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Abstract—Finding the cause of a bug can be one of the most
time-consuming activities in design verification. This is partic-
ularly true in the case of bugs discovered in the context of a
random-simulation-based methodology, where bug traces, or
counterexamples, may be several hundred thousand cycles long.
In this paper, BUg TRAce MINimization (Butramin), which is
a bug trace minimizer, is proposed. Butramin considers a bug
trace produced by a random simulator or semiformal verification
software and produces an equivalent trace of shorter length. Bu-
tramin applies a range of minimization techniques, deploying both
simulation-based and formal methods, with the objective of pro-
ducing highly reduced traces that still expose the original bug. Bu-
tramin was evaluated on a range of designs, including the publicly
available picoJava microprocessor, and bug traces up to one mil-
lion cycles long. Experiments show that in most cases, Butramin is
able to reduce traces to a very small fraction of their initial sizes,
in terms of cycle length and signals involved. The minimized traces
can greatly facilitate bug analysis and reduce regression runtime.

Index Terms—Bug trace minimization (Butramin), counter-
example minimization, error diagnosis, verification.

I. INTRODUCTION

MODERN integrated circuit design has reached unpar-
alleled levels of size and overall complexity. In this

context, design verification has become a pivotal aspect of
electronic design automation. In fact, various estimates indicate
that functional errors are still responsible for 40% of failures at
the first tape-out and that verification accounts for two-thirds
of the design cycle and effort [2], [17]. Resolving design bugs
in the early development stages is, at the same time, a sophis-
ticated and time-consuming activity, as well as a crucial task
for the project development and for the success of a design
team. With mask costs approaching a million dollars per set,
being able to find and fix bugs before the first tape-out offers a
significant economic advantage.

Among the techniques and methodologies available for func-
tional verification, simulation-based verification is prevalent in
the industry because of its linear and predictable complexity
and its flexibility in being applied, in some form, to any design.
A common methodology in this context is random simulation.
Random simulation involves connecting a logic simulator with
stimuli coming from a constraint-based random generator, that
is, an engine that can automatically produce random legal input
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for the design at a very high rate based on a set of rules (or con-
straints) derived from the specification document. In order to
detect bugs, assertion statements, or checkers, are embedded in
the design and continuously monitor the simulated activity for
anomalies. When a bug is detected, the simulation trace leading
to it is stored and can be replayed at later times to analyze the
conditions that led to the failure. Because of the randomized
nature of this methodology, and because it is usually applied
in late design stages (i.e., when simple bugs have already been
flushed out), it is very common for the bug traces generated to
be very complex, often as much as hundreds of thousands of
cycles long.

Another family of techniques attracting increasing attention
from the industry is that of semiformal verification. These
tools combine a mix of formal and simulation-based techniques
with the goal of producing high-coverage verification results
on complex designs. These results may entail generating tests
that cover a specific state configuration, proving or disproving
a property (or a checker), etc. Pure formal verification tech-
niques, such as symbolic simulation, Bounded Model Checking
(BMC), and reachability analysis [3], [13], would be ideal to
generate compact high-coverage tests, such as a minimum-
length counterexample that disproves a property. Unfortunately,
they do not scale well and can only be applied to very small
designs.

In the more general context of semiformal techniques [1],
[10], [12], heuristics and randomized exploration allow de-
signers to obtain high-coverage results on designs of medium
and large complexity, but they must sacrifice the generation
of minimum-length counterexamples. While these tools are a
promising direction in terms of high-quality verification, little
concern has been given to the reduction of the complexity of
the bug traces generated. The result is that, once a bug is found,
a copious amount of effort is dedicated to tracking it back
to its cause: either an incorrect design implementation or an
erroneous property definition.

Current trends attempt to generate high-quality results with
less effort on the part of the verification engineer, such as the
previously mentioned random simulation and semiformal ver-
ification techniques. These two techniques are more attractive
when compared to a traditional direct-test simulation approach,
which can be extremely demanding, requiring the manual de-
velopment of entire sets of specific test stimuli. However, these
techniques tend to generate extremely long and complex bug
traces, exasperating the debugging phase of verification.

Contributions: We address the problem of debugging com-
plex bug traces by proposing a technique for trace minimization
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called BUg TRAce MINimization (Butramin). The objective
of Butramin is to consider a bug trace and the checker (or
property) that it triggers and seek a much shorter and simpler
trace to falsify the same property. Previous work in this area has
been mostly centered on using formal techniques to simplify
a property’s counterexample [5], [18]. Simulation-based tech-
niques to address this problem have been proposed in [4], which
is a preliminary version of this paper. In a separate context,
the problem of trace minimization has also been addressed in
software verification [8], [11].

Butramin simplifies a trace by iteratively eliminating re-
dundant portions of the trace. For instance, it checks if there
are redundant sequential steps or sequential loops that can be
removed. It also checks if combinational input events in a bug
trace are redundant. For each candidate, a simplified trace is
resimulated to check if it still exposes the original bug. When
this mechanism is exhausted, Butramin further simplifies a trace
by using X-value simulation to evaluate which input signals
are essential in exposing a bug. Finally, a SATisfiability (SAT)-
based fixed-window bounded model checker seeks additional
“shortcuts” in the reduced and simplified trace. Our approach
to trace minimization is novel in the following aspects.

1) It iteratively simplifies the trace by targeting the length
(total number of clock cycles) as well as the number of
input events of the trace.

2) It combines simulation and formal techniques, which
exploits the performance of logic simulation as far as
possible, and only applies formal techniques to a greatly
reduced trace, requiring a much simpler analysis.

3) It is capable of classifying input variable assignments
as essential or nonessential by marking a nonessential
assignment with an X value in three-value simulation.

4) Experimental results show that Butramin can greatly
simplify counterexamples generated by semiformal and
constrained random verification tools down to a small
fraction of their original sizes, and it produces consistent
results across a range of design sizes and characteristics.
The compact traces lead to a much easier interpretation
of the activity causing the bug.

In developing Butramin, we gave top consideration to the
quality of the results, since the engineering time saved by
the latter well outweighs the execution time of the software.
We envision a deployment scenario where Butramin is run
overnight to prepare simplified traces to be analyzed and found
that all of our execution times are well within this limit.
Within this context, we additionally evaluated the potential of
Butramin in minimizing high-coverage regression traces, that
is, traces that visit multiple coverage goals. We found that even
in this scenario, Butramin was capable of exposing a lot of
minimization potential.

