Architecting a Reliable CMP Switch
Architecture

KYPROS CONSTANTINIDES, STEPHEN PLAZA, JASON BLOME,
VALERIA BERTACCO, SCOTT MAHLKE, and TODD AUSTIN

University of Michigan

and

BIN ZHANG and MICHAEL ORSHANSKY
University of Texas at Austin

As silicon technologies move into the nanometer regime, transistor reliability is expected to wane as
devices become subject to extreme process variation, particle-induced transient errors, and tran-
sistor wear-out. Unless these challenges are addressed, computer vendors can expect low yields
and short mean-times-to-failure. In this article, we examine the challenges of designing complex
computing systems in the presence of transient and permanent faults. We select one small aspect
of a typical chip multiprocessor (CMP) system to study in detail, a single CMP router switch. Our
goal is to design a BulletProof CMP switch architecture capable of tolerating significant levels of
various types of defects. We first assess the vulnerability of the CMP switch to transient faults. To
better understand the impact of these faults, we evaluate our CMP switch designs using circuit-
level timing on detailed physical layouts. Our infrastructure represents a new level of fidelity in
architectural-level fault analysis, as we can accurately track faults as they occur, noting whether
they manifest or not, because of masking in the circuits, logic, or architecture. Our experimental
results are quite illuminating. We find that transient faults, because of their fleeting nature, are
of little concern for our CMP switch, even within large switch fabrics with fast clocks. Next, we
develop a unified model of permanent faults, based on the time-tested bathtub curve. Using this
convenient abstraction, we analyze the reliability versus area tradeoff across a wide spectrum of
CMP switch designs, ranging from unprotected designs to fully protected designs with on-line re-
pair and recovery capabilities. Protection is considered at multiple levels from the entire system
down through arbitrary partitions of the design. We find that designs are attainable that can tol-
erate a larger number of defects with less overhead than naive triple-modular redundancy, using
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domain-specific techniques, such as end-to-end error detection, resource sparing, automatic circuit
decomposition, and iterative diagnosis and reconfiguration.
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1. INTRODUCTION

A critical aspect of any computer design is its reliability. Users expect a sys-
tem to operate without failure when asked to perform a task. In reality, it is
impossible to build a completely reliable system. Consequently, vendors target
design failure rates that are imperceptibly small [Siewiorek and Swarz 1998].
Moreover, the failure rate of a population of parts in the field must exhibit a
failure rate that does not prove too costly to service. The reliability of a system
can be expressed as the mean-time-to-failure (MTTF). Computing system re-
liability targets are typically expressed as failures-in-time (FIT), or FIT rates,
where one FIT represents one failure in a billion hours of operation.

In many systems today, reliability targets are achieved by employing a fault-
avoidance design strategy. The sources of possible computing failures are as-
sessed, and the necessary margins and guards are placed into the design to
ensure it will meet the intended level of reliability. For example, most tran-
sistor failures (e.g., gate-oxide breakdown) can be reduced by limiting voltage,
temperature, and frequency [J. E. D. E. Council 2002]. While these approaches
have served manufacturers well for many technology generations, many device
experts agree that transistor reliability will begin to wane in the nanometer
regime. As devices become subject to extreme process variation, particle-
induced transient errors, and transistor wear-out, it will likely no longer be
possible to avoid these faults. Instead, computer designers will have to begin
to directly address system reliability through fault-tolerant design techniques.

Figure 1 illustrates the fault-tolerant design space we focus on in this article.
The horizontal axis lists the type of device-level faults that systems might expe-
rience. The source of failures are widespread, ranging from transient faults be-
cause of energetic particle strikes [Ziegler 1996] and electrical noise [Vrudhula
et al. 2002], to permanent wear-out faults caused by electromigration [Hu and
Rosenberg 1999], stress-migration [J. E. D. E. Council 2002], and dielectric
breakdown [Wu et al. 2002]. The vertical axis of Fig. 1 lists design solutions
to deal with faults. Design solutions range from ignoring any possible faults
(as is done in many (current systems), to detecting and reporting faults, to
detecting and correcting faults, and finally fault correction with repair capa-
bilities. The last two rows of the table are the only solutions that can address
permanent faults, with the solution of the last row being the only approach that
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Fig. 1. Reliable system design space. The diagram shows a map of type of device-level faults in
a digital system (horizontal axis) versus protection techniques against these faults (vertical axis).
This work addresses the problems/solutions in the dash bordered area of the map.

maintains efficient operation after encountering a silicon defect. This project,
called BulletProof, addresses the problems/solutions in the dash bordered area
of the table.

