
726 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 5, MAY 2012

A Reliable Routing Architecture and
Algorithm for NoCs

Andrew DeOrio, Student Member, IEEE, David Fick, Student Member, IEEE, Valeria Bertacco, Senior Member, IEEE,
Dennis Sylvester, Fellow, IEEE, David Blaauw, Senior Member, IEEE, Jin Hu, Student Member, IEEE,

and Gregory Chen, Member, IEEE

Abstract—Aggressive transistor scaling continues to drive
increasingly complex digital designs. The large number
of transistors available today enables the development of
chip multiprocessors that include many cores on one die
communicating through an on-chip interconnect. As the number
of cores increases, scalable communication platforms, such as
networks-on-chip (NoCs), have become more popular. However,
as the sole communication medium, these interconnects are a
single point of failure so that any permanent fault in the NoC
can cause the entire system to fail. Compounding the problem,
transistors have become increasingly susceptible to wear-out
related failures as their critical dimensions shrink. As a result,
the on-chip network has become a critically exposed unit that
must be protected. To this end, we present Vicis, a fault-tolerant
architecture and companion routing protocol that is robust to a
large number of permanent failures, allowing communication to
continue in the face of permanent transistor failures. Vicis makes
use of a two-level approach. First, it attempts to work around
errors within a router by leveraging reconfigurable architectural
components. Second, when faults within a router disable a link’s
connectivity, or even an entire router, Vicis reroutes around the
faulty node or link with a novel, distributed routing algorithm
for meshes and tori. Tolerating permanent faults in both the
router components and the reliability hardware itself, Vicis
enables graceful performance degradation of networks-on-chip.

Index Terms—Fault tolerance, hard faults, networks-on-chip
(NoCs), reconfiguration, reliability, routing algorithms.

I. Introduction

CONTINUOUSLY shrinking transistor dimensions enable
ever-increasing density on modern microchips: each new

technology node facilitates additional cores in chip multipro-
cessors. For example, the Intel SCC [3] contains 48 cores,
the Tilera Tile64 has 64 cores [4], and the experimental
Intel Polaris chip incorporates 80 cores [5]. However, bus
communication and crossbar interconnects have not scaled

Manuscript received February 15, 2011; revised August 19, 2011, October 5,
2011, and November 11, 2011; accepted November 22, 2011. Date of current
version April 20, 2012. This work was supported in part by the Gigascale
Systems Research Center. This paper was recommended by Associate Editor
R. Marculescu.

A. DeOrio, D. Fick, V. Bertacco, D. Sylvester, D. Blaauw, and J. Hu are
with the University of Michigan, Ann Arbor, MI 48109 USA (e-mail: awde-
orio@umich.edu; dfick@umich.edu; valeria@umich.edu; dmcs@umich.edu;
blaauw@umich.edu; jinhu@umich.edu).

G. Chen is with the High-Performance Circuits Research Group, Intel,
Hillsboro, OR 97124 USA (e-mail: grgkchen@umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2011.2181509

efficiently: high core counts necessitate efficient, scalable
interconnects capable of providing communication among the
processor cores. Networks-on-chip alleviate this problem with
fast, scalable communication provided by small, distributed,
packet-switched routers [6].

Network-on-chip routers communicate via a common inter-
connect, connecting processor cores, memory controllers, and
so on. At each node (usually a core or memory), a network in-
terface controller connects the core to the local router, and con-
verts messages from the core into data packets of varying size
for the network. These packets are further divided into flits, the
smallest unit of data traveling in the network, which dictates
the width of a link connecting two routers. Routers then direct
traffic within the network, moving flits from source to destina-
tion according to the information encoded in each packet, usu-
ally located in the header (first flit) of the packet. In particular,
in wormhole routing [7], a single packet’s flits may be spread
across multiple routers as they traverse the network, until all
the constituent flits are collected at the destination. Compared
to bus-based systems, network-on-chip designs have the ad-
vantage of allowing many messages in flight simultaneously,
thus providing efficient communication among many nodes.

While networks-on-chip (NoCs) provide a scalable, dis-
tributed communication solution, they are also a single point of
failure in a chip multiprocessor (CMP). Unlike the cores in a
CMP, which are uniform, distributed, and therefore inherently
redundant, there is only one communication medium in the
chip, constituting a weakness in the presence of faults. Un-
reliable silicon substrates, brought on by aggressively scaled
transistors, threaten the reliability of on-chip communication
infrastructures, where a single transistor failure in the NoC
could cause the entire chip to fail [8]. The possibility of
frequent failures in the field is soon expected to become a
reality [9], [10], leading to system failure [11], [12], or even
causing security flaws [13].

Transistor failures can be caused by a variety of wear-out
mechanisms in highly scaled technology nodes. As transistor
dimensions approach the atomic scale, oxide breakdown [14]
becomes a concern, since the gate oxide tends to become
less effective over time. Moreover, negative bias tempera-
ture instability [15] is of special concern in PMOS devices,
where increased threshold voltage is observed over time.
Additionally, thin wires are susceptible to electromigration
[16], because conductor material is gradually worn away

0278-0070/$31.00 c© 2012 IEEE

DEORIO et al.: RELIABLE ROUTING ARCHITECTURE AND ALGORITHM FOR NOCS 727

Fig. 1. Steps in fault tolerance and Vicis’ focus. Vicis provides a novel
diagnosis solution to determine the location of a permanent fault. It then
leverages this information to reconfigure the system and overcome the failure.

during chip operation until an open circuit occurs. Since these
mechanisms occur over time, traditional burn-in procedures
and manufacturing tests are ineffective in detecting them.

Fault model: With the reality of decreasing transistor relia-
bility and increasing failures, our goal is to mitigate permanent
faults, those that affect the hardware for the remaining life of
the chip. Thus, our fault model uses stuck-at failures at the
hardware level to portray these permanent faults. Vicis’ goal
is to ensure that all permanent faults in the network-on-chip
are handled. Furthermore, any of Vicis’ hardware additions
may be susceptible to the same faults that they aim to address:
faults may occur in the reliability hardware itself.

Robust, architectural solutions are needed to mitigate the
problem of permanent faults. When an error occurs in the
field, a typical reliability solution will leverage a detection
mechanism to identify the problem and notify the system of
the failure (Fig. 1). Detection can be achieved, for instance,
with error correcting codes (ECC) [17] or custom NoC testing
mechanisms [18], [19]. Next, the system undergoes diagnosis
to determine the fault location. It can then enter a recon-
figuration phase, isolating the failure or working around it.
Finally, recovery can take place, recouping lost data with
mechanisms such as checkpointing [20], [21]. Following a
completed recovery, normal system operation can resume. In
this paper, we focus on the diagnosis and reconfiguration
phases, which are critical for a high-performance and fault-
tolerant system, and we rely on solutions proposed in the
literature, such as those cited, for detection and recovery.

Contributions: In this paper, we present Vicis, a reliable
solution for networks-on-chip with mesh and torus topologies.
Vicis leverages a reconfigurable router architecture and routing
algorithm. Our solution takes advantage of the redundancy
inherent in on-chip networks through a two-level approach.
First, it reconfigures individual routers with a novel and
flexible NoC router architecture. Second, when errors cannot
be contained within a single router, Vicis invokes a novel
rerouting solution that modifies the communication paths to
bypass the failed node. As a distributed in-hardware solution,
Vicis has the advantage of being able to tolerate many faults,
including failures in the reliability components. For systems
built on unreliable silicon substrates, Vicis enables graceful
performance degradation when transistors inevitably fail.

II. Related Work

Two main approaches for reliable networks-on-chip have
been proposed in the literature: one attacking the problem with
resilient routing algorithms, and the other with architectural
solutions. While many available reliable routing algorithms

suggest that fault-free communication is a solved problem,
many incur significant restrictions, such as limiting the number
and location of faults.

Restricted number of faults: Reliable routing algorithms
are capable of routing data packets around failures. However,
some limit the number of faults that they can tolerate. For
instance, an early work in this area is the reliable router of
[22], which can handle a single node or link failure anywhere
in the network. Duato’s solution [23] can handle (n−1) faults
in a n-dimensional mesh while Gomez et al. [24] tolerate up
to five faults using additional virtual channels. The work in
[25] can potentially sustain several faults: the authors provides
a backup path around each failed router. As faults accumulate,
backup paths form a ring topology. However, the solution fails
when additional faults affect the ring network.