The remainder of this paper is organized as follows:
Section II describes relevant previous work on bug trace mini-
mization for random simulation and BMC. Section III analyzes
the source of redundancy in bug traces and possible ways to
identify and remove them. Section IV presents our new bug
trace minimization technique that relies on logic simulation and
describes the BMC-based search for counterexample shortcuts.

Fig. 1. Illustration of two types of bugs based on whether one or many states
expose a given bug. The x axis represents FSM-X, and the y axis represents
FSM-Y. A specific bug configuration contains only one state, whereas a general
bug configuration contains many states.

Sections V and VI discuss algorithmic aspects of Butramin
and experimental results. Finally, Section VII summarizes the
contributions and concludes the paper.

II. BACKGROUND AND PREVIOUS WORK

Research on minimizing property counterexamples or, more
generally, bug traces, has been pursued both in the context of
hardware and software verification. In hardware verification,
existing solutions typically minimize traces generated by BMC.
Before discussing these techniques, we give some prelimi-
nary background and provide a brief overview of the BMC
methodology.

A. Anatomy of a Bug Trace

A bug state is an undesirable state that exposes a bug in the
design. Depending on the nature of the bug, it can be exposed
by a unique state (a specific bug configuration) or any one
of several states (a general bug configuration), as shown in
Fig. 1. In the figure, suppose that the x axis represents one state
machine called FSM-X (Finite State Machine X) and the y axis
represents another machine called FSM-Y. If a bug occurs only
when a specific state in FSM-X and a specific state in FSM-Y
appear simultaneously, then the bug configuration will be a
very specific single point. On the other hand, if the bug is
only related to a specific state in FSM-X but is independent of
FSM-Y, then the bug configuration will be all states on the
vertical line intersecting the one state in FSM-X. In this case,
the bug configuration is very broad.

Given a sequential circuit and an initial state, a bug trace is
a sequence of test vectors that exposes a bug, i.e., causes the
circuit to assume one of the bug states. The length of the trace
is the number of cycles from the initial state to the bug state,
and an input event is a change of an input signal at a specific
clock cycle of the trace. One input event is considered to affect
only a single input bit. An input variable assignment is a value
assignment to an input signal at a specific cycle. The term
“input variable assignment” is used in the literature when traces
are modeled as sequences of symbolic variable assignments at
the design’s inputs. The number of input variable assignments
in a trace is the product of the number of cycles and the number
of inputs. A checker signal is a signal used to detect a violation
of a property, that is, if the signal changes to a specific value,
then the property monitored by the checker is violated, and a
bug is found. The objective of bug trace minimization is to



154 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 1, JANUARY 2007

Fig. 2. Bug trace example. The boxes represent input variable assignments to
the circuit at each cycle; shaded boxes represent input events. This trace has
three cycles, four input events, and 12 input variable assignments.

Fig. 3. Another view of a bug trace. Three bug states are shown. Formal
methods often find the minimal length bug trace, whereas semiformal and
constrained random techniques often generate longer traces.

Fig. 4. BMC pseudocode.

reduce the number of input events and cycles in a trace while
still detecting the checker violation.

Example 1: Consider a circuit with three inputs a, b, and c,
which are initially set to zero. Suppose that a bug trace is avail-
able where a and c are assigned to 1 at cycle 1. At cycle 2, c is
changed to 0, and it is changed back to 1 at cycle 3, after which
a checker detects a violation. In this situation, we count four
input events, 12 input variable assignments, and three cycles
for our bug trace. The example trace is illustrated in Fig. 2.

Another view of a bug trace is a path in the state space
from the initial state to the bug state, as shown in Fig. 3. By
construction, formal methods can often find the minimal length
bug trace as shown in the dotted line. Therefore, we focus our
minimization on semiformal and constrained random traces
only. However, if Butramin is applied to a trace obtained with a
formal technique, it may still be possible to reduce the number
of input events and variable assignments.

B. BMC Overview

BMC [3] is a formal method that can prove or disprove
properties of bounded length in a design, frequently using SAT
solving techniques to achieve this goal. A high-level flow of
the algorithm is given in Fig. 4. The central idea of BMC is
to “unroll” a given sequential circuit k times to generate a
combinational circuit that has behavior equivalent to k clock
cycles of the original circuit. In the process of unrolling, the

circuit’s memory elements are eliminated, and the signals that
feed them at cycle i are connected directly to the memory
elements’ output signals at cycle i − 1. In Conjunctive Normal
Form (CNF)-based SAT, the resulting combinational circuit is
converted to a CNF formula C. The property to be proved is
also complemented and converted to CNF form p. These two
formulas are conjoint, and the resulting SAT instance I is fed
into a SAT solver. If a satisfiable assignment is found for I ,
then the assignment describes a counterexample that falsifies
the (bounded) property; otherwise, the property holds true.

C. Known Techniques in Hardware Verification

Traditionally, a counterexample generated by BMC reports
the input variable assignments for each clock cycle and for
each input line of the design. However, it is possible, and
common, that only a portion of these assignments are required
to falsify the property. Several techniques that attempt to min-
imize the trace complexity have been recently proposed, for
instance, Ravi and Somenzi [18]. To this end, they propose
two techniques, namely: 1) Brute-Force Lifting (BFL), which
attempts to eliminate one variable assignment at a time, and
2) an improved variant that eliminates variables in such a way
so as to highlight the primary events that led to the property
falsification. The basic idea of BFL is to consider the “free”
variables of the bug trace, that is, all input variable assignments
in every cycle. For each free variable v, BFL constructs a SAT
instance SAT(v) to determine if v can prevent the counter-
example. If that is not the case, then v is irrelevant to the
counterexample and can be eliminated. Because this technique
minimizes BMC-derived traces, its focus is only on reducing
the number of assignments to the circuit’s input signals. More-
over, each single assignment elimination requires solving a
distinct SAT problem, which may be computationally difficult.
More recent work [19] further improves the performance of
BFL by attempting the elimination of sets of variables simul-
taneously. Our technique for removing individual variable as-
signments is similar to BFL as it seeks to remove an assignment
by evaluating a trace obtained with the opposite assignment.
However, we apply this technique to longer traces obtained with
semiformal methods, and we perform testing via resimulation.

Another technique applied to model checking solutions is by
Gastin et al. [8]. Here, the counterexample is converted to a
Büchi automaton, and a depth-first search algorithm is used to
find a minimal bug trace. Minimization of counterexamples is
also addressed in [14], where the distinction between control
and data signals is exploited in attempting to eliminate data
signals first from the counterexample.

