
184 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

Short Papers
Fixing Design Errors With Counterexamples

and Resynthesis

Kai-hui Chang, Igor L. Markov, and Valeria Bertacco

Abstract—In this paper, we propose a resynthesis framework, called
COunterexample-guided REsynthesis (CoRé), that automatically corrects
errors in digital designs. The framework is based on a simulation-based
abstraction technique and performs an error correction through two
innovative circuit resynthesis solutions: distinguishing-power search and
goal-directed search, which modify the functionality of circuits’ internal
nodes to match the correct behavior. In addition, we propose a compact
encoding of resynthesis information, called the Pairs of Bits to be Distin-
guished, which is a key enabler for our resynthesis techniques. Compared
with previous solutions, CoRé is more powerful for the following reasons:
1) It can fix a broader range of error types because it is not bounded by
specific error models; 2) it derives the correct functionality from simulation
vectors without requiring golden netlists; and 3) it can be applied with a
broad range of verification flows, including formal and simulation-based
flows.

Index Terms—Error correction, error diagnosis, logic synthesis.

I. INTRODUCTION

Due to the dramatic increase in design complexity of modern
electronics, digital systems are often released with many latent errors,
some of which have the potential of triggering expensive damage or
replacement costs. While recent improvements in verification enable
engineers to more efficiently expose a larger fraction of design errors,
little effort has been devoted to automatically fixing such errors. As a
result, the existing techniques in this domain have very limited power
and scalability.

The process of repairing functional design bugs involves two steps:
error diagnosis and error correction. Error diagnosis identifies the
portion of the design that is responsible for the error, whereas error
correction is responsible for locally modifying the functionality of
the identified portion through a specialized synthesis process called
resynthesis. Recent works by Smith et al. [7] and Ali et al. [1]
greatly improved the scalability and efficiency of the error diagnosis.
However, fixing errors via resynthesis remains challenging because
the existing techniques lack the scalability to handle the global im-
plications of the logic modifications imposed by error correction. As
a result, state-of-the-art techniques often limit the types of errors that
can be corrected [9] or operate only on small circuits [8], [11].

In this paper, we present an innovative framework, called
COunterexample-guided REsynthesis (CoRé), that can overcome the
limitations discussed previously while also admitting a simple and
particularly efficient implementation. It addresses automatic error
correction for a broad range of design errors and on larger scale
designs, both combinational and sequential. CoRé is based on a
simulation-driven abstraction technique and requires only input stimuli
and correct output responses (no simulation values at internal nodes)
to perform its analysis and suggest a design fix. Because of these

Manuscript received July 20, 2006; revised December 13, 2006 and March 7,
2007. This paper was recommended by Associate Editor W. Kunz.

The authors are with the University of Michigan, Ann Arbor, MI 48109 USA
(e-mail: changkh@umich.edu).

Digital Object Identifier 10.1109/TCAD.2007.907257

simple requirements, it can be applied to a variety of verification
methodologies, including formal and simulation-based flows. The
CoRé framework is composed of two main engines to perform the
resynthesis: Distinguishing-Power Search (DPS) and Goal-Directed
Search (GDS). In addition, the internal analysis of CoRé relies on a
compact encoding of resynthesis information, called the Pairs of Bits
to be Distinguished (PBDs), which is based on signatures and enables
efficient computation of don’t cares (DCs). PBDs are pivotal to the
scalability of CoRé and allow CoRé to generate a broad variety of
resynthesis solutions.

The rest of this paper is organized as follows: Section II introduces
background and related work. In Section III, we describe our CoRé
framework in detail. Section IV discusses our resynthesis techniques.
Experimental results are given in Section V, and Section VI concludes
this paper. Our publication [2] reviews related work and offers empir-
ical comparisons with combinational error repair, which were omitted
from this paper due to page limitations.

II. BACKGROUND

In this paper, we assume that an input design, with one or more bugs,
is provided as a Boolean network. We strive to correct its erroneous
behavior by regenerating the functionality of incorrect nodes. This
section starts by defining some terminology and then overviews a
relevant previous work.

A. Signatures and Distinguishing Power (DP)

Definition 1: Given a node t in a Boolean network, whose function
is f , and input vectors x1, x2, . . . , xk, we define the signature of
node t, st, as (f(x1), . . . , f(xk)), where f(xi) ∈ {0, 1} represents
the output of f given an input vector xi.