Restricted location of faults: Other routing algorithms are
able to accommodate more faults, but restrict their location to
specific types of “fault regions.” A fault region is a subnetwork
of a restricted shape that contains faults, and oftentimes
correctly functioning nodes must be disabled to satisfy the
constraints of the region. The shape of fault regions may be
convex [26], [27], or rectangular [28], and sometimes it is also
restricted from including the network boundary [29]. Other
solutions require fault regions that are polygons [30], +, L or
T shapes [31], or contain no holes [32], [33]. Finally, faults
may be limited to datapath components [34], or to links and
crossbars [35]

Unrestricted faults: A number of on-chip proposals tackle
the problem of unconstrained faults. uLBDR [36] handles
routing for any 2-D mesh topology without the need for
routing tables. It adds logic to each input port, which facilitates
routing around faulty links. However, this approach requires
virtual cut-though routing, requiring the entire packet to be
buffered at each router. Other solutions address permanent
faults by flooding the network to overcome lost network
connections, thus they incur high performance overhead [37],
[38]. Stochastic approaches [39], [40] provide tolerance to
permanent and transient faults by means of a probabilistic
broadcast mechanism. Immunet [41] routes packets adaptively
toward their destinations, based on buffer availability. If nec-
essary, packets switch to a reserved, escape, virtual channel
that guarantees that they will reach their destination and avoid
faulty links. This channel is aware of the fault locations and
routes deterministically in a ring through every node. Upon
reconfiguration, a new ring that connects all surviving nodes
is formed with a single broadcast, and all in-transit packets
drain out via this ring, before updating the routing tables.
While the ring guarantees delivery, it dramatically increases
latency, since it must remain active during normal operation
to ensure deadlock freedom. Additionally, the design requires
three routing tables per router, resulting in high area overhead.

Centralized off-chip solutions: Off-chip networks, such as
clusters, were the first to address the reliability challenge of
unconstrained faults. These resilient routing algorithms can
be applied to any irregular topology, and include up*/down*
(introduced in Autonet) [42], segment-based routing [43], FX
routing [44], L-turn [45], and smart-routing [46]. With these
approaches, a central node runs the reconfiguration algorithm

728 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 5, MAY 2012

Fig. 2. Vicis’ router architecture. A Vicis-enhanced router includes ECC
units, a crossbar bypass bus, a port-swapper, BIST units for diagnosis, a
distributed algorithm engine (green/gray) and flexible FIFOs (hashed), in
addition to baseline components.

in software. First, the surviving topology is communicated to
this central location, which can then use this global knowledge
of the functional links to compute new routing tables. Finally,
the new routing tables are communicated back to each node.
While these centralized reconfiguration algorithms can per-
form powerful optimizations, communicating the global view
of the surviving topology to a central node requires expensive,
dedicated hardware. By contrast, on-chip solutions must be
designed to meet tight on-chip area budgets.

Reliable router architectures: On-chip networks have a tight
area and power budget, necessitating simple router structures.
Architectural approaches to reliable router architectures in-
clude triple modular redundancy (TMR) based approaches,
such as the BulletProof router [47]. However, in general, N-
modular redundancy approaches are expensive, as they require
at least N times the silicon area. Another strategy explores
the tradeoffs of various levels of redundancy [48]. Other
work investigates the reliability of single components, for
example a reliability-enhanced crossbar [49]. Reconfiguration
is approached by [50] for pipelines, by [51] for link failures,
and by [52] with modular design. Protection against transient
errors has been explored in [53].

III. Router Architecture

Vicis takes a two-part approach to maintain correct execu-
tion in a network-on-chip. When a fault is detected, the system
goes offline for a Vicis-directed diagnosis and reconfiguration.
It first attempts to contain permanent failures within the
router, leveraging the inherent structural redundancy in the
architecture to work around errors. If the failure cannot be
contained within the router, Vicis reconfigures the network
around failed nodes and links.

Reconfiguration at the router level is used to contain faults
within the router, so that they are not perceivable at the
network level as failed links or routers. Fig. 2 presents a
high-level schematic of a baseline router (in white) with Vicis
enhancements (shaded). The baseline router includes input
ports and first in first out (FIFO) buffers, decoders, a crossbar,
a routing table, and output ports. Vicis augments this design

with a crossbar-bypass bus to protect against crossbar failures,
and with ECC to protect datapath elements. Additionally,
Vicis can reconfigure the FIFO buffers, the largest router
components, to be resilient to a few internal faults. Our
port-swapping solution allows Vicis to minimize link failures
by reorganizing input ports. Finally, Vicis includes built-in
self-test (BIST) units to diagnose faulty router components
and orchestrate reconfiguration. A complete reconfiguration
process requires approximately 152 000 cycles, corresponding
to only a few hundred microseconds on a 1 GHz chip. This
latency does not appreciably impact application runtime for
rarely occurring permanent faults (less than once a day).

A. Crossbar Bypass Bus

In the baseline router, a faulty crossbar would render the
entire router inoperable. To address this issue, Vicis adds a
crossbar bypass bus, as shown in Fig. 2, an alternative path
for data that may have to traverse a faulty crossbar path. The
crossbar controller is configured to direct traffic to either the
crossbar or the bypass bus on a packet basis. If multiple flits
simultaneously require the bypass bus, one flit is chosen to
proceed first, while the others must wait to use it in subsequent
clock cycles. In this manner, the crossbar bypass bus may
overcome any number of faults in the crossbar. This spare path
provided by the bypass bus allows Vicis to maintain correct
operation, even when multiple faults appear in the crossbar.
However, in the case of a single fault, the ECC unit is sufficient
to overcome the failure.

B. ECC

Faults along the datapath can cause data corruption and
packet mis-routing. Protecting the datapath with ECC enables
each component to tolerate a small number of faults while
maintaining correct functionality. Previous works have ex-
plored the tradeoff between energy and reliability by using fine
grained error correcting codes (ECC) [54]. While these studies
found that end-to-end ECC was more power efficient than
flit-level ECC, they require that packets reach their intended
destinations. Errors in header flits that could cause packet mis-
routing can only be overcome by flit-level ECC: consequently,
Vicis uses flit-level ECC with an encoder and decoder at the
exit of each FIFO. The code adds an additional 6 bits to each
32-bit flit in order to enable 1-bit error correction. Any single
fault that manifests along an ECC-guarded datapath section
can be corrected when the flit goes through an ECC unit,
located in each router at the output of the FIFO buffers. In
order to take full advantage of ECC, the BIST unit tracks
the location of every datapath fault and, if at all possible,
it reconfigures the router to ensure that every distinct path
between two ECC units contains at most one fault. If this
cannot be accomplished, the router is deemed faulty.

Six paths are possible between two ECC units, depending on
the selection of the bypass bus or crossbar (two options) and
the configuration of the port swapper (up to three options).
Fig. 3 illustrates these paths. The port swapper provides
three options for the network adapter connection and two
options for the other links, but it does not provide all possible

DEORIO et al.: RELIABLE ROUTING ARCHITECTURE AND ALGORITHM FOR NOCS 729

Fig. 3. Faults mitigated by ECC. Datapath faults can be corrected by ECC
as long as no more than one fault is encountered between two flit-level ECC
units. The bypass bus and port swapper provide alternate paths between routers
to reduce the number of faults that the ECC units observe. The example in the
picture shows six available paths: through crossbar or bypass bus in router A,
and through one of three possible FIFOs in router B (the port swapper selects
which FIFO buffer to use).

TABLE I

Area of the Baseline Router by Component, for Different

FIFO Buffer Sizes

Router Component Area (%)
FIFO Size

8-flit 16-flit 32-flit
Crossbar 10.5% 6.0% 3.0%
Decoder 3.0% 1.5% 1.0%
FIFO buffers 80.0% 89.0% 94.0%
Output logic 3.5% 2.0% 1.0%
Routing table 3.0% 1.5% 1.0%
Total baseline router 100% 100% 100%

14 495 μm2 26 173 μm2 49 676 μm2

The FIFOs comprise 80–94% of the baseline router area and are thus
especially susceptible to faults.

swap possibilities. When traversing the network, a flit initially
reaches the head of a FIFO in its starting router, goes through
an ECC unit for encoding, travels through the crossbar or
bypass bus, the link to its next router, the input port swapper
and finally reaches its next FIFO. At each unit along the path,
faults are diagnosed and cataloged by two BIST units. If two
faults accumulate in a same path, the bypass bus and port
swapper provide alternative setups to either avoid one of the
faults or move one of them to a different datapath.

For example, consider three faults: one in the crossbar,
another in a link, and a third in the default FIFO for the flit
in flight. Since the ECC implementation in Vicis can only
correct one of these faults, the crossbar bypass bus and input
port swapper must mitigate the remaining two. The bypass bus
will be used to avoid the crossbar fault, potentially resulting
in a loss of performance. The input port swapper will be used
to swap in a fault-free input port to the datapath, moving the
single-fault input port to another physical link that does not
have any other faults. Thus, full functionality is maintained,
even with three faults manifesting in the same datapath.