All of these techniques focus on reducing the number of input
variable assignments to disprove the property. Because the
counterexample is obtained through a formal model checker,
the number of cycles in the bug trace is minimal by construc-
tion. Butramin’s approach considers a more general context
where bug traces can be generated by simulation or semi-
formal verification software, attacking much more complex
designs than BMC-based techniques. Therefore: 1) traces are,
in general, orders of magnitude longer than the ones generated
by BMC, and 2) there is much potential for reducing the
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trace in terms of number of clock cycles, as our experimental
results indicate. On the downside, the use of simulation-based
techniques does not guarantee that the results obtained are
of minimal length. As the experimental results in Section VI
indicate, our heuristics provide in practice optimal results for
most benchmarks.

Aside from minimization of bug traces generated using
formal methods, techniques that generate traces by random
simulation have also been explored in the context of hardware
verification. One such technique is by Chen and Chen [5] and
proceeds in two phases. The first phase identifies all the distinct
states of the counterexample trace. The second phase represents
the trace as a state graph, applies one step of forward state
traversal [6] to each of the individual states, and adds transition
edges to the graph based on it. Dijkstra’s shortest path algorithm
is applied to the final graph obtained. This approach, while very
effective in minimizing the trace length (the number of clock
cycles in the trace): 1) does not consider elimination of input
variable assignments and 2) makes heavy use of formal state-
traversal techniques, which are notoriously expensive computa-
tionally and can usually be applied only to small-size designs,
as indicated also by the experimental results in [5].

D. Techniques in Software Verification

The problem of trace minimization has been a focus of
research also in the software verification domain. Software bug
traces are characterized by involving a very large number of
variables and very long sequences of instructions. The delta
debugging algorithm [11] is fairly popular in the software
world. It simplifies a complex software trace by extracting
the portion of the trace that is relevant to exposing the bug.
Their approach is based exclusively on resimulation-based ex-
ploration, and it attacks the problem by partitioning the trace
(which, in this case, is a sequence of instructions) and checking
if any of the components can still expose the bug. The algorithm
was able to greatly reduce bug traces in Mozilla, which is a
popular web browser. A recent contribution that draws upon
counterexamples found by model checking is by Groce and
Kroening [9]. Their solution focuses on minimizing a trace with
respect to the primitive constructs available in the language
used to describe the hardware or software system and on trying
to highlight the causes of the error in the counterexample to
produce a simplified trace that is more understandable by a
software designer.

III. ANALYSIS OF BUG TRACES

In this section, we analyze the characteristics of bug traces
generated using random simulation, point out the origins of
redundancy in these traces, and propose how redundancy can be
removed. In general, redundancy exists because some portions
of the bug trace may be unrelated to the bug, there may be loops
or shortcuts in the bug trace, or there may be an alternative
and shorter path to the bug. Two examples are given below to
illustrate the idea, while the following subsections provide a
detailed analysis.

Example 2: In Intel’s first-generation Pentium processor,
there was a bug in the floating point unit, which affected the

Fig. 5. Bug trace may contain sequential loops, which can be eliminated to
obtain an equivalent but more compact trace.

Fig. 6. Arrow 1 shows a shortcut between two states on the bug trace.
Arrows marked “2” show paths to easier-to-reach bug states in the same bug
configuration, which violates the same property.

fdiv instruction. This bug occurred when fdiv was used with
a specific set of operands. If there had been a checker testing
for the correctness of the fdiv operation during the simulation-
based verification of the processor, it is very probable that a
bug trace exposing this problem could have been many cycles
long. However, only a small portion of the random program
would have been useful to expose the fdiv bug, while the
majority of the other instructions could have been eliminated.
The redundancy of the bug trace comes from the cycles spent
testing other portions of the design, which are unrelated to the
flawed unit and can, thus, be removed.

Example 3: Suppose that the design under test is a First-
In–First-Out (FIFO) unit and a bug occurs every time the
FIFO is full. Furthermore, assume that there is a pseudorandom
bug trace containing both read and write operations until the
trace reaches the “FIFO full” state. Obviously, cycles that read
data from the FIFO can be removed because they create state
transitions that bring the trace away from the bug configuration
instead of closer to it.

A. Making Traces Shorter

In general, a trace can be made shorter if any of the following
situations arise: 1) it contains loops; 2) there are alternative
paths (shortcuts) between two design states; and 3) there is ano-
ther state that exposes the same bug and can be reached earlier.

The first situation is depicted schematically in Fig. 5. In
random simulation, a state may be visited more than once,
and such repetitive states will form loops in the bug trace.
Identifying such loops and removing them can reduce the length
of the bug trace.

In the second case, there may be a shortcut between two
states as indicated by arrow 1 in Fig. 6, which means that
an alternative path may exist from a state to another state
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using fewer cycles. Such situations may arise in random traces
frequently because constrained random simulation often selects
transitions arbitrarily, and it is possible that longer paths are
generated in place of shorter ones.

The third condition occurs when multiple design states that
expose the same bug exist, and some of them can be reached in
fewer steps compared to the original one, as shown by arrows
marked “2” in Fig. 6. If a path to those states can be found, then
it is possible to replace the original one.

A heuristic approach that can be easily devised to search for
alternative shorter traces is based on generating perturbations
on a given trace. A bug trace can be perturbed locally or
globally to find shortcuts or a path to an alternative bug state.
In a local perturbation, cycles or input events are added or re-
moved from an original trace. As mentioned previously, random
simulation selects state transitions in a pseudorandom fashion.
By local perturbation, alternative transitions can be explored,
and shorter paths to a trace state or to another state exposing
the bug may be found. In a global perturbation, a completely
new trace is generated and used to substitute the original one
if it is shorter. One reason why perturbation has the potential
to work effectively on random traces is that a pseudorandom
search tends to do a lot of local exploration compared to a
formal trace that progresses directly to a bug. Because of this,
opportunities of shortcuts within a trace abound.

B. Making Traces Simpler

After all redundant cycles are removed, many input events
may still be left. For example, if a circuit has 100 inputs and a
bug trace is 100 cycles long, there are 10 000 input variable
assignments in the trace. However, not all assignments are
relevant to expose the bug. Moreover, redundant events in-
crease the complexity of interpreting the trace in the debugging
phase. Therefore, it is important to identify and remove such
redundancy.

We envision two ways of simplifying the input assignments
in a trace, namely: 1) by removing input events and 2) by eli-
minating assignments that are not essential to reach our goal.
In the latter approach, input assignments can be marked as
essential or not based on their impact in exposing the bug. By
removing nonessential input variable assignments, the analysis
of the bug trace during debugging can be made much simpler.
For example, a trace with two input events will be much easier
to analyze than a trace with 10 000 input events.