Our goal is to modify the functions of the nodes responsible for the
erroneous behavior of a circuit via resynthesis. In this context, we call
a node to be resynthesized as the target node, and we call the nodes that
we can use as inputs to the newly synthesized node (function) as the
candidate nodes. Their corresponding signatures are called the target
and candidate signatures, respectively.

Given a target signature st and a collection of input candidate
signatures sc1 , sc2 , . . . , scn , we say that st can be resynthesized by
sc1 , sc2 , . . . , scn if st can be expressed as st = f(sc1 , sc2 , . . . , scn),
where f(sc1 , sc2 , . . . , scn) is a vector Boolean function called the
resynthesis function. We also call a netlist that implements the resyn-
thesis function as the resynthesis netlist.

In this paper, we use s[i] to denote the ith bit of signature s. The
following proposition states that a sufficient and necessary condition
for a resynthesis function to exist is that, whenever two bits in the
target signature are distinct, such bits need to be distinct in at least one
of the candidate signatures.1

Proposition 1: Consider a collection of candidate signatures
sc1 , sc2 , . . . , scn and a target signature st. Then, a resynthesis func-
tion f , where st = f(sc1 , sc2 , . . . , scn), exists if and only if no bit
pair {i, j} exists such that st[i] �= st[j], but sck

[i] = sck
[j] for all

1 ≤ k ≤ n.

1This proposition is a special case in [4, Th. 5.1], where the minterms
appearing in signatures represent the care terms, and all other minterms
are DCs.

0278-0070/$25.00 © 2008 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008 185

TABLE I
ERROR-REPAIR RESULTS FOR SEQUENTIAL CIRCUITS. DPS IS USED IN THIS EXPERIMENT. THE ERROR-DIAGNOSIS TECHNIQUE IS BASED ON [1]

In this paper, we call a pair of bits {i, j} in st, where st[i] �=
st[j], a PBD. Based on Proposition 1, we say that the PBD {i, j}
can be distinguished by signature sck

if sck
[i] �= sck

[j]. We define
the required DP (RDP) of the target signature st, RDP (st), as the
set of PBDs that need to be distinguished. We also define the DP
of a candidate signature sck

with respect to the target signature st,
DP(sck

, st), as the set of PBDs in st that can be distinguished by sck
.

With this definition, Proposition 1 can be restated as “a resynthesis
function f that exists if and only if RDP(st) ⊆ ∪n

k=1DP(sck
, st).”

B. Don’t Cares (DCs)

When considering a subnetwork within a large Boolean network,
DCs are exploited by many synthesis techniques because they provide
additional freedom for optimizations. Satisfiability DCs (SDCs) occur
when certain combinations of input values do not occur for the sub-
network, whereas Observability DCs (ODCs) occur when the output
values of the subnetwork do not affect any primary output. As we show
in Section III-A, our CoRé framework is able to utilize both SDCs
and ODCs.

C. Related Work

Existing error-repair techniques often partition the problem into
error diagnosis and error correction. A comparison of error-diagnosis
and -correction techniques can be found in Table I of our preliminary
work [2], which was limited to the analysis of combinational circuits.

The error-diagnosis portion of the CoRé framework is based on
the work by Smith et al. [7]. The diagnosis technique considers a
Boolean network, a set of input test vectors, and a set of correct
output responses. For each input test vector, it will return a set of
nodes (called error sites) found to compute incorrect values along with
the corresponding correct values. The correction portion of the CoRé
framework then corrects the design errors by resynthesizing the error
sites with functions that generate the proper correct values for each
input vector.

III. ERROR-CORRECTION FRAMEWORK

For the discussions in Sections III-A and B, we restrict our analysis
to combinational designs. In this context, the correctness of a circuit
is simply determined by the output responses under all possible input
vectors. We will show in Section III-C how to extend the solution to
sequential designs.

CoRé, which is our error-correction framework, relies on simulation
to generate signatures, which constitute our abstract model of the
design and are the starting point for the error-diagnosis and resynthesis
algorithms. After the netlist is repaired, it is checked by a verification
engine. If verification fails, possibly due to new errors introduced by
the correction process, new counterexamples are generated and used
to further refine the abstraction. Although in our implementation we
adopted Smith’s error-diagnosis technique [7] due to its scalability,
alternative diagnosis techniques can be used as well.