In recent years, industry designers and academics have paid significant at-
tention to building resistance to transient faults into their designs. A number of
recent publications have suggested that transient faults, because of energetic
particles, in particular, will grow in future technologies [Borkar et al. 2004;
Mukherjee et al. 2005]. A variety of techniques have emerged to provide a
capability to detect and correct these type of faults in storage, including par-
ity or error correction codes (ECC) [Siewiorek and Swarz 1998], and logic, in-
cluding dual or triple-modular spatial redundancy (DMR/TMR)[Siewiorek and
Swarz 1998] or time-redundant computation [Smolens et al. 2004; Reinhardt
and Mukherjee 2000; Mukherjee et al. 2002; Rotenberg 1999; Gomaa et al.
2003] or checkers, like DIVA [Weaver and Austin 2001]. Additional work has
focused on the extent to which circuit timing, logic, architecture, and software
are able to mask out the effects of transient faults, a process referred to as
“derating” a design [Mukherjee et al. 2003; Wang et al. 2004].

In contrast, little attention has been paid to incorporating design tolerance
for permanent faults, such as silicon defects and transistor wear-out. The typ-
ical approach used today is to reduce the likelihood of encountering silicon
faults through postmanufacturing burn-in, a process that accelerates the ag-
ing process as devices are subjected to elevated temperature and voltage [Wu
et al. 2002]. The burn-in process accelerates the failure of weak transistors,
ensuring that, after burn-in, devices still working are composed of robust tran-
sistors. In addition, many computer vendors provide the ability to repair faulty
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memory and cache cells, via the inclusion of spare storage cells [Spainhower
and Gregg 1998; Bossen et al. 2002]. Recently, academics have begun to extend
these techniques to support sparing for additional on-chip memory resources,
such as branch predictors [Bower et al. 2004] and registers [Shivakumar et al.
2003].

1.1 Contributions of This Article

In this article, we emphasize the role of understanding in reliable microarchi-
tecture design by performing a comprehensive design study of the effects of
transient and permanent faults on a chip-multiprocessor switch design. The
goal is to better understand the nature of faults, and to build into our designs a
cost-effective means to tolerate these faults. Specifically, we make the following
contributions:

e We develop a high-performance and high-fidelity fault-modeling infrastruc-
ture. We present two different setups for the infrastructure: one to evaluate
the effects of transient faults and one for permanent faults. The fault-
modeling infrastructure is sufficiently accurate to model asynchronous fault
injection into a design at the transistor level, and then fully model the many
possible ways that faults can be masked, through timing, logic, or microar-
chitectural effects.

e We develop a high-level architect-friendly model of silicon failures, based on
the time-tested bathtub curve. The bathtub curve models the early-life fail-
ures of devices during burn-in, the infrequent failure of devices during the
part’s lifetime, and the breakdown of devices at the end of their normal op-
erating lifetime. From this bathtub-curve model, we define the design space
of interest, and fit previously published device-level reliability data to the
model.

e We introduce a low-cost chip-multiprocessor (CMP) switch-router architecture
that incorporates system-level checking and recovery, component-level fault
diagnosis, and spare-part reconfiguration. Our design, called the BulletProof
CMP switch, is capable of tolerating silicon defects, transient faults, and
transistor wear-out. We evaluate a variety of BulletProof switch designs, and
compare them to designs that utilize traditional fault-tolerance techniques,
such as ECC and triple-modular redundancy. We find that our domain-specific
fault-tolerance techniques are significantly more robust and less costly than
traditional generic fault-tolerance techniques.