IV. PROPOSED TECHNIQUES

Based on our analysis, we propose several techniques to
minimize a bug trace. An overview of these techniques is
given in the following, and they are discussed in detail in the
subsections that follow.

1) Single-cycle elimination shortens a bug trace by resimu-
lating a variant of the trace that includes less simulation
cycles.

2) Alternative path to bug is exploited by detecting when
changes made on a trace produce an alternative, shorter
path to the bug.

3) State skip identifies all the unique state configurations in a
trace. If the same state occurs more than once, it indicates
the presence of a loop between two states, and the trace
can be reduced.

4) BMC-based refinement attempts to further reduce the
trace length by searching locally for shorter paths be-
tween two trace states.

In addition, we propose the following techniques to simplify
traces.

1) Input event elimination attempts to eliminate input events
by resimulating trace variants that involve fewer input
events.

2) Essential variable identification uses three-value simula-
tion to distinguish essential input variable assignments
from nonessential ones, and marks the nonessentials
with “X .”

3) Indirectly, all cycle removal techniques may also remove
redundant input events.

A bug trace can be perturbed by either adding or removing
cycles or input events. However, trying all possibilities is unfea-
sible. Since the purpose of minimization is to reduce the num-
ber of cycles and input events, we only use removal in the hope
to find shorter and simpler traces. Our techniques are applied
in the following order: Butramin first tries to shorten a trace by
removing certain clock cycles and simulating such trace vari-
ants, after which it tries to reduce the number of input events.
While analyzing each perturbed trace, the two techniques of
alternative path to bug and state skip monitor for loops and
shorter paths. Once these techniques run out of steam, Butramin
applies a series of BMC refinements. The BMC search is
localized so that we never generate complex SAT instances for
solving, which could become the bottleneck of Butramin. If
our SAT solver times out on some BMC instances, we simply
ignore such instances and potential trace reductions since we do
not necessarily aim for the shortest traces possible.

A. Single-Cycle Elimination

Single-cycle elimination is an aggressive but efficient way
to reduce the length and the number of input events in a bug
trace. It tentatively removes a whole cycle from the bug trace
and checks if the bug is still exposed by the new trace through
resimulation, in which case the new shorter trace replaces the
old one. This procedure is applied iteratively on each cycle in
the trace, starting from cycle 1 and progressing to the end of
the trace. The reason we start from the first simulation cycle is
that this perturbation has the best chance to move far away from
the original trace, because it perturbs the early stages of a trace.
The later a removal, the less the opportunity to visit states far
away from the original trace.

Example 4: Consider the trace of Example 1. During the first
step, single-cycle elimination attempts to remove cycle 1. If the
new trace still exposes the bug, we obtain a shorter bug trace
that is only two cycles long and has two input events, as shown
in Fig. 7. Note that it is possible that some input events become
redundant because of cycle elimination, as it is the case in this
example for the event on signal c at cycle 2. This is because
the previous transition on c was at cycle 1, which has now
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Fig. 7. Single-cycle elimination attempts to remove individual trace cycles,
generating reduced traces, which still expose the bug. This example shows a
reduced trace where cycle 1 has been removed.

Fig. 8. Input event elimination removes pairs of events. In the example, the
input events on signal c at cycle 1 and 2 are removed.

been removed. After events that have become redundant are
eliminated, single-cycle elimination can be applied to cycles 2
and 3 iteratively.

To reduce Butramin’s runtime, we extend single-cycle elim-
ination to work with several cycles at once. When three con-
secutive cycles are eliminated one by one, Butramin will try
to eliminate pairs of consecutive cycles. If that succeeds, the
next attempt will consider twice as many cycles. If it fails,
the number of cycles considered at once will be halved. This
adaptive cycle elimination technique can dynamically extend
its “window size” to quickly eliminate large sequences of cycles
when this is likely but will roll back to single-cycle removal
otherwise.

Note that when dependency exists between blocks of cycles,
removing a single cycle at a time may invalidate the bug trace.
For example, removing any cycle within a PCI-X transaction
will almost always corrupt the transaction, rendering the bug
trace useless. This problem can be addressed by removing
whole transactions instead of cycles. With some extra input
from the user to help identify transaction boundaries, Butramin
can be easily adapted to handle transaction-based traces.

B. Input Event Elimination

Input event elimination is the basic technique to remove input
events from a trace. It tentatively generates a variant trace where
one input event is substituted with the complementary value
assignment. If the variant trace still exposes the bug, then the
input event can be removed. In addition, the event immediately
following on the same signal becomes redundant and can be
removed as well.

Example 5: Consider once again the trace of Example 1. The
result after elimination of input event c at cycle 1 is shown in
Fig. 8. Note that the input event on signal c at cycle 2 becomes
redundant and is also eliminated.

C. Alternative Path to Bug

An alternative path to bug occurs when a variant trace reaches
a state that is different from the final state of the trace, but it also

Fig. 9. Alternative path to bug. The variant trace at the bottom hits the bug at
step t2. The new trace replaces the old one, and simulation is stopped.

Fig. 10. State skip. If state sj2 = si4 , then cycles t3 and t4 can be removed,
obtaining a new trace that includes the sequence “. . . , sj1 , sj2 , si5 , . . ..”

exposes the same bug. The alternative state must obviously be
reached in fewer simulation steps than in the original trace. As
shown in Fig. 9, if state sj2 , which is reached at time t2 by the
variant trace (shown at the bottom), exposes the bug, the new
variant trace replaces the original one.

D. State Skip

The state skip rule is useful when two identical states exist
in a bug trace. This happens when there is a sequential loop in
the trace or when, during the simulation of a tentative variant
trace, an alternative (and shorter) path to a state in the original
trace is found. Consider the example shown in Fig. 10: If states
sj2 and si4 are identical, then a new more compact trace can be
generated by appending the portion from step t5 and on of the
original trace to the prefix extracted from the variant trace up to
and including step t2. This technique identifies all reoccurring
states in a trace and remove cycles between them, guaranteeing
that all the states in the final minimized trace are unique. States
are hashed for fast lookup so that state skip does not become a
bottleneck in execution.