C. Flexible FIFOs

Analysis of a baseline router design informed the selection
of our reliable architectural features. Assuming a distribution
of faults proportional to the router component area, the largest
components—those with the most transistors—are the most
susceptible to faults. Thus, we strove to provide additional pro-
tection to large components. As shown in Table I, the FIFOs
comprise the vast majority of the router, 94% of the baseline
router area with 32-flit FIFOs. By comparison, 8-flit FIFOs

Fig. 4. Flexible FIFO design. A flexible FIFO enables Vicis routers to
continue operating correctly when using a partially faulty FIFO. While a
normal FIFO can fail with a single error, a flexible FIFO reconfigures around
the faulty entry.

comprise 80% of the router’s area. These results were obtained
with a 5-port single-cycle router with a routing table sized for a
3×3 network, synthesized with a 45 nm target library. Without
any reliability feature, a single fault could cause the entire unit
to fail. We thus set out to protect this essential component with
a flexible design that can overcome many faults.

FIFOs are comprised of a set of identical registers, and
are generally implemented with pointers to determine which
register is the head and which is tail. When an item is added
to the FIFO, the head pointer is incremented; when an item is
removed, the tail pointer is decremented. Thus, the registers
are accessed in order, with the first item in being the first item
out. The use of identical registers provides an opportunity for
a flexible design, with the goal of allowing healthy registers
to continue working while skipping faulty ones. Fig. 4 shows
an example of flexible FIFO operation. The “X” in the figure
indicates a FIFO register that experienced a fault. In a baseline
FIFO, the head and tail pointers will at some point try to
make use of this position, causing the entire FIFO to fail. With
this flexible FIFO design, the faulty register can be skipped
using pointer redirection, and enabling the FIFO to continue
operation with one less register.

To reconfigure the access to registers in a FIFO, the head
and tail pointers are indexed through a redirection table
mapping sequential FIFO positions to reconfigurable FIFO
positions. This allows some positions to be skipped, as il-
lustrated in Fig. 5. Effectively, this is similar to incrementing
(or decrementing) the head (or tail) counter multiple times
before accessing the next functional register, thereby skipping
over failed registers. The redirection table is indexed by the
head and tail pointers, and provides the index to a functional
FIFO entry as output. Additionally, the last entry in the table
controls the pointer reset signal, thus allowing the system to
adapt to the use of smaller FIFOs as the number of faults
increases. With this flexible design, a fault in the FIFO causes
only a single register position to fail, maintaining the router’s
functionality as long as at least one functional register remains.

D. Hard Fault Diagnosis

In order to reconfigure the system, each router must know
which of its components contain faults. Furthermore, the use
of ECC requires that Vicis knows precisely how many faults
are in each part of the datapath. We note that both permanent
faults, as well as electrical faults, can be diagnosed by Vicis,
providing that diagnosis can occur on a faster clock compared
to normal operation. Control logic is tested with pattern-based
testing and datapath faults are counted using datapath testing,
as discussed below.

730 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 5, MAY 2012

Fig. 5. Flexible FIFO buffer logic. The FIFO registers are indexed by the
head and tail pointers (counters) through a redirection table, allowing faulty
positions to be skipped, and adjusting for fewer FIFO registers.

The reconfiguration process begins when one router broad-
casts an error status bit through the network, although not
necessarily its location, via an extra wire in each link (we
assume that a fault detection solution is in place, as dis-
cussed in Section I). The initialized BIST unit then performs
a distributed synchronization algorithm with other routers’
BIST units, ensuring that each BIST in the network runs all
remaining routines in lock-step. After synchronization, each
component of each router is diagnosed for faults. The diagno-
sis step does not rely on information from previous diagnostic
phases, or from the detection mechanism, thus all permanent
faults are diagnosed (or re-diagnosed), regardless of whether
they are responsible for triggering this reconfiguration event, or
not. Once all components and routers have been tested, faulty
components are disabled and normal operation resumes. Since
the BIST units are operational only during reconfiguration,
they are power-gated off during normal operation for wear-
out protection.

Each functional unit is surrounded by wrapper logic, al-
lowing the BIST to assume control during fault diagnosis.
The wrapper simply consists of multiplexers for each input,
allowing the unit to switch between normal unit inputs and
testing inputs from the BIST. A schematic of this structure
is shown in Fig. 6. Since faults may also manifest in the
wrappers themselves, Vicis leverages interlocked testing to
simultaneously test both the hardware unit, and the wrapper
itself. That is, rather than testing the output directly from the
module, the BIST unit tests the output after the wrapper mux
(as it is indicated by the test flow arrows in Fig. 6). This allows
the BIST to test both the hardware unit and the wrapper logic
simultaneously.

The information from a complete BIST run is stored in a
configuration table, which contains two bits for each datapath
component: crossbar, inter-router link, input port swapper, and
FIFO. Each of these units is represented by two bits to indicate
fault free, one fault, and two or more faults. Additionally,
a redirection table stores flexible FIFO mapping information
(described in Section III-C), which is written directly by
the BIST. Fault information is later used by the swapping
algorithm. The status of control units is encoded with one
bit indicating functional or faulty. This is determined by a
signature match or mismatch. In both cases, Vicis is concerned
with the fault status of the component, rather than the exact
fault location within the component.

Fig. 6. Router unit wrappers. Wrapper muxes allow the BIST controller to
access each unit. Testing paths are interlocked through two muxes to enable
simultaneous testing of the wrapper and the unit under test.

1) Datapath Testing: The datapath test determines the
number and location of errors in a router’s datapath and in
the routing table. Units in the datapath need an exact count
of faults for each unit so that the maximum number of errors
is not exceeded on any path between two ECC units. The test
sends patterns consisting of all 1s or all 0s, looking for bit-flip
faults. A custom-designed bit-flip count unit determines if the
datapath has zero, one, or more bit flips, obviating the need for
multiplexers to inspect each bit individually. Each of the five
FIFO units in a router reuses the same test, limiting BIST unit
overhead. Datapath testing requires about 1000 total cycles.

2) Pattern-Based Testing: Pattern-based tests are used to
test the router’s control logic. Vicis uses a linear feedback
shift register (LFSR) to generate a number of unique patterns,
and a multiple input signature register (MISR) to generate
a signature. Each unit type tested with pattern-based testing
receives the same sequence of patterns from the LFSR, but
each has its own distinct signature. Identical units, such as
the decoders, have the same signature. A signature mismatch
will flag the corresponding unit as broken. Implementation of
the pattern-based test is lightweight due to the simplicity of
the LFSR and MISR structures. Pattern-based testing requires
approximately 150 000 cycles, and runs 25 000 patterns: this
is the dominating factor in overall BIST diagnostic runtime.

E. Input Port Swapping

During the initial evaluation of Vicis, we noticed that often a
few faults would disable multiple network links or disconnect
important processor nodes. To prevent this, we developed
input port swapping to consolidate several faults into a single
link failure, and to provide additional priority for maintaining
connected processors. In order to safely route through the
network, the routing algorithm (described in Section IV)
requires functional bidirectional links. Each link is comprised
of two input ports and two output ports, all four of which
must be fully functional for the link to be operational. If one
of these ports fails, port swapping may be used to maximize
functional bidirectional links.

Each input port is comprised of a FIFO buffer and a decode
unit, identical for each direction of traffic (see Fig. 2). Vicis’
input port swapper is used to modify which physical links are
connected to each input port. For instance, Fig. 7 illustrates an
example where a fault on the South port and a second fault in

DEORIO et al.: RELIABLE ROUTING ARCHITECTURE AND ALGORITHM FOR NOCS 731

Fig. 7. Port swapping unit. The port swapper allows the FIFOs to be
connected to different physical links. The local adapter is equipped with more
options to maximize the number of cores connected to the network.

Fig. 8. Port swapping example. Routers connected to the network are hashed
in the figure. On the left, an input port failure on the center router and an
output port failure affect two different links. By swapping the failed input port
to the link connected to the failed output port, Vicis increases the number of
functional links from two to three.

the adapter FIFO are consolidated, allowing the adapter link
to use the former South FIFO. While it would be possible to
include an additional output port swapper at the output ports,
their small area and consequent low probability of faults did
not warrant the area overhead of an additional swapper. On the
other hand, the input ports constitute the majority of the total
router area, as discussed in Section III-C and Table I, and
therefore are most susceptible to faults. Thus, adding input
port swappers provides Vicis with the ability to consolidate
the impact of several faults into one, or a few, links.

An example of input port swapper operation is shown in
Fig. 8. The left side of the figure illustrates five routers in a
star configuration: the router in the center has a failed input
port and the one on the right has a failed output port. Since
these two failed ports are on different links, both links would
be considered failed and unusable. However, we note that one
of the failed ports is an input port, so the connected physical
channel can be changed using input port swapping. The port
swapping algorithm reconfigures the system to connect the
two failed ports, as shown on the right-hand side of Fig. 8.
Thus, in this example Vicis takes advantage of the inherent
redundancy of the router to increase the number of functional
links for the center router from two to three.