Fig. 1. Algorithmic flow of CoRé.

A. CoRé Framework

In CoRé, an input test vector is called a functionality-preserving
vector if its output responses comply with the specification, and the
vector is called an error-sensitizing vector if its output responses differ.
Error-sensitizing vectors are often called counterexamples.

The algorithmic flow of CoRé is shown in Fig. 1. The inputs
to the framework are the original buggy netlist (CKTerr), the ini-
tial functionality-preserving vectors (vectorsp), and the initial error-
sensitizing vectors (vectorse). The output is the rectified netlist
CKTnew. The framework first performs error diagnosis to identify
error locations and the correct values that should be generated for
those locations so that the error-sensitizing vectors could produce the
correct output responses. Those error locations constitute the target
nodes for resynthesis. The bits in the target nodes’ signatures that
correspond to the error-sensitizing vectors must be corrected accord-
ing to the diagnosis results, whereas the bits that correspond to the
functionality-preserving vectors must remain unchanged. If we could
somehow create new combinational netlist blocks that generate the
required signatures at the target nodes using other nodes in the Boolean
network, we would be able to correct the circuit errors, at least those
that have been exposed by the error-sensitizing vectors. Let us assume
for now that we can create such netlists (techniques to this end will
be discussed in the next section), producing the new circuit CKTnew

(line 4). CKTnew is checked at line 5 using the verification engine.
When verification fails, new error-sensitizing vectors for CKTnew will
be returned in counterexample. If no such vector exists, the circuit
has been successfully corrected, and CKTnew is returned. Otherwise,
CKTnew is abandoned, whereas counterexample is classified either
as error-sensitizing or functionality-preserving with respect to the
original design (CKTerr). If counterexample is error-sensitizing, it
will be added to vectorse and used to rediagnose the design. CKTerr’s
signatures are then updated using counterexample. By accumulating
both functionality-preserving and error-sensitizing vectors, CoRé will
avoid reproposing the same wrong correction, hence guaranteeing
that the algorithm will eventually complete. Fig. 2 shows a possible
execution scenario with the flow just described.

SDCs are exploited in CoRé by construction because simulation
can only produce legal signatures. To utilize ODCs, we simulate the
complement signature of the target node and mark the bit positions

186 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

Fig. 2. Execution example of CoRé. Signatures are shown above the wires,
where underlined bits correspond to error-sensitizing vectors: (a) The gate was
meant to be AND but is erroneously an OR. Error diagnosis finds that the output
of the second pattern should be 0 instead of 1. (b) First resynthesis netlist fixes
the second pattern but fails further verification (the output of the third pattern
should be 1). (c) Counterexample from the netlist in (b) refines the signatures,
and a resynthesized netlist that fixes all the test patterns is found.

whose changes do not propagate to any primary output as ODCs:
Those positions are not considered during resynthesis. Note that if
a diagnosis contains multiple error sites, the sites that are closer to
primary outputs should be resynthesized first so that the downstream
logic of a node is always known when ODCs are calculated.

B. Analysis of the Framework

CoRé is more effective than many previous solutions because it
supports the use of SDCs and ODCs, including external DCs. External
SDCs can be exploited by providing only the legal input patterns when
generating signatures, whereas external ODCs are utilized by marking
uninterested output-vector DCs.

To achieve the required scalability to support the global implications
of error correction, CoRé uses an abstraction-refinement scheme: Sig-
natures provide an abstraction of the Boolean network for resynthesis
because they are the nodes’ partial truth tables (all unseen input vectors
are considered as DCs), and the abstraction is refined by means of
the counterexamples that fail verification. The following proposition
shows that CoRé can eventually always produce a netlist which passes
verification. However, as it is the case for most techniques based on
abstraction and refinement, the framework may time out before a valid
correction is found. The use of high-quality test vectors [9] is effective
in alleviating this potential problem.

Proposition 2: Given a buggy combinational design and a specifi-
cation that defines the output responses of each input vector, the CoRé
algorithm can always generate a netlist that produces the correct output
responses.