E. Essential Variable Identification

We found that after applying our minimization techniques,
bug traces are usually much shorter. However, many input
variable assignments may still be part of the trace, and their
relevance in exposing the bug may vary—some may be es-
sential, while others are not. Butramin includes an “X-mode”
feature for filtering out irrelevant input variable assignments,
where input variable assignments are classified as essential
or not based on a three-value (0/1/X) simulation analysis.
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To implement this technique, two bits are used to encode
each signal value, and each input assignment in each cycle is
assigned in turn the value X . If the X input propagates to the
checker’s output and an X is sampled on the checker’s output
signal, then the input is marked essential, and the original input
assignment is kept. Otherwise, the input assignment is deemed
irrelevant for the purpose of exposing the bug. The set of input
assignments that are marked irrelevant contribute to simplify
the debugging activity, since a verification engineer does not
need to take them into consideration when studying the cause
of the system’s incorrect behavior. We present experimental
results that indicate that this analysis is capable of providing
substantial simplifications to the signals involved in an already-
reduced bug trace.

Note, finally, that our simplification technique, which relies
on three-value simulation, is overly conservative, flagging irrel-
evant input assignments as essential. Consider, for instance, the
simulation of a multiplexer where we propagated an X value to
the select input and a 1 value to both data inputs. A three-valued
logic simulator would generate X at the output of the simulator;
however, for our purposes, the correct value should have been
1, since we consider X to mean “don’t care.” If more accuracy
is desired for this analysis, a hybrid logic/symbolic simulator
can be used instead [15], [20].

Alternatively, essential variable identification could be per-
formed using a BMC-based technique with a pseudo-Boolean
SAT solver, for instance, [22] and [23]. Such solvers satisfy a
given SAT formula with the smallest possible number of as-
signed variables (maximal number of don’t cares). Aside from
these solvers, even mainstream Boolean SAT solvers can be
specialized to do this, as suggested in [18]. Since assignments
in the SAT solution correspond to input variable assignments
in the bug trace, those input variable assignments are obviously
essential. Essential variable identification naturally follows by
marking all other input variable assignments as irrelevant. A
similar idea has been deployed also by Lu et al. [16] to find
a minimal three-valued solution that minimizes the number of
assignments to state variables.

F. BMC-Based Refinement

This technique can be used after simulation-based minimiza-
tion to further reduce the length of a bug trace. Because of
state skip, after applying simulation-based minimization, no
two states in a trace will be the same. However, the distance
between any pair of states may not be minimal. We propose
here an approach based on model checking to find the shortest
path between two states. The algorithm, which is also outlined
in Fig. 11, considers two states, say si and sj , which are k
cycles apart in the trace and attempts to find the shortest path
connecting them. This path can then be found by unrolling the
circuit from 1 to k − 1 times, asserting si and sj as the initial
and final states, and attempting to satisfy the corresponding
Boolean formula. If we refer to the CNF formula of the unrolled
circuit as CNFc, then CNFc ∧ CNFsi

∧ CNFsj
is the Boolean

formula to be satisfied. If a SAT solver can find a solution,
then we have a shortcut connecting si to sj . Note that the SAT
instances generated by our algorithm are simplified by the fact

Fig. 11. BMC-based shortcut detection algorithm.

Fig. 12. BMC-based refinement finds a shortcut between states s1 and s4,
reducing the overall trace length by one cycle.

Fig. 13. Shortest path algorithm is used to find the shortest sequence from
the initial state to the bug state. The edges are labeled by the number of cycles
needed to go from the source vertex to the sink. The shortest path from state 0
to state 4 in the figure uses two cycles.

that CNFsi
and CNFsj

are equivalent to a partial satisfying
assignment for the instance. An example is given in Fig. 12.

The algorithm described in Fig. 11 is applied iteratively
on each pair of states that are k steps apart in the bug trace
and by using varying values for k from 2 to m, where m is
selected experimentally so that the SAT instance can be solved
efficiently. We then build an explicit directed graph using the
shortcuts found by the BMC-based refinement and construct the
final shorter path from the initial state to the bug state. Fig. 13
shows an example of such graph. Each vertex in the graph
represents a state in the starting trace, edges between vertices
represent the existence of a path between the corresponding
states, and the edge’s weight is the number of cycles needed
to go from the source state to the sink. Initially, there is an edge
between each two consecutive vertices, and the weight labels
are 1. Edges are added between vertices when shortcuts are
found between the corresponding states, and they are labeled
with the number of cycles used in the shortcut. A single-source
shortest path algorithm for directed acyclic graphs is then used
to find the shortest path from the initial to the bug state. While
some of the shortcuts discovered by BMC may be incompatible
because of the partial constraints in CNFsi

and CNFsj
, the

shortest path algorithm that we describe selects an optimal set
of compatible shortcuts within the selected window size m.

Although simulation-based techniques are effective, they
are heuristic in nature and may miss local optimization
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Fig. 14. Butramin system architecture.

opportunities. BMC-based refinement has the potential to im-
prove on local optimizations by performing short-range optimal
cycle elimination.

V. IMPLEMENTATION INSIGHTS

We built a prototype implementation of the techniques de-
scribed in Section IV to evaluate Butramin’s performance and
trace minimization capability on a range of digital designs.
Our implementation strives to simplify a trace as much as
possible while providing good performance at the same time.
This section discusses some of the insights that we gained while
constructing a Butramin’s prototype.

A. System Architecture

The architecture of Butramin consists of three primary com-
ponents, namely: 1) a driver program; 2) commercial logic
simulation software; and 3) a SAT solver. The driver program
is responsible for: 1) reading the bug trace; 2) interfacing to
the simulation tool and SAT solver for the evaluation of the
compressed variant traces; and 3) finding simplifications intro-
duced in the previous sections. The logic simulation software is
responsible for simulating test vectors from the driver program,
notifying the system if the trace reaches the bug under study,
and communicating back to the driver each visited state during
the simulation. BMC-based minimization was implemented us-
ing MiniSAT [7], which analyzes the SAT instances generated
by converting the unrolled circuits to CNF form using a CNF
generator. The system architecture is shown in Fig. 14.

B. Algorithmic Analysis and Performance Optimizations

In the worst case scenario, the complexity of our simulation-
based techniques is quadratic in the length of the trace under
evaluation and linear in the size of the primary input signals
of the design. In fact, consider an m-cycle-long bug trace
driving an n-input design. The worst case complexity for our
cycle elimination technique is O(m2), where the one of the
input event elimination technique is O(n × m2). All the other
simulation-based techniques have simpler complexity or are
independent from the size of the trace or design. In order to

Fig. 15. Early exit. If the current state sj2 matches a state si2 from the
original trace, then we can guarantee that the bug will eventually be hit.

improve on the wall-clock profile of Butramin, we developed an
extra optimization, as described in the following. Experimental
results show that the worst case situation did not occur due to
our optimization, adaptive cycle elimination, and the nature of
practical benchmarks.