The remainder of this article is organized as follows. Section 2 highlights
the important failure mechanisms for future process technologies. Section 3
presents our fault-simulation infrastructure for both transient and permanent
faults and the statistical models used. Section 4 describes the baseline CMP
switch architecture. Section 5 examines the exposure of the baseline design to
transient faults while Section 6 evaluates the reliability of the baseline design
for permanent faults. Section 7 introduces the techniques we have employed
in our CMP switch designs to provide cost-effective tolerance of transient and
permanent faults. In Section 8, we present a detailed trade-off analysis of the
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resilience and cost of our CMP switch designs, plus a comparison to traditional
fault-tolerant techniques, such as ECC and triple-modular redundancy (TMR).
Finally, Section 9 gives conclusions and suggestions for future research direc-
tions.

2. AN ANALYSIS OF THE FAULT LANDSCAPE

As silicon technologies progress into the 65-nm regime and below, a number
of failure factors rise in importance. In this section, we highlight these failure
mechanisms and discuss the relevant trends for future process technologies.

2.1 Single-Event Upset (SEU)

There is growing concern about providing protection from soft errors caused by
charged particles (such as neutrons and alpha particles) that strike the bulk
silicon portion of a die [Ziegler 1996]. SEU events are caused when high-energy
particles strike the P-N junction of a MOSFET, which generates a current pulse
in the depletion region, resulting in a temporary loss of charge stored on the
P-N junction. If the charge variation in the P-N junction is enough to alter the
logic value corresponding to the voltage across the junction, a single-event up-
set (SEU) results. The final effect is a logic glitch that can potentially corrupt
combinational logic computation or state bits. While a variety of studies have
been performed that demonstrate the unlikeliness of such events [Weaver et al.
2004; Wang et al. 2004], concerns remain in the architecture and circuit com-
munities. This concern is fueled by the trends of reduced supply voltage and

increased transistor budgets, both of which exacerbate a design’s vulnerability
to SEU.

2.2 Process Variation

Another reliability challenge designers face is the design uncertainty that is
created by increasing process variations. Process variations result from device
dimension and doping concentration variation that occur during silicon fab-
rication. These variations are of particular concern, because their effects on
devices are amplified as device dimensions shrink [Rao et al. 2003], resulting
in structurally weak and poor performing devices. Designers are forced to deal
with these variations by assuming worst-case device characteristics (usually, a
three-sigma variation from typical conditions), which leads to overly conserva-
tive designs.

2.3 Manufacturing Defects

Deep submicron technologies are increasingly vulnerable to several fabrication-
related failure mechanisms. For example, step coverage problems that occur
during the metalization process may cause open circuits. A postmanufacturing
[Murray and Hayes 1996] and a built-in self-test (BIST) [Al-Asaad and Hayes
1995] are two techniques to impress test vectors onto circuits in order to identify
manufacturing defects. A more global approach to testing for defects is taken by
IDDQ testing, which uses on-board current monitoring to detect short-circuits
in the manufactured part. During IDDQ testing, any abnormally high current
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spikes found during functional testing are indicative of short-circuit defects
[Bohl et al. 19971].

2.4 Time-Dependent Wear-out

Technology scaling has adverse effects on the lifetime of transistor devices,
as a result of time-dependent wear-out. There are three major failure modes
for time-dependent wear-out: electromigration, hot-carrier degradation (HCD),
and time-dependent oxide breakdown. Electromigration results from the mass
transport of metal atoms in chip interconnects. The trends of higher current
density in future technologies increases the severity of electromigration, lead-
ing to a higher probability of observing open and short-circuit nodes over
time [Gupta and Kahng 2003]. HCD is the result of carriers being heated by
strong electrical fields and, subsequently, being injected into the gate oxide. The
trapped carriers cause the threshold voltage to shift, eventually leading to de-
vice failure. HCD is predicted to worsen for thinner oxide and shorter channel
lengths [Ionescu et al. 2002]. Time-dependent oxide breakdown results from
the extensive use of ultrathin oxide for high performance. The rate of defect
generation in the oxide is proportional to the current density flowing through it
and, therefore, it is increasing drastically as a result of relentless down-scaling
[Stathis 2002].

2.5 Transistor Infant Mortality

Scaling has had adverse effects on the early failures of transistor devices.
Traditionally, early transistor failures have been reduced through the use of
burn-in. The burn-in process utilizes high voltage and temperature to accel-
erate the failure of weak devices, thereby ensuring that parts that survive
burn-in only possess robust transistors. Unfortunately, burn-in is becoming
less effective in the nanometer regime, as deep submicron devices are sub-
ject to thermal run-away effects, where increased temperature leads to in-
creased leakage current and increased leakage current leads to yet higher tem-
peratures. The end result is that aggressive burn-in will destroy even robust
transistors. Consequently, vendors may soon have to relax the burn-in pro-
cess, which will ultimately lead to more early failures for transistors in the
field.