Proof: Given a set of required “fixes,” the resynthesis func-
tions of CoRé can always generate a correct set of signatures
which, in turn, produce correct responses at primary outputs. Observe
that each signature represents a fragment of a signal’s truth table.
Therefore, when all possible input patterns are applied to our CoRé
framework, the signatures essentially become complete truth tables
and, hence, define all the terms required to generate correct output
responses for any possible input stimulus. In CoRé, all the coun-
terexamples that fail verification are used to expand and enhance the
set of signatures. Each correction step of CoRé guarantees that the
output responses of the input patterns seen so far are correct; thus, any
counterexample must be new. However, since the number of distinct
input patterns is finite, eventually no new vector can be generated,
guaranteeing that the algorithm will complete in a finite number of
iterations. In practice, we find that a correct design can often be found
in a few iterations. �

C. Sequential Circuits

The discussion so far has addressed only the combinational circuits.
CoRé is easily adaptable to correct sequential circuits too, as described
in this section. First of all, when operating on the sequential circuits,
the user will provide CoRé with input traces instead of input patterns.
A trace is a sequence of input patterns, where a new pattern is applied
to the design’s inputs at each simulation cycle, and the trace can

Fig. 3. Sequential signature-construction example. The signature of a node is
built by concatenating the simulated values of each cycle for all the bug traces.
In this example, trace1 has four cycles, and trace2 is three-cycle long. The final
signature is then 0110101.

be either error-sensitizing or functionality-preserving. To address the
sequential circuits, we adopt the diagnosis techniques from the work
of Ali et al. [1] relating to sequential circuits. The idea is to first unroll
the circuit by connecting the outputs of the state registers to the inputs
of the registers in the previous cycle and then use the test vectors
to constrain the unrolled circuit. Given an initial state and a set of
test vectors with corresponding correct output responses, Ali’s error-
diagnosis technique is able to produce a collection of error sites, along
with their correct values, that rectify the incorrect output responses.

To correct sequential designs, we apply the same algorithm de-
scribed in Section III-A with two changes: The diagnosis procedure
should be as described in [1], and the signature-generation function is
modified so that it can be used in a sequential design. Specifically, the
new sequential signature-generation procedure should record one bit of
signature for each cycle of each sequential trace that we simulate. For
instance, if we have two traces available, a four-cycle trace and a three-
cycle trace, we will obtain a 7-bit signature at each internal-circuit
node. An example of the modified signature is shown in Fig. 3. In our
current implementation, we only use combinational ODCs. In other
words, we still treat the inputs of state registers as primary outputs
when calculating ODCs. Although it is possible to exploit sequential
ODCs for resynthesis, we do not pursue this optimization yet.

IV. RESYNTHESIS TECHNIQUES

The basis for CoRé’s resynthesis solution is the signature available
at each internal-circuit node. The resynthesis problem is formulated
as follows: Given a target signature, find a resynthesis netlist that
generates the target signature using the signatures of other nodes in
the Boolean network as inputs. In this section, we first define the
absolute DP |DP(s)| of a signature s, and then, we propose a DPS
technique that uses |DP| to select candidate signatures and generates
the required resynthesis netlist. Next, we propose a Goal-Directed
Search (GDS) technique that can find a resynthesis netlist with the
smallest possible logic depth. The ability to generate a minimum-depth
netlist is important if circuit timing is a concern. Finally, we briefly
compare our approach to other techniques.

A. Absolute Distinguishing Power of a Signature

In this section, we define the concept of the absolute DP, which
provides search guiding and pruning criteria for our resynthesis tech-
niques. To simplify bookkeeping, we reorder bits in every signature so
that in the target signature, all the bits with value 0 precede the ones
with value 1, as in “00, . . . , 0011, . . . , 11.”

Definition 2: Assuming that a target signature st is composed of x
0s followed by y 1s, we define the absolute RDP of st as |RDP(st)| =
xy, which is the number of PBDs in st. Moreover, if a candidate
signature sc has p 0s and q 1s in its first x bit positions, and r 0s and s
1s in the remaining y positions, then we define the absolute DP of sc

with respect to st as |DP(sc, st)| = ps + qr, which is the number of
PBDs in st that can be distinguished by sc.

The following corollary states a necessary but not sufficient condi-
tion to determine whether the target signature can be generated from a
collection of candidate signatures.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008 187

Corollary 1: Consider a target signature st and a collection of can-
didate signatures sc1 , . . . , scn . If st can be generated by sc1 , . . . , scn ,
then |RDP(st)| ≤

∑n

i=1
|DP(sci

, st)|.