The optimization focuses on identifying all multiple occur-
rences of a state so that we can identify when the simulation of
a variant trace falls into the original trace and avoid simulating
the last portion of the variant. To achieve this, we hash all
states visited by a trace and tag them with the clock cycle
in which they occur. During the simulation of variant traces,
we noted that in some special conditions, we can improve the
performance of Butramin by reducing the simulation required.
After the time when the original and the variant traces differ, if
a variant state matches a state in the original trace tagged by the
same clock cycle, then we can terminate the variant simulation
and still guarantee that the variant trace will hit the bug. In other
words, simulation can be terminated early because the result
of applying the same test vectors after the matched state will
not change. We call this an early exit. As illustrated in Fig. 15,
early exit points allow the simulation to terminate immediately.
Often simulation can also be terminated early by state skip
optimization because the destination state is already in the
trace database. Experimental results show that this optimization
is crucial to the efficiency of simulation-based minimization
techniques.

C. Use Model

To run Butramin, the user must supply four inputs, namely:
1) the design under test; 2) a bug trace; 3) the property that was
falsified by the trace; and 4) an optional set of constraints on the
design’s input signals. Traces are represented as value change
dump (VCD) files—a common compact format that includes all
top-level input events. Similarly, the minimized bug traces are
output as VCD files.

Removing input events from the bug trace during trace min-
imization may generate illegal input sequences, which, in turn,
could erroneously falsify a property or make the trace useless.
For example, removing the reset event from a bug trace may
lead the design into an erroneous state, generating a spurious
trace that does not reflect a possible legal activity of the design
under verification, even if the simulation of such trace does
expose the original design flaw. Consequently, when testing
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subcomponents of a design with constrained inputs, it becomes
necessary to validate the input sequences generated during trace
minimization. There are several ways to achieve this goal. One
technique is to mark required inputs so that Butramin does not
attempt to remove the corresponding events from the trace. This
approach is a viable solution to handle, for instance, reset and
the clock signals. For complex sets of constraints, it is possible
to convert them into an equivalent circuit block connected to
the original design, such as the techniques described in the
work by Yuan et al. [21]. This extra circuit block takes random
input assignments and converts them into a set of legal assign-
ments that satisfy all the required environment constraints. We
deployed the former approach for simple situations, and we
adapted the latter to the context of our solution for benchmarks
with more complex environments. Specifically, since Butramin
starts already with a valid input trace that it attempts to simplify,
we wrote our constraints as a set of monitors that observe each
input sequence to the design. If the monitors flag an illegal
transition during simulation, the entire “candidate trace” is
deemed invalid and removed from consideration. For BMC-
based refinement, these environmental constraints are synthe-
sized and included as additional constraints to the problem
instance. Note, however, that this limits BMC-based techniques
to be applied to designs whose environmental constraints are
synthesizable. On the other hand, this requirement is lifted
for the simulation-based minimization techniques. From our
experimental results, we observe that most minimization is
contributed by simulation-based techniques, which renders this
requirement optional for most practical benchmarks.

We also developed an alternative model to apply Butramin
to reduce regression runtime. In this context, the approach
is slightly different since the goal now is to obtain shorter
traces that achieve the same functional coverage as their longer
counterpart. To support this, coverage points are encoded by
properties. Each of them is “violated” only when the corre-
sponding point is covered by the trace. Butramin can then be
configured to generate traces that violate all of the properties,
instead of just one, so that the same coverage is maintained.

VI. EXPERIMENTAL RESULTS

We evaluated Butramin by minimizing traces generated by
a range of commercial verification tools: a constrained random
simulator, semiformal verification software, and, again, a semi-
formal tool where we specified to use extra effort in gener-
ating compact traces. We considered nine benchmark designs
from OpenCores (FPU), ISCAS89 (S15850, S38584), ITC99
(B15), IWLS2005 (VGALCD), picoJava (picoJava, ICU), and
two internally developed benchmarks (MULT, DES), whose
characteristics are reported in Table I. We developed assertions
to be falsified when not already available with the design,
and we inserted bugs in the design that falsify the assertions.
Table II describes assertions and bugs inserted. The checker for
VGALCD is a correct duplicate of the original design (which
we modified to contain one design error); hence, the circuit
size we worked with is twice as the one reported in Table I.
Finally, experiments were conducted on a Sun Blade 1500
(1 GHz UltraSPARC IIIi) workstation running Solaris 9.

TABLE I
BENCHMARK CHARACTERISTICS. THE BENCHMARK SETUP FOR VGALCD

INVOLVES DUPLICATING THIS DESIGN AND MODIFYING ONE

CONNECTION IN ONE OF THE COPIES. BUTRAMIN THEN MUST

MINIMIZE THE TRACE EXPOSING THE DIFFERENCE. IT FOLLOWS

THAT THE SIZE OF THE BENCHMARK WE WORK WITH IS

ACTUALLY TWICE THE ONE REPORTED FOR THIS DESIGN

A. Simulation-Based Experiments

Our first set of experiments attempts to minimize traces
generated by running a semiformal commercial verification tool
with the checkers specified and subsequently applying only
the simulation-based minimization techniques of Butramin, as
described in Sections IV-A–D. We were not able to complete
the generation of traces with the semiformal verification tool
for VGALCD; therefore, we only report results related to con-
strained random traces for this benchmark. Table III shows the
absolute values of cycles and input events left in each trace and
the overall runtime of Butramin using only simulation-based
techniques. Figs. 16 and 17 show the percentages of cycles and
input events removed from the original bug trace using different
techniques. Note that for all benchmarks, we are able to remove
the majority of cycles and input events.

With reference to Figs. 16 and 17, we observe that the
contribution of different minimization techniques varies among
benchmarks. For example, almost all the cycles and input events
are removed by cycle elimination in FPU and picoJava. On the
other hand, state skip removes more than half of the cycles and
input events in B15 and ICU. This difference can be attributed
to the nature of the benchmark. If there are fewer state variables
in the design, state skip is more likely to occur. In general,
state skip has more opportunities to provide trace reductions
in designs that are control heavy, such as ICU, compared to
designs that are data path heavy, such as FPU and picoJava.
Although input event elimination does not remove cycles, it has
great impact in eliminating input events for some benchmarks,
such as S38584. Overall, we found that all these techniques are
important to compact different types of bug traces.

