals that are indicators of “stressful” activity or are suspected
to be indicators of performance or design bugs. A closed-loop
feedback engine adjusts the Markov model continuously during
simulation based on the activity observed at the activity points,
to produce effective and efficient tests. For more effective
feedback, StressTest automatically extracts the cone of logic
influencing the user-selected activity points and monitors them
as well, smoothly guiding the simulation toward interesting
scenarios. Experimental evaluation found that the StressTest is
capable of finding more bugs in fewer simulation cycles than
open-loop random simulation or less-sophisticated closed-loop
test generation techniques.

Looking ahead, we are extending this paper in a number
of directions. An important issue that we are investigating is
in overcoming the limitation of Markov models of generating
input based only on short past history. We plan to create mech-
anisms to store more information about the stimuli generated in
the past inside StressTest by adding path-dependent transition
policies or grouping sequences of favorable stimuli into addi-
tional vertices in the Markov model. We also plan to introduce
a meaningful measure of coverage to StressTest that would
depend on the quality and variance of activities seen throughout
the simulation. This would allow us to compare the tool to
similar software developed in industry, for example Genesys-
Pro and X-Gen. In addition, we are expanding the language to
support more effective specification of data values, along with
the instructions that access them. Finally, we are exploring the
application of the StressTest infrastructure to other domains.
In particular, we are working to deploy techniques similar
to StressTest to communication protocols and hardware with
multiple parallel interfaces.

REFERENCES

[1] A. Adir et al., “Genesys-pro: Innovations in test program generation for
functional processor verification,” IEEE Des. Test Comput., vol. 21, no. 2,
pp. 84–93, Mar./Apr. 2004.

[2] A. Allan, D. Edenfeld, J. William, H. Joyner, A. B. Kahng, M. Rodgers,
and Y. Zorian, “2001 technology roadmap for semiconductors,”
Computer, vol. 35, no. 2, pp. 42–53, Jan. 2002.

[3] M. Behm, J. Ludden, Y. Lichtenstein, M. Rimon, and M. Vinov, “Indus-
trial experience with test generation languages for processor verification,”
in Proc. DAC, Jun. 2004, pp. 36–40.

[4] B. Bentley, “Validating the Intel Pentium 4 microprocessor,” in Proc.
DAC, 2001, pp. 224–228.

[5] B. Bentley and R. Gray, “Validating the Intel Pentium 4 processor,” Intel
Technol. J., vol. 5, no. 1, pp. 1–8, 2001.

[6] J. Bergeron, Writing Testbenches: Functional Verification of HDLModels,
2nd ed. Norwell, MA: Kluwer, 2003.

[7] S. Fine and A. Ziv, “Coverage directed test generation for func-
tional verification using bayesian networks,” in Proc. DAC, Jun. 2003,
pp. 286–291.

[8] F. I. Haque, K. A. Khan, and J. Michelson, The Art of Verification With
Vera. Fremont, California: Verification Central, 2001.

[9] Y. Hollander, M. Morley, and A. Noy, “The e language: A fresh separation
of concerns,” in Proc. Technol. Object-Oriented Languages and Syst.,
Mar. 2001, vol. TOOLS-38, pp. 41–50.

[10] J. M. Ludden et al., “Functional verification of the POWER4 microproces-
sor and POWER4 multiprocessor systems,” IBM J. Res. Develop., vol. 46,
no. 1, pp. 53–76, Jan. 2002.

[11] D. A. Patterson and J. L. Hennessy, Computer Organization and Design:
The Hardware/Software Interface, 2nd ed. San Mateo, CA: Morgan
Kaufmann, 1997.

[12] R. Emek et al., “X-gen: A random test-case generator for systems and
socs,” in Proc. Int. Workshop HLDVT, 2002, pp. 145–150.

[13] I. Silas, I. Frumkin, E. Hazan, E. Mor, and G. Zobin, “System-level
validation of the Intel Pentium M processor,” Intel Technol. J., vol. 7,
no. 2, pp. 38–43, May 2003.

[14] G. Spirakis, “Opportunities and challenges in building silicon products in
65 nm and beyond,” in Proc. DATE, 2004, pp. 2–3.

[15] S. Tasiran, F. Fallah, D. G. Chinnery, S. J. Weber, and K. Keutzer,
“A functional validation technique: Biased-random simulation guided by
observability-based coverage,” in Proc. ICCD, 2001, pp. 82–88.

[16] S. Taylor, M. Quinn, D. Brown, N. Dohm, S. Hildebrandt, J. Huggins,
and C. Ramey, “Functional verification of a multiple-issue, out-of-order,
superscalar Alpha processor: The DEC Alpha 21264 microprocessor,” in
Proc. DAC, 1998, pp. 638–644.

[17] J. Yuan, C. Pixley, and A. Aziz, Constraint-Based Verification. New
York: Springer-Verlag, 2006.

Ilya Wagner (S’06) received the B.S. and M.S.
degrees in computer engineering from University of
Michigan, Ann Arbor, in 2004 and 2006, respec-
tively, where he is currently working toward the
Ph.D. degree.

He is currently working with the Advanced Com-
puter Architecture Lab of the Computer Science and
Engineering Department, University of Michigan.
He is also the President of the Michigan Mars Rover
Project, a volunteer student group with mission to
develop a manned vehicle for planetary exploration.

His research interests include hardware verification and hardware reliability.

Valeria Bertacco (M’95) received the M.S. and
Ph.D. degrees in electrical engineering from Stan-
ford University, Stanford, CA, in 1998 and 2003,
respectively.

She is an Assistant Professor of electrical en-
gineering and computer science (EECS) with the
University of Michigan, Ann Arbor. Her research
interests are in the areas of formal and semiformal
design verification with emphasis on full design val-
idation and digital system reliability. She joined the
faculty with Michigan after being with Synopsys for

four years, as a Lead Developer of Vera and Magellan, two popular verification
tools. She has been leading the effort for the development of the verification
section in the International Technology Roadmap for Semiconductors report
since 2004.

Dr. Bertacco has served in several program committees, including ICCAD,
FMCAD, and HLDVT, and as a chair of the verification committee for DATE.

Todd Austin (M’88) received the Ph.D. degree in
computer science from University of Wisconsin,
Madison, in 1996.

He is an Associate Professor of electrical engi-
neering and computer science with University of
Michigan, Ann Arbor. His research interests in-
clude computer architecture, compilers, computer
system verification, and performance analysis tools
and techniques. Prior to joining academia, he was a
Senior Computer Architect with Intel’s Microcom-
puter Research Labs, a product-oriented research
laboratory in Hillsboro, OR.