B. Distinguishing-Power Search (DPS)

DPS is based on Proposition 1, which states that a resynthesis func-
tion can be generated when a collection of candidate signatures covers
all the PBDs in the target signature. However, the number of collec-
tions satisfying this criterion may be exponential. To identify possible
candidate signatures effectively, we first select signatures that cover the
least covered PBDs; second, we select those that have high |DP| (i.e.,
signatures that cover the most number of PBDs); and third, we select
those that cover any remaining uncovered PBD. For efficiency, we
limit the search pool to the 200 nodes which are topologically closest to
the target node; however, we may go pass this limit when those are not
sufficient to cover all the PBDs in the target signature. Finally, we ex-
clude from the pool those nodes that are in the fan-out cone of the tar-
get node so that we avoid creating a combinational loop inadvertently.

After the candidate signatures are selected, a truth table for the
resynthesis function is built from the signatures (detailed steps can
be found in [2, Sec. 3.3]). The truth table can be synthesized and
optimized using existing software such as Espresso [5] or MVSIS [12].
Note that our resynthesis technique does not require that the support
of the target function is known a priori since the correct support will
be automatically selected when DPS searches for a set of candidate
signatures that distinguishes all the PBDs. This is in contrast with other
previous solutions which require that the support of the target node be
known before attempting to synthesize the function.

C. Goal-Directed Search (GDS)

GDS performs an exhaustive search for resynthesis netlists. To
reduce the search space, we propose two pruning techniques: the |DP|
test and the compatibility test. Currently, BUFFERs, INVERTERs, and
2-input AND, OR, and XOR gates are supported.

The |DP| test relies on Corollary 1 to reject resynthesis opportunities
when the selected candidate signatures do not have sufficient |DP|.
In other words, a collection of candidate signatures whose total |DP|
is less than the |RDP| of the target signature is not considered for
resynthesis.

The compatibility test is based on the controlling values of the
logic gates. To utilize this feature, we propose three rules—called
compatibility constraints—to prune the selection of inputs according
to the output constraint and the gate being tried. Each constraint is
accompanied with a signature. In particular, an identity constraint
requires the input signature to be identical to the constraint’s sig-
nature, and a need-one constraint requires that specific bits in the
input signatures must be 1 whenever the corresponding bits in the
constraint’s signature are 1. Identity constraints are used to encode
the constraints imposed by BUFFERs and INVERTERs, whereas the
need-one constraints are used by AND gates. Similarly, need-zero
constraints are used by OR gates. For example, if the target signature is
0011, and the gate being tried is AND, then the need-one constraint will
be used. This constraint will reject signature 0000 as the gate’s input
because its last two bits are not 1, but it will accept 0111 because its
last two bits are 1. These constraints, which propagate from the outputs
of gates to their inputs during resynthesis, need to be recalculated for
each gate being tried. For example, an identity constraint will become
a need-one constraint when it propagates through an AND gate, and it
will become a need-zero constraint when it propagates through an OR

gate. The rules for calculating the constraints are shown in Fig. 4.
The GDS algorithm is shown in Fig. 5. In the algorithm, level is the

level of logic being explored, constr is the constraint, and C returns

Fig. 4. Given a constraint imposed on a gate’s output and the gate type, this
table calculates the constraint of the gate’s inputs. The output constraints are
given in the first row, the gate types are given in the first column, and their
intersection is the input constraint. “S.C.” means “signature complemented.”

Fig. 5. GDS algorithm.

a set of candidate resynthesis netlists. Initially, level is set to 1, and
constr is an identity constraint with signature being equal to the target
signature st. Function update_constr is used to update constraints.

GDS can be used to find a resynthesis netlist with a minimal logic
depth. This is achieved by calling GDS iteratively, with an increasing
value of the level parameter, until a resynthesis netlist is found. How-
ever, the pruning constraints weaken with each additional level of logic
in GDS. Therefore, the maximum logic depth for GDS is typically
small, and we rely on DPS to find more complex resynthesis functions.