Our second set of experiments applies Butramin to a new set
of traces, which are also generated by a semiformal tool, but
this time, we configured the software to dedicate extra effort in
generating short traces by allowing more time to be spent on the
formal analysis of the checker. Analogous to Table III discussed
earlier, Table IV reports the results obtained by applying the
simulation-based minimization techniques of Butramin to these
traces. We still find that Butramin has a high impact in com-
pacting these traces, even if, generally speaking, they present
less redundancy, since they are closer to be minimal. Note,
in particular, that the longer the traces, the greater the benefit
from the application of Butramin. Even if the overall impact
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TABLE II
BUGS INJECTED AND ASSERTIONS FOR TRACE GENERATION. FOR ICU AND picoJava, NO BUGS WERE

INJECTED BUT THE CONSTRAINTS FOR RANDOM SIMULATION WERE RELAXED

TABLE III
CYCLES AND INPUT EVENTS REMOVED BY SIMULATION-BASED TECHNIQUES OF BUTRAMIN ON TRACES GENERATED BY SEMIFORMAL VERIFICATION

Fig. 16. Percentage of cycles removed using different simulation-based tech-
niques. For benchmarks like B15 and ICU, state skip is the most effective
technique because they contain small numbers of state variables, and state
repetition is more likely to occur. For large benchmarks with long traces like
FPU and picoJava, cycle elimination is the most effective technique.

is reduced, we still observe a 61% reduction in the number of
cycles and 91% in input events on the average.

The third set of experiments evaluated traces generated by
constrained random simulation. Results are summarized in
Table V. As expected, Butramin produced the most impact on
this set of traces, since they tend to include a lot of redundant
behavior. The average reduction is 99% in terms of cycles and
input events.

B. Performance Analysis

Table VI compares Butramin’s runtime with and without
different optimization techniques. The traces are generated

Fig. 17. Number of input events eliminated with simulation-based techniques.
The distributions are similar to cycle elimination because removing cycles
also removes input events. However, input event elimination works the most
effectively for some benchmarks like S38584 and DES, showing that some
redundant input events can only be removed by this technique.

using semiformal methods in this comparison. The execution
runs that exceeded 40 000 s were timed out (T/O in the table).
The runtime comparison shows that early exit and state skip
have great impacts on the execution time. Early exit can stop
resimulation early, and state skip may reduce the length of a
trace by many cycles at a time. Although these two techniques
require extra memory, the reduction in runtime shows that
they are worthwhile. In ICU, state skip occurred four times,
removing 6977 cycles, which resulted in a very short runtime.
The comparison also shows that adaptive cycle elimination
is capable of reducing minimization time significantly. This
technique is especially beneficial for long bug traces, such as
FPU and picoJava.
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TABLE IV
CYCLES AND INPUT EVENTS REMOVED BY SIMULATION-BASED TECHNIQUES OF BUTRAMIN ON

TRACES GENERATED BY A COMPACT-MODE SEMIFORMAL VERIFICATION TOOL

TABLE V
CYCLES AND INPUT EVENTS REMOVED BY SIMULATION-BASED METHODS OF BUTRAMIN ON

TRACES GENERATED BY CONSTRAINED RANDOM SIMULATION

TABLE VI
IMPACT OF THE VARIOUS SIMULATION-BASED TECHNIQUES ON BUTRAMIN’S RUNTIME. BENCHMARKS THAT EXCEEDED TIME LIMIT

(40 000 s) ARE NOT INCLUDED IN THE AVERAGE. EACH OF THE RUNTIME COLUMNS REPORTS THE RUNTIME USING ONLY A SUBSET

OF OUR TECHNIQUES: THE FIRST COLUMN DEPICTS CYCLE ELIMINATION AND INPUT-EVENT ELIMINATION, THE SECOND

INCLUDES IN ADDITION EARLY EXIT AND STATE SKIP, AND THE THIRD ADDS ADAPTIVE CYCLE ELIMINATION

A comparison of Butramin’s impact and runtime on the
three sets of traces is summarized in Fig. 18. The result shows
that Butramin can effectively reduce all three types of bug
traces in a reasonable amount of time. Note, in addition, that in
some cases, the minimization of a trace generated by random
simulation takes similar or less time than applying Butramin
to a trace generated by a compact-mode semiformal tool, even
if the initial trace is much longer. That is the case for S38584
or S15850. We explain this effect by the nature of the bug
traces: Traces generated by random simulation tend to visit
states that are easily reachable; therefore, states are likely to
be repetitive, and state skip occurs more frequently, leading to
a shorter minimization time. On the other hand, states visited
in a compact-mode generated trace mode are more frequently
produced by formal engines and can be highly specific, making
state skip a rare event. The cases of FPU and picoJava are
relevant in this context: Here, state skips do not occur, and the

minimization time is highly related to the original trace length.
They also demonstrate the benefits of Butramin in verification
methodologies.

C. Essential Variable Identification

We also applied the technique from Section IV-E to identify
essential variables from the minimized traces that we generated.
Table VII shows that after this technique is applied, many
input variable assignments are marked nonessential, further
simplifying the trace. Note that the comparison is now be-
tween input variable assignments and not between input events.
Since all nonessential input variable assignments are simulated
with X , the simulation will propagate X values to many
internal signals as well. As a result, it will be easier to under-
stand the impact of essential variable assignments on violated
properties.
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Fig. 18. Comparison of Butramin’s impact when applied to traces generated
in three different modes. The graph shows the fraction of cycles and input events
eliminated as well as the average runtime.

TABLE VII
ESSENTIAL VARIABLE ASSIGNMENTS IDENTIFIED IN X-MODE. THE

TABLE COMPARES THE NUMBER OF INPUT VARIABLE ASSIGNMENTS

IN THE MINIMIZED TRACES WITH THE NUMBER OF ASSIGNMENTS

CLASSIFIED ESSENTIAL. ALL THE REMAINING ASSIGNMENTS

ARE NONESSENTIAL AND CAN BE SUBSTITUTED BY X VALUES

IN SIMULATION. THE INITIAL TRACES WERE GENERATED

BY SEMIFORMAL VERIFICATION SOFTWARE

D. Generation of High-Coverage Traces

In order to evaluate the effectiveness of Butramin applied
to reducing regression runtime, we selected three benchmarks,
namely DES, FPU, and VGALCD, as our multiproperty bench-
marks. The original properties in the previous experiments were
preserved, and the same traces generated by constrained ran-
dom simulation were used. In addition, we included a few extra
properties so that our original traces would expose them before
reaching their last simulation step, which still exposes the orig-
inal property that we used, as described in Table II. Those extra
properties specify a certain partial state to be visited or a certain
output signal to be asserted. Butramin is then configured to
produce minimized traces that violate all properties. The results
are summarized in Table VIII. Compared with Table V, it can be
observed that in order to cover extra properties, the length of the
minimized traces are now longer. However, Butramin continues
to be effective for these multiproperty traces. We also found that
the order of property violations is preserved before and after
minimization, suggesting that Butramin minimizes segments of
bug traces individually. From an algorithmic complexity point
of view, minimizing a multiproperty trace is similar to minimiz-
ing many single-property traces with different initial states.