In our implementation of the input port swapper, the link to
the local network adapter can be connected to three different
input ports, while the other links are able to connect to only
two possible input ports. The port swapping algorithm is
implemented as a greedy algorithm, taking into account the
failure status of connected input ports and FIFOs. Additionally,
it considers the number of bit failures along the datapath, so
as to avoid connecting paths whose bit-errors exceed what
can be corrected by ECC (see Section III-B). Additionally, it
prioritizes the local network adapter link, making sure that it is
always connected, if at all possible. Pseudocode for the port-

Fig. 9. Pseudocode of port-swapping algorithm. The port swapping algo-
rithm first disables connections with control faults and too many datapath
faults. It then enables connections for which there is only one option. Finally,
the algorithm selects the top priority connection among those available.

swapping algorithm is shown in Fig. 9. The algorithm first
eliminates connections that contain control faults and more
than one datapath fault. It then connects input ports that have
only one viable option. Finally, it selects the highest priority
input port among those connected to the FIFO.

After the connection is selected, the port swapping algo-
rithm writes the new port configuration to the router configu-
ration table, a set of registers that keeps track of the current
link status. This configuration serves to inform the rerouting
algorithm as to which links are functional, enabling it to carry
the network reconfiguration forward.

IV. Reliable Routing Algorithm

Following reconfiguration within the router, a Vicis-
equipped network leverages our reliable and deterministic
routing algorithm to work around failed links and failed nodes
due to permanent faults. The Vicis routing algorithm recon-
figures network routing tables in an offline process based on a
basic routing step, which is repeated several times for each net-
work destination. The basic routing step uses local information
from neighboring routers to determine connectivity, and ap-
plies a set of rules to avoid deadlock (deadlocks occur less than
1 in 10 000 topologies). These rules (disabled turns or links)
are selectively relaxed in a preceding checking phase to max-
imize the connectivity of a faulty network topology. In order
to mitigate rare deadlock situations, Vicis can be paired with
a deadlock detection mechanism [55]. Once diagnosis is com-
plete, our light-weight routing reconfiguration requires fewer
than 1000 cycles to reconfigure the network. By comparison,
Immunet [41] requires approximately 10 000–20 000 cycles.

The Vicis routing algorithm is able to tolerate many faults
in any link or router, over 1 fault in 2000 gates in our
experiments. Virtual channels are not required, but can be used
to provide additional performance if available. The algorithm
is implemented as a small hardware module included with
each router and runs in distributed lock-step.

After router reconfiguration is completed, as discussed in
the previous section, transistor-level faults now appear to the
routing algorithm as link-level failures. Routers that have
become entirely nonfunctional are represented by nodes with
all faulty links. In order to correctly determine routing paths,
each router must first discover which of its adjacent links are
faulty. Then it works in a distributed fashion with its neighbors
to collectively reconfigure their routing tables based on this

732 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 5, MAY 2012

Fig. 10. Pseudocode of routing algorithm. The algorithm first determines a
set of rules that maximizes connectivity while avoiding deadlock using the
rule check() function (Fig. 11). Once rules have been established for
the specific topology, Vicis uses the basic routing step() (Fig. 12)
to determine a path to each destination.

information. The distributed algorithm uses a basic routing
step that follows a set of rules specific to meshes or tori.

A. Basic Routing Step

Fig. 10 shows an overview of the routing algorithm. First,
all routers in the network are synchronized (line 1) and a set
of baseline rules (disable turns or links) is established (line 2):
the algorithm then proceeds in lock step, first determining a
set of rules to maximize the connectivity of a faulty network
topology (lines 3–5) while avoiding deadlock most of the time.
Then, each destination is routed using a basic routing step
(lines 6, 7) that determines routing paths and uses the rules to
avoid deadlock.

Before destinations can be routed, Vicis determines the
rules that must be enforced to avoid deadlock. It begins with
a set of baseline rules specific to meshes and to tori, and
then relaxes some of them to maximize connectivity in a
faulty topology. In the Vicis routing algorithm, rules take
the form of disabled turns through a single router. Turns
are used to avoid deadlock, and are specified as a pair of
neighbors 〈neighbor1, neighbor2〉 where a data packet would
execute a routing turn when going from neighbor1, through
the router under consideration, and then to neighbor2. For
simplicity, in the case of torus topologies, rules may also
be specified as disabled links for the router under analysis.
A link is completely specified by the pair of routers that
it connects. Rules are intended to avoid deadlock; we have
implemented two sets of baseline rules, one specific for 2-D
meshes (Section IV-C) and another for tori (Section IV-D).
While in a fully functional topology the complete set of
baseline rules is necessary to avoid deadlock, a faulty one
may benefit from relaxing some rules to maintain connectivity
to partially connected nodes or portions of the network.
Vicis addresses this problem by identifying rules that obstruct
network connectivity and selectively removing them. Fig. 11
shows this procedure, which is applied to each destination
in turn: each router executes the rule check() function
in order, checking each turn or link. Routes that obstruct
network connectivity are those where no path exists between
two routers due to a rule (line 3). The connectivity between
two routers is determined by the path exists() function,
which tests the connectivity between two neighbors of a router.
This test is true if the middle router performing the test has a
functional link to both of the neighbors in question. If a path
does not exist, rule check() removes the offending rule
(line 4).

Fig. 11. Pseudocode for rule checking. Some forbidden turns are enabled
during the rule-checking phase in order to maximize network connectivity in
partially faulty topologies.

Fig. 12. Pseudocode of basic routing step. The basic routing step is invoked
once for each destination, and the algorithm runs on each router concurrently.
It updates the local routing table based on connectivity to neighboring routers,
communicated through flags, while rules are used to avoid deadlock. Once
the local routing table has been written, the router informs its neighbors of
the new routing path through flags.

The basic routing step outlined in Fig. 12 updates the rout-
ing tables in a local router for a specified destination (dest).
All routers in the network execute the same basic routing
step algorithm concurrently and synchronously to route one
destination at a time. First, each router performs a routing table
update (starting on line 2), waiting until routing information
for the current destination becomes available (line 3). If the
basic routing step is routing to the local router (SELF), then
the routing table is updated for the current destination (lines
4, 5). Otherwise, the router waits to receive a flag from one
of its neighbors, indicating that the corresponding neighbor
is aware of a route to the destination (line 7). Often, multiple
neighbors will offer a route, in which case only one is selected,
based on the previously determined rules of the topology and
written to the routing table (lines 8–11). When a destination
entry is written to the routing table, the corresponding entry is
validated, and the direction to that destination is specified. If
no route to the destination has been discovered after a timeout,
as may be the case in topologies containing many faults, the
corresponding routing table entry is invalidated (lines 12–15).

In the transmission portion of the basic routing step (Fig. 12,
lines 17–21), all routers whose destination entry is valid will
send a flag to all of their adjacent routers, while other routers
are silent. Once a destination entry is routed in one router, that
router broadcasts it to its neighbors using a flag, thus allowing
the neighbors to discover a path to the destination. Flags are

DEORIO et al.: RELIABLE ROUTING ARCHITECTURE AND ALGORITHM FOR NOCS 733

Fig. 13. Basic routing step example. In the basic routing step, each router updates its routing table for one destination. Each panel in the figure shows one
iteration of the basic routing step when routing to the top left router. The destination router is shaded, nodes being currently routed are hashed and nodes
that have completed routing are cross-hatched. Turns are disabled according to the specific topology rules in order to avoid deadlock, and are indicated by
L-shapes.

transmitted among routers using the physical links connecting
them, since normal data traffic is not in flight at this time.

Fig. 13 illustrates an example of basic routing step operation
for one destination (shaded node) in a 3×3 mesh network with
a single fault, indicated by an “X.” The destination routes itself
(first panel), and the subsequently transmitted flags allow the
next two nodes to route to the same destination (cross-hatched
nodes in the second panel). In the third panel, two more nodes
are routed, but a third node connected via a disabled turn is not
routed, because of the baseline rules for mesh topologies. This
process continues in the following panels, with more nodes
being routed. Routing is completed in the final panel, noting
that the final node (hashed) routes to the East since the turn
to the West is disabled.

For a network with N routers, the basic routing step must
be repeated N−1 times for each destination to cover the worst
case scenario, where the routers are connected as a long chain
due to faults. At the completion of this process, if a router
still has an invalid entry for the destination under analysis,
then that destination is unreachable from that router.

B. Rules for the Basic Routing Step

During the basic routing step, routers must follow a set
of rules to avoid enabling routing paths that could create
deadlock loops. The rules consist of a list of disallowed turns
or links. A turn through a router 〈neighbor1, neighbor2〉 can
be disallowed by having the router in the elbow of the turn
properly configuring its routing table, so that no data packet
is routed through the turn. To implement this, during the basic
routing step, if the local router has updated its routing table
with rtable write(dest, neighbor2), then it would not transmit
a flag to neighbor1.

Rules are enforced at each router, depending on both the
topology of the network and the configuration of the faults. For
example, a router that knows that a link must be disabled due
to faulty hardware will refrain from transmitting flags through
that link. In the following discussion, we use the basic routing
step to evaluate which rules are necessary to avoid deadlock.
Each router will start with a set of baseline rules, removing
or adjusting them based on the set of faulty links.