D. Discussion

Our use of PBDs is related to the Set of Pairs of Functions to be
Distinguished (SPFD) technique used by several groups previously [6],
[10], [11], where SPFD is a representation of Boolean functions that
allows the use of DCs during synthesis. In particular, the approximate-
SPFD technique, which is proposed recently by Yang et al. [11], is
somewhat similar to our approach because PBDs compactly encode a
subset of the bipartite SPFD graph. However, based on the data in [11]
and our experiments on ISCAS’85 benchmarks, we conservatively
estimate that our techniques are at least twice as fast as those in [11]
(details are not reported here due to page limitations). In addition,
PBDs should be more memory-efficient because they are calculated
using signatures.

Several existing techniques, such as those in [9], also use simulation
to identify potential error-correction options and rely on further sim-
ulation to prune unpromising candidates. Compared with those tech-
niques, our framework is more flexible because it performs abstraction
and refinement on the design itself. As a result, this framework
can easily adopt a new error-diagnosis or -correction technique. For
example, our error-correction engine can be easily replaced by any
synthesis tool that can handle truth tables or cubes. Most existing
techniques, however, do not have this flexibility.

V. EXPERIMENTAL RESULTS

In [2], we have shown that CoRé can effectively correct errors in
combinational circuits. In this paper, we apply CoRé to repair errors
in sequential circuits using techniques described in Section III-C. Due
to space limitations, we only report the results using DPS. Note that

188 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

diagnosing errors in sequential circuits is much more difficult than
that in combinational circuits because circuit unrolling is used. For
example, the bug trace for the last benchmark has 77 cycles, and it
produces an unrolled circuit containing more than one million standard
cells. The characteristics of the benchmarks and their results are
summarized in Table I. For each benchmark, 32 traces were provided,
and the goal was to repair the circuit so that it produces the correct
output responses for those traces. Since our algorithm processes all
the traces simultaneously, only one iteration will be required. For the
computation of more representative runtimes only, we deliberately
processed the traces one by one and failed all verification so that all
the benchmarks underwent 32 iterations. All the bugs were injected at
the Register Transfer Level (RTL), and the designs were synthesized
using Cadence RTL compiler 4.10. In the table, “Err. Diag. time” is
the time spent on error diagnosis, “#Fixes” is the number of valid
fixes returned by CoRé, and “DPS time” is the runtime of DPS.
The minimum/maximum numbers of support variables and gates used
in the returned fixes are shown under “Resynthesis netlist.” Note
that implementing any valid fix is sufficient to correct the circuits’
behavior, and we rank the fixes based on the logic depth from primary
inputs: Fixes closer to primary inputs are preferred. Under “Err. diag.
time,” “1st” is the runtime for diagnosing the first bug trace, whereas
“Total” is the runtime for diagnosing all 32 traces. The comparison
between the first and total diagnosis time shows that diagnosing the
first trace takes more than 30% of the total diagnosis time in all the
benchmarks. The reason is that the first diagnosis can often localize
errors to a small number of sites, which reduces the search space of
further diagnoses significantly. Since CoRé relies on iterative diagnosis
to refine the abstraction of signatures, this phenomenon ensures that
CoRé is efficient after the first iteration. As Table I shows, error
diagnosis is still the bottleneck of the CoRé framework. We also
observe that fixing some bugs requires a large number of gates and
support variables in their resynthesis netlists because the bugs are
complex functional errors at the RTL.

VI. CONCLUSION

In this paper, we propose a framework, called CoRé, to correct
functional errors in digital circuits relying only on error traces. This
framework exploits both satisfiability and observability DCs, and it
uses an abstraction-refinement scheme to achieve better scalability. To
support the resynthesis task required in the framework, we propose
an encoding of resynthesis information, called PBDs, and use it in
our innovative resynthesis techniques. Because CoRé does not rely on
specific error models, it offers more error-correction capabilities than
many previous solutions. The experimental results show that CoRé can
produce a modified netlist which eliminates erroneous responses while
maintaining correct responses. In addition, CoRé supports combina-
tional and sequential error repairs, and it can be easily adopted in most
verification flows.

REFERENCES

[1] M. F. Ali, A. Veneris, S. Safarpour, R. Drechsler, A. Smith, and
M. Abadir, “Debugging sequential circuits using Boolean satisfiability,”
in Proc. ICCAD, 2004, pp. 44–49.

[2] K.-H. Chang, I. L. Markov, and V. Bertacco, “Fixing design errors with
counterexamples and resynthesis,” in Proc. ASPDAC, 2007, pp. 944–949.