The quantity and diversity of faults makes the task of protecting against
them seem, on the surface, a daunting task. However, as we will demonstrate in
the following sections, we can conveniently bifurcate all faults into two classes:
transient and permanent. Given these two abstractions, we need only determine
an appropriate model for fault-arrival rates, and develop the infrastructure
necessary to evaluate the effects of these faults.

3. A FAULT IMPACT-EVALUATION INFRASTRUCTURE

In this section, we present an accurate simulation infrastructure for evaluating
a design’s exposure to both transient and permanent faults. Again, we attack
the problem by partitioning all faults into two classes: transient and permanent.
Within each partition, we create an appropriate model for the relevant fault’s
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parameters, and develop the infrastructure necessary to evaluate their effects
on a given design.

Reliable system design analysis places high demands on the analysis infras-
tructure. The simulation framework must accurately gauge detailed circuit
phenomena to correctly simulate the introduction, propagation, and possible
masking of faults, as they enter into the system under study. For example, a
transient SEU fault, when injected into a combinational logic block, may or
may not affect the latch at the end of the associated logic chain; whether or not
this happens is purely because of the timing of the glitch’s propagation and the
arrival time of the clock at the associated latch inputs. The approach that has
been taken in the past to analyze much of the work in reliable system design
has been to utilize extremely simplistic analytical circuit models of microarchi-
tectural components. The primary advantage of the analytical circuit models
is flexibility and speed. However, the accuracy of these models is quite poor
as they cannot capture the timing and logic-masking effect that are important
in tracking fault propagation in complex computing systems. To address these
concerns, our evaluation framework incorporates an event-driven logic simu-
lator, permitting simulations that react to circuit-level reliability phenomena
(such as transient, delay, and permanent faults) on a cycle-by-cycle basis while
simulating, with sufficient speed, to examine entire workloads.

3.1 Simulation Methodology for Transient Faults

Figure 2a shows the simulation framework for evaluating the impact of tran-
sient faults on a digital design. We use an event-driven simulator to simulate in
parallel two copies of the structural gate-level description of the design under
evaluation (which we obtain by synthesizing a Verilog description of the design
with the Synopsys CAD tools): one copy is kept intact (golden model), while the
other is subjected to fault injection. The input stimuli used for the simulation
consist of typical input traces that exercise the design.

The fault generator is capable of injecting voltage pulses of various durations
at any gate of the design and flipping the value of any individual flip-flop of the
design by forcing values on the design nets and latches during the simulation.
Faults are uniformly distributed in time (when they occur), space (which net
they affect), and duration of the event. At the end of each cycle, all outputs
and sequential elements of the design are compared with the golden model.
The fault analyzer distinguishes four cases: (1) if a mismatch is detected in the
output lines, then an error has occurred; (2) if the mismatch is found in the
sequential elements but not at the outputs, then the fault was microarchitec-
turally masked; we derive that all the other injected faults have been either
(3) time masked or (4) logic masked. To discern between these two final cases,
we rerun the simulation by injecting the same faults synchronized with the
design’s clock cycle using a one-cycle duration: the faults injected in this sec-
ond simulation cannot be time-masked. Hence, the difference between these
two analyses gives the correct partition between time- and logic-masked faults.
Finally, to gain statistical confidence of the results, we run the simulations
described for a thousand times in a Monte Carlo modeling framework.
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Fig. 2. Simulation infrastructure. (a) The simulation infrastructure to evaluate the impact of
transient faults. Two models of the system are simulated in parallel: one is subjected to faults (uni-
formly distributed in time, space, and duration), while the other is kept intact. We provide realistic
data traces to the design and evaluate, at the end of each clock cycle, if a fault has caused an error
at the outputs. (b) The simulation infrastructure for permanent faults. The defect infrastructure
once again uses two models of the system, simulated in parallel. Defects are uniformly distributed
in time and space and the input stimuli is a full-coverage test that activates each internal circuit
node of the system. A defect analyzer classifies faults based on the system response.
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Soft errors can be caused by high-energy neutrons present in cosmic rays
and alpha particles originated from radioactive decay of impurities in chip and
packaging materials [Ziegler et al. 1996; Shivakumar et al. 2002]. Because of
different packaging technologies, the soft-error rate caused by alpha particles
can vary widely for processors within a particular technology generation. Fur-
ther, the soft-error rate from these two radiation sources is additive and, thus,
each one can be studied independently. Therefore, our transient fault model
considers only transient faults caused by high-energy neutrons present in cos-
mic rays. The soft-error rate (SER) is determined not only by the flux rate of
the high-energy neutrons, but also by the circuit elements’ susceptibility to the
particle strike:

SER ~ F x exp( — QCM)
Qs
where F is the flux rate of the high-energy neutrons, @; is a technology-
dependent constant, and Q. is the critical charge, a measure of the circuit
element’s susceptibility to the particle strike. @..; and @s both decrease with
feature size, but Q.,;; decreases faster than @, [Shivakumar et al. 2002].

In our simulation framework, we use a pulse-based model for transient faults
where the transient voltage pulses are classified into five classes based on their
duration. The model uses a sixth class of faults to model the flip of a flip-
flop’s value, when the flip-flop is hit directly by an energetic particle strike.
The transient fault generation is modeled using a six-variable random process,
where random variables model the uniformly distributed arrival rate of each
class of faults. For both current and future technology processes, the mean
interarrival times for each class of faults were derived by data in Shivakumar
et al. [2002] and by using accurate SPICE simulations to characterize Q.,;; of
various circuit elements.
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3.2 Simulation Methodology for Permanent Faults

The simulation of permanent faults, or defects, is carried on a corresponding
framework as shown in Fig. 2b, with three main differences. First, the defect
generator considers only the time and location of defects. The duration of the
event in this analysis is considered permanent. Once a permanent failure oc-
curs, the design may or may not continue to function, depending on its internal
structure and architecture. Second, the defect analyzer classifies each defect
as (1) exposed, (2) protected, or (3) unprotected, but masked. In the context of
defect evaluation, faults accumulate over time until when the design fails to
operate correctly. The defect that brings the system to failure is the last injected
defect in a simulation and it is classified as exposed. A defect may be protected
if, for instance, it is the first one to hit a TMR-protected component. An unpro-
tected, but masked defect, is one such that is masked only because it occurs
in a portion of the design that has already failed and thus further failures in
this region become innocuous. An example would be a defect hitting an already
failed module of a TMR-protected component.

In the context of defects, we are concerned with studying the potential of a
defect to impact the design outputs in any possible future execution. Thus, the
permanent fault analysis framework differs in use of input stimuli. To gauge
if a design impaired after a permanent defect, it is subjected to a full coverage
test battery, crafted to excite all internal nodes of the design while observing
the outputs. If any of the stimuli reveal an incorrect output, the implication is
that there is at least one execution that can expose the defect, and thus such
defect is considered exposed.

To derive a simple architect-friendly model of permanent failures, we utilize
atime-tested model for silicon failure analysis. In the semiconductor industry, it
is widely accepted that the failure rate for many systems follows what is known
as the bathtub curve, as illustrated in Fig. 3. We will adopt this failure model for
our research. Our goal with the bathtub-curve model is not to predict its exact
shape and magnitude for the future (although we will fit published data to it to
create “design scenarios”), but rather to utilize the bathtub curve to illuminate
the potential design space for future fault-tolerant designs. The bathtub curve
represents device failure rates over the entire lifetime of transistors and is
characterized by three distinct regions.

¢ Infant Period: In this phase, failures occur very soon and thus the failure
rate declines rapidly over time. These infant mortality failures are caused by
latent manufacturing defects that surface quickly if a temperature or voltage
stress is applied.

¢ Grace Period: When early failures are eliminated, the failure rate falls
to a small constant value where failures occur sporadically because of the
occasional breakdown of weak transistors or interconnect.

¢ Breakdown Period: During this period, failures occur with increasing fre-
quency over time because of age-related wear-out. Many transistors will enter
this period at roughly the same time, creating an avalanche effect and a quick
rise in device failure rates.
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Fig. 3. Simple bathtub curve model of device defect exposure. The curve indicates the qualitative
trend of failure rates for a silicon part over time. The initial operational phase and the “agedsilicon”
phase are characterized by much higher failure rates.