C. 2-D Mesh Routing

A common network topology for large scale chip mul-
tiprocessors is the 2-D mesh, due to its simple physical
implementation. Loops may form naturally when routing in
a mesh with faults, so Vicis uses rules to prevent them. In the
presence of faults, these rules must be adjusted to maximize
connectivity.

Fig. 14. Disabled turn example. The left-hand panels show routing for the
same set of packets under three different conditions: first, a fault-free mesh
is routed free of deadlock. The utilized routing paths are shown on the right.
The second row shows how a single fault can cause deadlock with the same
set of packets, now routed differently due to the fault. Finally, the bottom row
shows how a turn disabled by Vicis avoids the deadlock.

In fault-free mesh networks, loops can be avoided by
prioritizing turns: each router has four ports, North, South,
East, and West. When faced with multiple options for routing
a single packet, a router prioritizes among these four links
in the given order, resulting in deadlock-free routing. This is
shown in the first row of Fig. 14, where the arrows on the left
indicate the traffic patterns and the dashed lines on the right
show utilized turns and paths. As shown in the second row
of the figure, even a single fault in the network may cause a
deadlock loop to form. In this case, the same set of packets
are transmitted, but they must use different paths (second row,
left). The addition of a turn rule (third row) shows the same
set of packets once again, but this time routed deadlock-free
through a turn rule in the bottom left corner of the network.

Glass and Ni [56] proposed a technique to prevent deadlock
situations by disallowing pairs of turns. One turn must be
disallowed for the clockwise direction, and another one for
the counter-clockwise direction. The bottom row of Fig. 14
shows the application of this technique to avoid deadlock. In
our experience, the best results are obtained when disallowed
turns are symmetric pairs, for example North→East and
East→North. This helps in grouping faults, limiting the impact
of a single failure. In our solution, we choose to disallow the
North→East and East→North turns.

1) Selectively Removing 2-D Mesh Rules: Strict adherence
to the disallowed turn rule may produce an inconsistent

734 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 5, MAY 2012

Fig. 15. Removing rules. In the presence of faults, disallowed turns can lead
to (a) disconnected networks. This occurs because the routers on the Western
edge have the East→North turn disabled to avoid deadlock. Therefore, we
remove the turn rule at the West router, restoring (b) network connectivity.

network, meaning that when a router can reach another, the
corresponding return path could be disabled. For instance, on
the left-hand side of Fig. 15, a single faulty horizontal link
on the North edge of the network prevents six of the routers
from obtaining a valid path to the top left router. All of the
routers on the West edge of the network can reach this router
by simply directing traffic to the North; however, since the
East→North turn is disallowed, these routers never transmit a
flag toward the East, cutting off the rest of the routers.

In order to contain partitioning in faulty networks, Vicis
must identify routers where the turn rules should be re-
enabled. This is performed during the rule checking procedure
described in Fig. 11. We check one turn at a time, so the
minimal number of rules are removed in sequence.

D. 2-D Torus Routing

Torus routing presents unique challenges for the basic
routing step, and requires a more complex set of baseline rules
than meshes.

1) 2-D Torus Rules: Torus networks may form loops
around the outside of the network, in addition to the loops
that may form in a mesh. Vicis addresses this by leveraging
additional rules besides those used for mesh networks. First, it
disallows wrap-around links along the top edge of the network,
and then it disallows one horizontal link in each row of
the network. While the horizontal links prevent a loop from
forming in the same row, the vertical link rules along the top
edge prevent a zigzagging pattern from looping around the
network. Additionally, this prevents loops that would form
in the same column. We choose a staggered pattern for the
disabled horizontal links in order maintain the performance
provided by the torus topology.

Both the vertical link rules and the horizontal link rules need
to be checked. First, a horizontal broadcast, where knowledge
of broken links propagates horizontally, lifts any horizontal
link rules. Since this broadcast starts at the ends of each broken
link it is guaranteed to reach every router in the row.

Vertical link rules can be checked in a similar fashion to the
turn rules. The router on one end of the link enforces the rule.
Vicis applies the basic routing step to the router at the other
end of the link and checks if the first router can be reached. If
not, the link is needed for connectivity and the rule is removed.

2) Turn Rule Consistency: A deadlock path in the network
can result from removing a turn rule. However, keeping the
rule can create an inconsistent network, meaning that when
a router can reach another, the corresponding backward path

may be disabled and a different return path is instead available.
Inconsistent networks may also cause deadlock situations
because the outgoing and return paths together may form a
cycle. This can be caused by competing paths that traverse
around the outside of the network. Vicis resolves this issue by
ensuring that paths traversing the outside of the torus network
also use the same return path. With this mechanism, Vicis
maintains a consistent network and avoids deadlock.

V. Limitations

While Vicis is able to maintain a functional NoC structure
by reconfiguring the router architecture and the network topol-
ogy, there are some limitations in its approach. First, it focuses
on diagnosis and reconfiguration, and thus does not provide
full system recovery. However, it is amenable to cooperation
with a number of recovery mechanisms, such as packet re-
transmission [57], specialized architectural solutions [58], or
checkpointing [20].

Second, while most of the hardware added by Vicis does
not affect the critical path, some components do. Specifically,
the port swapper and flit-level ECC units are on the critical
path of our single-cycle router: from the output of one router’s
FIFO buffers to the input of its neighbor’s. Additionally,
while the BIST logic runs offline, the wrappers that allow the
BIST to isolate components for testing lie on the critical path
between components.

Finally, Vicis’ routing algorithm is subject to pathological
cases that may prevent deadlock-free routing. These infrequent
cases arise in networks with many faults, and are the result of
pathological situations in rule checking by the Vicis routing
algorithm. The algorithm uses rules, a set of disabled turns or
links, to avoid deadlock. These rules are selectively removed to
maximize network connectivity in topologies with many faults,
as described in Section IV-A. In the majority of situations,
this technique enables a greater number of nodes to remain
connected to the network. However, rare situations arise when
faults in a network topology partition the network into disjoint
subnetworks connected by a single turn that has been enabled
during the rule checking process. Fig. 16 shows an example of
such a situation. The left panel shows the network before the
rule removal: the configuration of faults has created two dis-
joint subnetworks separated by a disabled turn. Rule checking
causes this turn to be enabled, resulting in the topology on the
right. The dashed line shows the deadlock loop now formed,
passing through the connecting router twice.

To evaluate the impact of pathological cases on various
topologies, we examined 4 × 4, 8 × 8, and 12 × 12 meshes
and tori with many faults. First, we injected faults at random
locations, obtaining one million distinct faulty topologies, and
then allowed the network to reconfigure. We then inspected
the final routing configuration for deadlocks. Fig. 17 shows the
results of this paper: as shown in the chart, all network config-
urations exhibit deadlock in less than 1 in 10 000 topologies,
when one tenth of the links are faulty. Smaller 4×4 networks
were free of deadlock 100% of the time for 2-D meshes, and
deadlock for 1 in 10 million cases in 2-D tori, regardless of
the number of faulty links. We noticed that in larger networks,
the probability of a routing configuration that allows deadlock

DEORIO et al.: RELIABLE ROUTING ARCHITECTURE AND ALGORITHM FOR NOCS 735

Fig. 16. Pathological case for large networks with many faults. A deadlock
loop sometimes forms by passing through a router twice.

Fig. 17. Deadlock-free topologies with increasing faults. All topologies were
found to be free of deadlock at least 99.99% of the time with up to 10% of
the links broken.

increases as the number of faults increases beyond one tenth
of the links.

Finally, the design of Vicis leads to a number of interesting
possibilities for future work. While Vicis implements a simple
parity error correction, other codes are possible. The impact
of various ECC encodings on overall system error-tolerance
would highlight the tradeoffs of performance and correctness.
Additionally, some of the techniques applied by Vicis to
mitigate permanent faults may also be effective for transient
errors, another possible direction for future investigation.

VI. Experimental Results

We evaluated Vicis and the routing algorithm using two
models: a slower, but more accurate gate-level hardware
description model and a faster architectural model. Simulations
were conducted by injecting faults within the system on two
different sets of workloads: uniform random traffic and the
PARSEC benchmarks [59].

The hardware model was implemented in Verilog HDL, and
includes both a 3 × 3 torus topology and a 3 × 3 mesh. In
both cases, Vicis’ reliability enhancements were added to the
baseline router. The baseline design is a single-cycle, five-port
router with one link to a local network adapter, and four links
to its neighboring routers. Each router’s input is connected
to a 32-flit FIFO, which passes through 32-bit data flits. The
router was synthesized, and automatically placed and routed to
obtain our final simulated netlist. This highly-accurate model
was used for simulations, as well as to inform the fault model
to be used for the architectural simulations.