[3] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Proc. Theory
Appl. Satisfiability Testing, (SAT), 2003, pp. 502–518.

[4] A. Mishchenko, J. S. Zhang, S. Sinha, J. R. Burch, R. Brayton, and
M. Chrzanowska-Jeske, “Using simulation and satisfiability to compute

flexibilities in Boolean networks,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 25, no. 5, pp. 743–755, May 2006.

[5] R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued minimiza-
tion for PLA optimization,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 6, no. 5, pp. 727–750, Sep. 1987.

[6] S. Sinha, “SPFDs: A new approach to flexibility in logic synthesis,” Ph.D.
dissertation, Univ. California, Berkeley, CA, May 2002.

[7] A. Smith, A. Veneris, and A. Viglas, “Design diagnosis using Boolean
satisfiability,” in Proc. ASPDAC, 2004, pp. 218–223.

[8] S. Staber, B. Jobstmann, and R. Bloem, “Finding and fixing faults,” in
Proc. CHARME. New York: Springer-Verlag, 2005, vol. 3725, pp. 35–49.

[9] A. Veneris and I. N. Hajj, “Design error diagnosis and correction via test
vector simulation,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 18, no. 12, pp. 1803–1816, Dec. 1999.

[10] S. Yamashita, H. Sawada, and A. Nagoya, “SPFD: A new method to
express functional flexibility,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 19, no. 8, pp. 840–849, Aug. 2000.

[11] Y.-S. Yang, S. Sinha, A. Veneris, and R. E. Brayton, “Automating
logic rectification by approximate SPFDs,” in Proc. ASPDAC, 2007,
pp. 402–407.

[12] MVSIS. [Online]. Available: http://embedded.eecs.berkeley.edu/Respep/
Research/mvsis/

ANN- and PSO-Based Synthesis of On-Chip
Spiral Inductors for RF ICs

Sushanta K. Mandal, Shamik Sural, and Amit Patra

Abstract—This paper presents an efficient layout-level synthesis ap-
proach for RF planar on-chip spiral inductors. A spiral inductor is mod-
eled using artificial neural networks in which the layout design parameters,
namely, spiral outer diameter, number of turns, width of metal traces, and
metal spacing, are taken as input. Inductance, quality factor (Q), and
self-resonance frequency (SRF) form the output of the neural model.
Particle-swarm optimization is used to explore the layout space to achieve
a given target inductance meeting the SRF and other constraints. Our
synthesis approach provides multiple sets of layout parameters that help
a designer in the tradeoff analysis between conflicting objectives, such
as area, Q, and SRF for a target-inductance value. We present several
synthesis results which show good accuracy with respect to full-wave
electromagnetic (EM) simulations. Since the proposed procedure does not
require an EM simulation in the synthesis loop, it substantially reduces the
cycle time in RF-circuit design optimization.

Index Terms—Artificial neural networks (ANNs), layout synthesis,
on-chip inductor, particle-swarm optimization (PSO).

I. INTRODUCTION

Continuous growth in wireless-communication systems has stimu-
lated research in low-cost, low-power, and high-performance CMOS
RF integrated-circuit (IC) components for system-on-chip solutions.
On-chip spiral inductor is one of the major components of the RF ICs
that dominates circuit performance. In an RF IC, the operating fre-
quency of on-chip inductors is much lower than the first self-resonance
frequency (SRF). For example, a voltage-controlled oscillator (VCO)
operating at 2.5 GHz requires an inductor with an SRF of at least
6 GHz with a high-quality factor (Q). To fulfill this type of high-SRF

Manuscript received February 21, 2007; revised May 2, 2007. This paper
was recommended by Associate Editor H. E. Graeb.

S. K. Mandal and S. Sural are with the School of Information Technol-
ogy, Indian Institute of Technology (IIT), Kharagpur 721 302, India (e-mail:
skmondal@sit.iitkgp.ernet.in; shamik@sit.iitkgp.ernet.in).

A. Patra is with the Department of Electrical Engineering, Indian Institute of
Technology (IIT), Kharagpur 721 302, India (e-mail: amit.patra@ieee.org).

Digital Object Identifier 10.1109/TCAD.2007.907284

0278-0070/$25.00 © 2008 IEEE