With the respect to Fig. 3, the model is represented with the following equa-
tions:

1
F pYE el if 0 <
G +AL5 Grim) if0 <t <ty
F(t)= Fg, ifta <t <tp
Fg+ (@t —tp)l, iftp <t

(t is measured in hours)
where the parameters of the model are as follows:

e )r: average number of latent manufacturing defects per chip
e m: infant period maturing factor

e Fg: grace period failure rate

* tp: breakdown period start point

* b: breakdown factor

In an effort to base our experiments off of published empirical fault data,
we developed a baseline bathtub model based on published literature. Unfor-
tunately, we were unable to locate a single-technology failure model that fully
captured the lifetime of a silicon device, so for each period of the bathtub curve,
we will use reference values from different sources.

3.2.1 Latent Manufacturing Defects per Chip (A;). Previous work [Barnett
and Singh 2003], showed that the rate of latent manufacturing defects is de-
termined by the formula A7, = y Ak, where Lk is the average number of “killer”
defects per chip and y is an empirically estimated parameter with typical values
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between 0.01 and 0.02. The same work provides formulas for deriving the max-
imum number of latent manufacturing defects that may surface during the
burn-in test. Based on these models, the average number of latent manufactur-
ing defects per chip (140 mm?) for current technologies (1) is approximately
0.005. In the literature, there are no clear trends how this value changes with
technology scaling. Thus, we use the same rate for projections of future tech-
nologies.

3.2.2 Grace Period Failure Rate (Fg). For the grace period failure rate,
we use reference data by Srinivasan et al. [2004]. Where a microarchitecture-
level model was used to estimate workload-dependent processor hard failure
rates at different technologies. The model used supports four main intrinsic
failure mechanisms experienced by processors: electromigration, stress migra-
tion, time-dependent dielectric breakdown, and thermal cycling. For a predicted
post-65-nm fabrication technology, we adopt their worst-case failure rate (Fg)
of 55,000 FITs.

3.2.3 Breakdown Period Start Point (tg). Previous work [Stathis 2002],
estimates the time to dielectric breakdown using extrapolation from the mea-
surement conditions (under stress) to normal operation conditions. We estimate
the breakdown period start point (¢£z3) to be approximately 12 years for 65-nm
CMOS at 1.0V supply voltage. We were unable to find any predictions as to
how this value will trend for fabrication technologies beyond 65-nm, but we
conservatively assume that the breakdown period will be held to periods be-
yond the expected lifetime of the product. Thus, we need not address reliable
operation in this period, other than to provide a limited amount of resilience to
breakdown for the purpose of allowing the part to remain in operation until it
can be replaced.

The maturing factor during the infant mortality period and the breakdown
factor during the breakdown period used, are m = 0.02 and b = 2.5, respectively.

4. BASELINE CMP SWITCH ARCHITECTURE

The goal of the BulletProof project is to design a defect-tolerant chip-
multiprocessor capable of tolerating significant levels of various types of defects.
In this work, we address the design of one aspect of the system, a defect-tolerant
CMP switch. The CMP switch is much less complex than a modern micropro-
cessor, enabling us to understand the entire design and explore a large solution
space. Further, this switch design contains many representative components
of larger designs including finite state machines, buffers, control logic, and
buses.

The baseline design, consists of a CMP switch, similar to the one described
in Peh [2001]. This CMP switch provides wormhole routing pipelined at the
flit level and implements credit-based flow control functionality for a two-
dimensional torus network. In the switch pipeline, head flits will proceed
through routing and virtual channel allocation stages, while all flits proceed
through switch allocation and switch traversal stages. A high-level block dia-
gram of the router architecture is depicted in Fig. 4a.
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Fig. 4. Baseline CMP switch design. (a) A high-level block diagram for a wormhole interconnection
switch is presented. It consists of five input controllers, a cross-bar, a switch arbiter, and a crossbar
controller. (b) An area breakdown of the four switch modules and the input/output buses is given.
The area is broken down into state and logic.