The architectural model was a custom, cycle-accurate sim-
ulator written in C++ with a configuration similar to that of
the hardware model. The fast architectural model made it
possible to evaluate larger topologies, including a 8 × 8 mesh
and a 8 × 8 torus. This model also enabled higher testing
scalability, making it possible to run longer random tests,
and enabling the system to handle the PARSEC benchmarks.
The FIFO buffers in the architectural model accommodated
16 flits. Additionally, a statistical model to generate faulty
network topologies (described in Section VI-A) was generated,
informed by the simulation results of the hardware models.

Test packets were generated at each network-adapter by a
random traffic generator which injected traffic to and from
all network locations with uniform random probability. Packet
length varied from 1 to 10 flits with a uniform random
distribution. Finally, to evaluate correctness, packets injected
at each network adapter were checked for arrival at the correct
destination with the correct data.

A. Fault Model

Our fault model was designed to reflect the accumulation
of permanent transistor faults that occur during the lifetime
of a chip. We generated a fault model for our architectural
simulator by evaluating the impact of faults at the gate-level
and projecting it to the architectural level as link failures. To
this end, we injected stuck-at faults at the gate outputs of
our reliability-enhanced hardware model in randomly selected
locations. Faults were injected in both the baseline router
components and the additional reliability components. The
BIST was an exception, since it can be power-gated during
normal operation, and thus is much less susceptible to perma-
nent faults. The hardware model was synthesized, placed, and
routed prior to fault injection. The random selection of faulty
gates was weighted by gate area. This is consistent with the
breakdown patterns observed experimentally by Keane et al.
[60]. While this model works well for gate-level analysis, it
must be abstracted for high-level architectural evaluations.

Our architectural simulator must be informed of the location
of faulty links. Thus, we must map gate-level faults to link-
level faults. To this end, we leveraged the fault impact analysis
in our gate-level model to form a probabilistic link fault model.
We first ran simulations on the HDL design of our Vicis router
after injecting faults, and allowed the hardware to reconfigure.
With 100 000 distinct RTL simulation results, we built a model
mapping gate-level errors to link-level errors. Fig. 18 shows
the distribution of faults, mapping gate-level router faults to
link failures on our 5-port router. Link failures could range
from 0, indicating no faults, to 5, indicating that all links
were faulty. For example, with eight faults in a router, all
links will be broken with probability 0.2; one link will be
functional with probability 0.25, and so on. This model was
used in the architectural simulations to enable fast simulation
with industrial benchmarks and longer traces.

B. Fault Tolerance

We first compared the fault tolerance of a network com-
prised of Vicis routers to a comparable network implementing

736 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 5, MAY 2012

Fig. 18. Fault model. The graph shows the distribution of faults among the
five router links as a function of gate-level faults. Vicis leveraged 100 000
low-level HDL simulations to form a statistical fault model used by our high-
level architectural simulator. The figure shows the mapping of gate-level router
faults in the low-level simulations to link failures used in high-level simulation.

TMR. TMR provides probabilistic reliability: since the voter
takes the most common signal of the three replicated units,
it is possible for just two faults to cause the system to fail.
In the worst case, a single fault could cause system failure
if it occurred in a clock tree or another nonreplicable cell.
Unlike BulletProof [47] and other prior work that relies on
maintaining total functionality, Vicis is able to tolerate many
simultaneous faults, including ones that render entire routers
useless, since it is able to route around them. Thus, Vicis
can maintain near 100% reliability even for a high number
of faults, trading off performance for correctness. A key
difference between TMR and Vicis is performance. TMR
maintains constant, 100% performance until any component
loses one of its redundant versions, after which the entire
system fails. On the other hand, Vicis enables gracefully
degrading performance as faults accumulate.

In our next study on the gate-level model, we tested again
a gate-level 3 × 3 torus network, considering 11 different
situations with varying simultaneous faults: 1, 10, 20, 30, 40,
50, 60, 70, 80, 90, and 100. The case of 100 faults corresponds
to approximately one fault for every 2000 gates. For each
number of simultaneous faults, we considered 1200 different
random faulty topologies. Then, we analyzed each router in the
topology, considered how many faults it sustained, whether it
was still functional and had a functional local network adapter,
and what reliability features it was utilizing. The results are
shown in Fig. 19. We note from Fig. 19 that the input port
swapper is very successful at keeping cores connected to the
network. As reported in the figure, only a very small fraction of
the functioning routers do not have a functional local adapter,
as indicated by the closeness of the two curves. The swapper
had a high utilization, being used nearly 24% of the time for
routers with seven faults.

When considering the utilization of the bypass bus, it was
much less often invoked. At seven faults, the crossbar bypass
bus was used less than 6% of the time. Two reasons contributed
to this: first, the crossbar is relatively small—less than 5%
of the total area of the router and thus suffered a smaller
incidence of failures. Second, the crossbar is protected by both
the input port swapper and the ECC mechanism.

Fig. 19. Utilization of reliability features with increasing router faults. The
plot reports the probability of a functional (as well as of a disconnected) router
over an increasing number of faults and whether the local network adapter is
still functional. Additionally, we indicate which reliability features were used
to enable a router to remain functional.

Fig. 20. Network performance as faults increase with a 3×3 torus network.
Normalized network throughput is shown as the number of faults increases.
Throughput is normalized to the bandwidth of the available network adapter
links. The shaded region shows the 5th–95th percentiles, while the line
represents the median.

C. Performance in the Presence of Faults

We examined the effect of faults on network performance.
Fig. 20 shows that network performance gracefully degrades
as the number of faults in a gate-level 3 × 3 torus network
increases. The black line (marked with squares) shows the
number of connected cores. At 90 faults, with more than ten
faults per router on average, we found that over 50% of the
system’s cores were still available. The figure also shows the
normalized network throughput (marked with triangles). For
the first 30–40 faults, median network throughput decreases
due to link failures, forcing packets to take longer paths.
Beyond 40 faults however, performance begins to increase as
a result of the smaller networks formed due to partitioning.
This is due to routers becoming disconnected, decreasing the
size of the remaining network. Shading indicates the 5th–95th
percentile range of normalized throughput.

We then examined network latency under different traffic
densities using uniform random traffic. For this paper, we used
the C++ network model and measured the average latency of
packets traversing a 8 × 8 2-D torus network as the density
of randomly generated traffic increased. In Fig. 21, density

DEORIO et al.: RELIABLE ROUTING ARCHITECTURE AND ALGORITHM FOR NOCS 737

Fig. 21. Packet latency as traffic density increases in a 8 × 8 torus network.
The chart reports results for 0, 100, and 200 faults.

Fig. 22. Packet latency with PARSEC benchmarks in a 8×8 torus network.
The average is shown by the heavy dotted line, showing network latency
increasing as faults increase up to 100. Beyond 100 faults, latency decreases
due to decreasing functional network size.

is reported as a fraction of the total injection bandwidth of
the system, which is fixed and proportional to the number of
routers in the network. For low traffic densities, the latency
remains under 20 cycles, however, as the density increases,
network saturation occurs, resulting in a latency wall. When
subjected to faults, the latency wall is reached at lower traffic
densities, as indicated in the graph. We noted, however, that
the latency wall for 200 faults is actually farther out than that
of 100 faults. This is due to a significantly smaller network
size at 200 faults due to network partitioning.

For evaluation of Vicis’ performance with more realistic
workloads, we also evaluated our solution with the set of
PARSEC benchmarks [59]. In this experiment (Fig. 22), we
configured our C++ simulator to a 8 × 8 torus network and
mapped gate-level faults to network link faults as described in
Section VI-A. Each data point represents 1000 random fault-
injected topologies with different random seeds. Traffic was
injected using traces obtained from an architectural simulation:
100 000 packets were injected. We noticed that similar trends
appear as in our previous experiment with random traffic:
latency increases as faults increase, up to 100 faults. Beyond
100 faults, the latency begins to decrease, as the remain-
ing functional portion of the network shrinks. The resulting
smaller effective network is due to the increasing number of
routers completely disabled by faults.

Fig. 23. Impact of flexible FIFO design on Vicis’ performance in a 8 × 8
torus network. The plot indicates that the use of flexible FIFOs allows a
Vicis-equipped network to hit the latency wall at higher injection rates.

TABLE II

Area Breakdown of Vicis Router by Component

Router Component Vicis Area (μm2) Baseline Area (μm2)
Crossbar 2657 1487
Decoder 1350 395
Flexible FIFO buffers (32-flit) 54 303 46 706
Output logic 925 644
Routing table 585 416
Misc 854 28
BIST and reconfig. logic 5082 −
Bypass bus 201 −
ECC 1544 −
Port swapper 603 −
Total 74 805 μm2 49 676 μm2

Overhead 51%

Finally, we investigated the effectiveness of flexible FIFOs.
In these experiments, we simulated a 8×8 torus network with
the C++ model. A portion of the failures proportional to the
area of the FIFOs were injected directly into the FIFOs, result-
ing in effectively smaller FIFO buffers after reconfiguration.
We then ran simulations injecting 100 000 packets of uniform
random traffic. 1000 different faulty topologies were used for
each datapoint. Fig. 23 shows the average latency curves for
the faulty topologies with 100 injected faults. The no-fault
case is also shown for reference. First, the chart shows that
with no injected faults, the flexible FIFO provides exactly the
same performance as the baseline FIFO. As we did earlier, we
again note that the fault-injected topology reaches the latency
wall sooner. However, with flexible FIFOs, this effect can be
mitigated, reaching the latency wall at an injection rate of
approximately 0.1, compared to a previous 0.07.