While the original traces of FPU and VGALCD require
20–30 min to be simulated, post-Butramin traces are short
enough to be simulated in just a few seconds. The benefits of

adding the minimized trace to a regression suite, instead of the
original one, are obvious.

E. BMC-Based Experiments

We applied our BMC-based technique to traces already min-
imized by simulation-based methods to evaluate the potential
for further minimization. For VGALCD, we report only data
related to the minimization of random trace since semiformal
traces are not available. The results are summarized in Table IX,
where Orig is the original number of cycles in the trace, and
Removed is the number of cycles removed by this method. We
used a maximum window of ten cycles (i.e., m = 10). The
main observation that can be made is that simulation-based
techniques are very effective in minimizing bug traces. In fact,
only in two cases, i.e., ICU and B15, was our BMC-based
technique able to extract additional minimization opportunities.
Potentially, we could repeat the application of simulation-based
techniques and BMC-based methods until convergence when
no additional minimization can be extracted.

In order to compare the performance of the BMC-based
technique with our simulation-based methods, we applied the
former directly to minimize the original bug traces generated by
semiformal verification and by constrained random simulation.
For this experiment, the time-out limit was set to 40 000 s.
Results are summarized in Table X, where benchmarks that
timed out are marked by “T/O.” The findings reported in the
table confirm that our BMC-based method should only be
applied, if at all, after the simulation-based techniques have
already greatly reduced the trace complexity.

F. Evaluation of Experimental Results

We attempted to gain more insights into the results obtained
by evaluating two additional aspects of the minimized traces.
We first checked how close the minimized traces are to optimal-
length traces, such as those generated by formal verification. To
do so, we run full-fledged SAT-based BMC on our minimized
traces. The results show that our techniques found minimal-
length bug traces for all benchmarks except DES (both traces
generated by random simulation and semiformal verification).
For those two traces, the SAT solver ran out of memory after
we unrolled the design by 118 cycles and could not finish the
experiment, while no shorter traces were found between 1 and
118 cycles long.

We also tried to evaluate if the potential for simulation-based
trace reduction was mostly due to a large number of bug states,
that is, a high number of design configurations that expose a
given bug (an example of this situation is provided in Fig. 1). To
evaluate this aspect, we considered the original nonminimized
traces in our experimental results, we sampled the final state of
the design after simulating the traces, and we fixed the goal of
Butramin to generate a minimized trace that reaches that exact
same final state. The results of this experiment are summarized
in Table XI. The table shows that, for most benchmarks, the
difference in the number of input events and cycles removed
is small, showing that the size of the bug configuration has
a minimal impact on the ability of Butramin to reduce and
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TABLE VIII
CYCLES AND INPUT EVENTS REMOVED BY SIMULATION-BASED METHODS OF BUTRAMIN ON TRACES THAT VIOLATE MULTIPLE PROPERTIES

TABLE IX
CYCLES REMOVED BY BMC-BASED METHOD: ICU AND B15 CAN BE MINIMIZED FURTHER AFTER BUTRAMIN’S SIMULATION TECHNIQUES

TABLE X
ANALYSIS OF A PURE BMC-BASED MINIMIZATION TECHNIQUE. THIS

TABLE SHOWS POTENTIAL FOR MINIMIZING TRACES USING OUR

BMC-BASED TECHNIQUE ALONE. COLUMN “ORIGINAL” SHOWS LENGTH

(IN CYCLES OF THE ORIGINAL TRACE), AND COLUMN “REMAINED”
SHOWS THE LENGTH OF THE MINIMIZED TRACE

OBTAINED AFTER APPLYING THE BMC-BASED METHOD.
TRACES IN THE TOP HALF WERE GENERATED BY SEMIFORMAL

VERIFICATION, THE ONES IN THE BOTTOM HALF WERE

GENERATED BY CONSTRAINED RANDOM SIMULATION.
EXPERIMENTS ARE TIMED OUT AT 40 000 s. THE

RESULTS OF THIS TABLE SHOULD BE COMPARED

WITH TABLES III AND V

simplify a given bug trace, and our proposed solution remains
effective even when the bug configuration is very specific.

VII. CONCLUSION

This paper presented Butramin, which is a bug trace mini-
mizer that combines simulation-based techniques with formal
methods. Butramin applies simple but powerful simulation-
based bug trace reductions, such as cycle elimination, input
event elimination, alternative path to bug, state skip, and es-
sential variable identification. An additional BMC-based re-
finement method is used after these techniques to exploit the
potential for further minimizations. Compared to purely formal
methods, Butramin has the following advantages: 1) it can
reduce both the length of a bug trace and the number of its input
events; 2) it leverages fast logic-simulation engines for bug

TABLE XI
ANALYSIS OF THE IMPACT OF A BUG RADIUS ON BUTRAMIN

EFFECTIVENESS. THE TABLE COMPARES THE NUMBER OF CYCLES

AND INPUT EVENTS IN THE ORIGINAL TRACES TO THE SAME VALUES

FROM MINIMIZED TRACES THAT HIT THE SAME BUG AND TO

MINIMIZED TRACES THAT REACH THE EXACT SAME BUG

CONFIGURATION. TRACES IN THE TOP HALF WERE GENERATED

BY SEMIFORMAL SOFTWARE AND TRACES IN THE BOTTOM HALF

WERE GENERATED BY CONSTRAINED RANDOM SIMULATION

trace minimization and it can scale to industrial size designs;
and 3) it leverages the existing simulation-based infrastructure,
which is currently prevalent in the industry. This significantly
lowers the barriers for industrial adoption of automatic design
verification techniques.

Our experimental results show that Butramin can reduce a
bug trace to just a small fraction of its original length and
complexity (which is estimated as the number of input events
in the trace) by using only simulation-based techniques. In fact,
for most of the benchmarks considered, we found that Butramin
found an alternative trace of minimum length. In addition,
we showed that these results are largely independent of the
verification methodology used to generate the trace, whether
based on simulation or semiformal verification techniques. The
impact of Butramin appears to be uncorrelated with the size of
the bug configuration targeted by the trace, that is, the number
of distinct design states that expose the bug.
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