D. Area Overhead

The physical design of the Vicis router was carried out with
an automated place and route tool chain after synthesizing
with Synopsys Design Compiler, targeting a 45 nm technology.
The baseline router was also designed in this fashion. The
resulting Vicis reliable router with 32-flit FIFOs comprised
74 805 μm2, for an area overhead of 51% compared to the
baseline router. This includes both the hardware to implement

738 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 5, MAY 2012

the routing algorithm, as well as all the architectural features.
Table II shows the overhead of each component in the Vicis
router in a 3 × 3 network. Among the reliability components,
the BIST logic is the largest.

VII. Conclusion

We have presented Vicis, a reliable network-on-chip that
is able to tolerate many faults in both the router components
and the reliability components themselves. It maintains cor-
rect operation in the face of faults, trading off performance
for correctness. As the number of failures increases, Vicis
mitigates errors by reconfiguring both the router architecture
and network routing protocol. By leveraging the redundancy
inherent in networks-on-chip, and NoC routers, Vicis can
maintain high reliability, while incurring a 51% overhead.

A built-in self-test at each router diagnoses the number and
locations of hard faults. Architecture features including ECC,
a crossbar bypass bus, and port swapping are then deployed
to work around faults. Finally, routers work together to run
a distributed in-hardware network reconfiguration algorithm,
thus bypassing broken links and routers. We showed that Vicis
is able to provide significant area and reliability advantages
over TMR, tolerating fault rates of over 1 in 2000 gates.

References

[1] D. Fick, A. DeOrio, V. Bertacco, D. Sylvester, and D. Blaauw, “A highly
resilient routing algorithm for fault-tolerant NoCs,” in Proc. DATE, Apr.
2009, pp. 21–26.

[2] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester,
“Vicis: A reliable network for unreliable silicon,” in Proc. DAC, Jul.
2009, pp. 812–817.

[3] T. G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig, P. Brett,
W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, and
S. Dighe, “The 48-core SCC processor: The programmer’s view,” in
Proc. SC, Nov. 2010, pp. 1–11.

[4] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan,
F. Montenegro, J. Stickney, and J. Zook, “TILE64 processor: A 64-core
SoC with mesh interconnect,” in Proc. ISSCC, Feb. 2008, pp. 88–598.

[5] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts,
Y. Hoskote, N. Borkar, and S. Borkar, “An 80-tile sub-100-w teraFLOPS
processor in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 1,
pp. 29–41, Jan. 2008.

[6] W. Dally and B. Towles, “Route packets, not wires: On-chip intercon-
nection networks,” in Proc. DAC, 2001, pp. 684–689.

[7] L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques
in direct networks,” IEEE Comput., vol. 26, no. 2, pp. 62–76, Feb. 1993.

[8] G. D. Micheli, “Reliable communication in systems on chips,” in Proc.
DAC, Jul. 2004, p. 77.

[9] S. Borkar, “Microarchitecture and design challenges for gigascale inte-
gration,” in Proc. MICRO, Dec. 2004, p. 3.

[10] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The impact of
technology scaling on lifetime reliability,” in Proc. DSN, Jun.–Jul. 2004,
pp. 177–186.

[11] S. Furber, “Living with failure: Lessons from nature?” in Proc. ETS,
May 2006, pp. 4–8.

[12] S. Borkar, N. P. Jouppi, and P. Stenstrom, “Microprocessors in the era
of terascale integration,” in Proc. DATE, Apr. 2007, pp. 1–6.

[13] A. Pellegrini, V. Bertacco, and T. Austin, “Fault-based attack to RSA
authentication,” in Proc. DATE, Mar. 2010, pp. 855–860.

[14] J. H. Stathis, B. P. Linder, R. Rodrguez, and S. Lombardo, “Reliability
of ultrathin oxides in CMOS circuits,” Microelectron. Reliab., vol. 43,
nos. 9–11, pp. 1353–1360, 2003.

[15] M. Alam, “A critical examination of the mechanics of dynamic NBTI
for PMOSFETs,” in Proc. IDEM, Dec. 2003, pp. 14.4.1–14.4.4.

[16] P. B. Ghate, “Electromigration-induced failures in VLSI interconnects,”
in Proc. Reliab. Phys. Symp., Mar. 1982, pp. 292–299.

[17] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and
Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.

[18] M. Hosseinabady, A. Banaiyan, M. N. Bojnordi, and Z. Navabi, “A
concurrent testing method for NoC switches,” in Proc. DATE, Mar. 2006,
p. 6.

[19] N. Karimi, A. Alaghi, M. Sedghi, and Z. Navabi, “Online network-on-
chip switch fault detection and diagnosis using functional switch faults,”
J. Universal Comput. Sci., vol. 14, no. 22, pp. 3716–3736, 2008.

[20] D. Sorin, M. Martin, M. Hill, and D. Wood, “SafetyNet: Improving
the availability of shared memory multiprocessors with global check-
point/recovery,” in Proc. ISCA, 2002, pp. 123–134.

[21] M. Prvulovic, Z. Zhang, and J. Torrellas, “ReVive: Cost-effective archi-
tectural support for rollback recovery in shared-memory multiproces-
sors,” in Proc. ISCA, 2002, pp. 111–122.

[22] W. J. Dally, L. R. Dennison, D. Harris, K. Kan, and T. Xanthopou-
los, “The reliable router: A reliable and high-performance commu-
nication substrate for parallel computers,” in Proc. PCRCW, 1994,
pp. 241–255.

[23] J. Duato, “A theory of fault-tolerant routing in wormhole networks,”
IEEE Trans. Parallel Distributed Syst., vol. 8, no. 8, pp. 790–802, Aug.
1997.

[24] M. E. Gomez, J. Duato, J. Flich, P. Lopez, A. Robles, N. A. Nordbotten,
O. Lysne, and T. Skeie, “An efficient fault-tolerant routing methodology
for meshes and tori,” IEEE Comput. Architecture Lett., vol. 3, no. 1, p.
3, Jan.–Dec. 2004.

[25] M. Koibuchi, H. Matsutani, H. Amano, and T. M. Pinkston, “A
lightweight fault-tolerant mechanism for network-on-chip,” in Proc.
NoCs, Apr. 2008, pp. 13–22.

[26] A. Chien and J. H. Kim, “Planar-adaptive routing: Low-cost adaptive
networks for multiprocessors,” in Proc. ISCA, 1992, pp. 268–277.

[27] Z. Zhang, A. Greiner, and S. Taktak, “A reconfigurable routing algorithm
for fault-tolerant 2-D-mesh network-on-chip,” in Proc. DAC, Jun. 2008,
pp. 441–446.

[28] M.-J. Tsai, “Fault-tolerant routing in wormhole meshes,” J. Interconnec-
tion Netw., vol. 4, no. 4, pp. 463–495, 2003.

[29] P.-H. Sui and S.-D. Wang, “Fault-tolerant wormhole routing algorithms
for mesh networks,” IEEE Comput. Digit. Tech., vol. 147, no. 1, p. 9,
Jan. 2000.

[30] S.-P. Kim and T. Han, “Fault-tolerant wormhole routing in mesh with
overlapped solid fault regions,” Parallel Comput., vol. 23, no. 13, pp.
1937–1962, Dec. 1997.

[31] S. Chalasani and R. Boppana, “Communication in multicomputers with
nonconvex faults,” IEEE Trans. Comput., vol. 46, no. 5, pp. 616–622,
May 1997.

[32] S. Rodrigo, J. Flich, J. Duato, and M. Hummel, “Efficient uni-
cast and multicast support for CMPs,” in Proc. MICRO, Nov. 2008,
pp. 364–375.

[33] J. Flich and J. Duato, “Logic-based distributed routing for NOCs,”
Comput. Architecture Lett., vol. 7, no. 1, pp. 13–16, Jan. 2008.

[34] C. Liu, L. Zhang, Y. Han, and X. Li, “A resilient on-chip router design
through data path salvaging,” in Proc. ASPDAC, Jan. 2011, pp. 437–442.

[35] A. Kohler and M. Radetzki, “Fault-tolerant architecture and deflection
routing for degradable NoC switches,” in Proc. NoCs, May 2009, pp.
22–31.

[36] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho,
F. Silla, and J. Duato, “Addressing manufacturing challenges with cost-
efficient fault tolerant routing,” in Proc. NoCs, May 2010, pp. 25–32.

[37] A. Sanusi and M. Bayoumi, “Smart-flooding: A novel scheme for fault-
tolerant NoCs,” in Proc. IEEE SOCC, Sep. 2009, pp. 259–262.

[38] M. Pirretti, G. Link, R. Brooks, N. Vijaykrishnan, M. Kandemir, and
M. Irwin, “Fault tolerant algorithms for network-on-chip interconnect,”
in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, Feb. 2004, pp. 46–51.

[39] P. Bogdan, T. Dumitras, and R. Marculescu, “Stochastic communication:
A new paradigm for fault-tolerant networks-on-chip,” VLSI Des., vol.
2007, no. 95348, p. 17, 2007.

[40] W. Song, D. Edwards, J. Nunez-Yanez, and S. Dasgupta, “Adaptive
stochastic routing in fault-tolerant on-chip networks,” in Proc. NoCs,
May 2009, pp. 32–37.

[41] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide, “Immunet: A cheap
and robust fault-tolerant packet routing mechanism,” ACM SIGARCH
Comput. Architecture News, vol. 32, no. 2, pp. 198–209, Mar. 2004.

[42] M. Schroeder, A. Birrell, M. Burrows, H. Murray, R. Needham, T. Rode-
heffer, E. Satterthwaite, and C. Thacker, “Autonet: A high-speed, self-
configuring local area network using point-to-point links,” IEEE J. Sel.
Areas Commun., vol. 9, no. 8, pp. 1318–1335, Oct. 1991.

DEORIO et al.: RELIABLE ROUTING ARCHITECTURE AND ALGORITHM FOR NOCS 739

[43] A. Mejia, J. Flich, J. Duato, S.-A. Reinemo, and T. Skeie, “Segment-
based routing: An efficient fault-tolerant routing algorithm for meshes
and tori,” in Proc. IPDPS, Apr. 2006, p. 10.

[44] J. C. Sancho, A. Robles, and J. Duato, “A flexible routing scheme for
networks of workstations,” in Proc. HPCS, 2000, pp. 260–267.

[45] M. Koibuchi, A. Funahashi, A. Jouraku, and H. Amano, “L-turn routing:
An adaptive routing in irregular networks,” in Proc. Int. Conf. Parallel
Processing, Sep. 2001, pp. 383–392.

[46] L. Cherkasova, V. Kotov, and T. Rokicki, “Fibre channel fabrics:
Evaluation and design,” in Proc. Int. Conf. Syst. Sci., Jan. 1996, pp.
53–62.

[47] K. Constantinides, S. Plaza, J. Blome, B. Zhang, V. Bertacco, S. Mahlke,
T. Austin, and M. Orshansky, “BulletProof: A defect-tolerant CMP
switch architecture,” in Proc. HPCA, Feb. 2006, pp. 5–16.

[48] S.-J. Pan and K.-T. Cheng, “A framework for system reliability analysis
considering both system error tolerance and component test quality,” in
Proc. DATE, Apr. 2007, pp. 1–6.

[49] R. He and J. Delgado-Frias, “Fault tolerant interleaved switching fabrics
for scalable high-performance routers,” IEEE Trans. Parallel Distributed
Syst., vol. 18, no. 12, pp. 1727–1739, Dec. 2007.

[50] S. Gupta, S. Feng, J. Blome, and S. Mahlke, “StageNet: A reconfigurable
CMP fabric for resilient systems,” in Proc. Reconfigurable Adaptive
Architecture Workshop, 2007.

[51] A. Kohler, G. Schley, and M. Radetzki, “Fault tolerant network on
chip switching with graceful performance degradation,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 29, no. 6, pp. 883–896,
Jun. 2010.

[52] J. Kim, C. Nicopoulos, and D. Park, “A gracefully degrading and
energy-efficient modular router architecture for on-chip networks,” ACM
SIGARCH Comput. Architecture News, vol. 34, no. 2, pp. 4–15, 2006.

[53] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. R. Das,
“Exploring fault-tolerant network-on-chip architectures,” in Proc. DSN,
Jun. 2006, pp. 93–104.

[54] A. Jantsch, R. Lauter, and A. Vitkowski, “Power analysis of link level
and end-to-end data protection in networks on chip,” in Proc. ISCAS,
May 2005, pp. 1770–1773.

[55] S. Peng and R. Manohar, “Self-healing asynchronous arrays,” in Proc.
ASYNC, Mar. 2006, pp. 34–45.

[56] C. Glass and L. Ni, “The turn model for adaptive routing,” in Proc.
ISCA, 1992, pp. 278–287.

[57] S. Murali, T. Theocharides, N. Vijaykrishnan, M. J. Irwin, L. Benini,
and G. D. Micheli, “Analysis of error recovery schemes for networks
on chips,” IEEE Des. Test, vol. 22, no. 5, pp. 434–442, Sep.–Oct. 2005.

[58] A. DeOrio, K. Aisopos, V. Bertacco, and L.-S. Peh, “DRAIN: Dis-
tributed recovery architecture for inaccessible nodes in multi-core chips,”
in Proc. DAC, 2011, pp. 912–917.

[59] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proc. PACT,
2008, pp. 72–81.

[60] J. Keane, S. Venkatraman, P. Butzen, and C. H. Kim, “An array-based
test circuit for fully automated gate dielectric breakdown characteriza-
tion,” in Proc. CICC, Sep. 2008, pp. 121–124.

Andrew DeOrio (S’07) received the B.S.E. and
M.S.E. degrees in electrical engineering from the
University of Michigan, Ann Arbor, in 2006 and
2008, respectively. He is currently pursuing the
Ph.D. degree with the Advanced Computer Archi-
tecture Laboratory, University of Michigan.

His current research interests include ensuring the
correctness of digital hardware designs, including
verification, reliable system design, and postsilicon
validation.

David Fick (S’08) is currently pursuing the Ph.D.
degree with the University of Michigan, Ann Arbor.

He works with Prof. D. Sylvester and Prof. D.
Blaauw in the Michigan Integrated Circuits Labo-
ratory. His current research interests include fault
tolerance, adaptive circuits and systems, and 3-D
integrated circuits.

Valeria Bertacco (S’95–M’03–SM’10) received the
Laurea degree in computer engineering from the
University of Padova, Padova, Italy, and the M.S.
and Ph.D. degrees in electrical engineering from
Stanford University, Stanford, CA, in 2003.

She is currently an Associate Professor of elec-
trical engineering and computer science with the
University of Michigan, Ann Arbor. She joined the
faculty at the University of Michigan after being
with Synopsys, Inc., Mountain View, CA, for four
years. Her current research interests include formal

and semiformal design verification with emphasis on full design validation
and digital system reliability.

Dr. Bertacco is an Associate Editor of the IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems and has
served on the program committees for DAC and ICCAD.

Dennis Sylvester (S’95–M’00–SM’04–F’11) re-
ceived the Ph.D. degree from the University of
California, Berkeley.

He is currently a Professor of electrical engineer-
ing and computer science with the University of
Michigan, Ann Arbor, where he is the Director of
the Michigan Integrated Circuits Laboratory. He has
published over 300 articles along with one book and
several book chapters. He is a Co-Founder of Ambiq
Micro, Inc., Austin, TX, a fabless semiconductor
company developing ultralow power mixed-signal

solutions for wireless devices. His current research interests include the design
of millimeter-scale computing systems and energy-efficient near-threshold
computing. He holds seven U.S. patents and serves as a consultant and advisor
to electronic design automation and semiconductor firms in these areas.

David Blaauw (M’00–SM’07) received the B.S.
degree in physics and computer science from Duke
University, Durham, NC, in 1986, and the M.S.
and Ph.D. degrees in computer science from the
University of Illinois at Urbana-Champaign, Urbana,
in 1988 and 1991, respectively.

Until August 2001, he was with Motorola,
Inc., Austin, TX, as a Manager with the High-
Performance Design Technology Group. Since Au-
gust 2001, he has been on the faculty of the De-
partment of Electrical Engineering and Computer

Science, University of Michigan, Ann Arbor, where he is currently a Professor.
His work has focused on very large-scale integration design with particular
emphasis on ultralow power and high-performance design.

Jin Hu (S’06) received the Undergraduate de-
gree from Northwestern University, Evanston, IL, in
2006, and the Masters degree from the University
of Michigan, Ann Arbor, in 2008. She is currently a
Graduate Student with the University of Michigan,
pursuing the Ph.D. degree and studying electronic
design automation.

Her current research interests include global rout-
ing and placement, optimizations, and logic synthe-
sis.

Gregory Chen (S’06–M’11) received the B.S.,
M.S., and Ph.D. degrees in electrical engineering
from the University of Michigan, Ann Arbor, in
2006, 2009, and 2011, respectively.

He is currently a member of the High-Performance
Circuits Research Group, Intel, Hillsboro, OR. His
current research interests include networks-on-chip,
voltage regulation, and energy harvesting.