The implemented router is composed of four functional modules: the input
controller, the switch arbiter, the crossbar controller, and the crossbar. The in-
put controller is responsible for selecting the appropriate output virtual channel
for each packet, maintaining virtual channel state information, and buffering
flits as they arrive and await virtual channel allocation. Each input controller
is enhanced with an 8-entry 32-bit buffer. The switch arbiter allocates virtual
channels to the input controllers, using a priority matrix to ensure that starva-
tion does not occur. The switch arbiter also implements flow control by tallying
credit information used to determine the amount of available buffer space at
downstream nodes. The crossbar controller is responsible for determining and
setting the appropriate control signals so that allocated flits can pass from the
input controllers to the appropriate output virtual channels through the inter-
connect provided by the crossbar.

The router design is specified in Verilog and was synthesized using the Syn-
opsys Design Compiler and the IBM 0.13-um standard cell library to create a
gate-level netlist, which consists of approximately 10k gates. Figure 4b pro-
vides an area breakdown of the four modules and the input/output buses. The
height of each bar in this figure represents the percentage of the total area for
each module. Further, the bars are broken down into two segments indicating
the fraction of area devoted to combinatorial logic and state elements in each
module. In this design, the input controller is obviously dominant in area. There
are five input controllers; thus, the fraction of area is magnified. The design is
also heavily dominated by logic as compared to state: 84 logic versus 16% state.

5. ASSESSING THE SEU VULNERABILITY OF THE BASELINE CMP SWITCH

In this section, we first detail the various ways a transient fault might get
masked and then we assess the SEU vulnerability of the baseline CMP switch
architecture, using the simulation infrastructure described in Section 3.1.
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5.1 Soft-Error Masking

Fortunately, not all transient faults affect the final outcome of a program. In
order for a transient glitch caused by a particle strike in combinational logic
to affect correct computation, it must first change the value of the latch at the
end of the associated logic chain and then propagate to the design’s output.
There are five basic phenomena that might prevent the glitch from affecting
the design’s output, thereby masking the transient fault:

¢ Logic Masking: As shown in Fig. 5a, a faulty glitch is logically masked when
it fails to affect the input value of a latch, because it gets blocked by a following
gate whose output is completely determined by its other input values (i.e., a
transient pulse exciting a two-input AND gate when its other input value is a
logical zero). It is clear that the fewer levels of logic between two latches, the
lower the probability that a faulty glitch will be logically masked. Therefore,
it is expected that as the pipelines of microprocessors get deeper and clock
frequencies get shorter, the levels of logic in a microprocessor’s pipeline stages
will become fewer and logic masking within a given pipeline stage will occur
less frequently [Shivakumar et al. 2002]. Furthermore, as the pulse duration
of the faulty glitch gets larger, the probability that it will be logically masked
is lower. This is because the values of the other inputs of the blocking gate
that determine its output value must remain unchanged for an extended
period of time.

¢ Timing Masking: As shown in Fig. 5b, a faulty glitch is timing masked if
it affects the input of a latch only in the period of time that the latch is not
sensitive to its input value. It is clear that larger pulse durations lessen the
probability of timing masking. Furthermore, the period of time that the latch
is sensitive to its input value is determined by the technology’s setup and hold
times. Therefore, as microprocessors’ clock frequencies get shorter and setup
and hold times become a larger fraction of the clock period, it is expected that
the timing masking will become a less frequent phenomenon.

¢ Electrical Masking: As shown in Fig. 5c, a faulty glitch is electrically
masked if its pulse is attenuated by subsequent logic gates because of elec-
trical properties and, as a result, it does not affect the input value of a latch.
As with logic masking, electrical masking depends on the number of levels
of logic between two latches. Hence, as the length of the faulty glitch gets
larger (or the number of levels of logic become fewer), the probability that
the transient fault will get masked is less. Furthermore, as transistors get
smaller and faster, the effects on pulse attenuation by logic gates are reduced
and electrical masking is also expected to reduce.

¢ Microarchitectural Masking: Even when a latch’s value is altered by a
transient fault (either due to a faulty transient glitch manifested in a com-
binational logic block that did not get masked and, therefore, successfully
changed the latch’s value or because of a particle strike directly flipping the
latch’s value) the transient fault can still be masked and be transparent to
the application’s correct execution as a result of microarchitectural masking.
For example, if a register’s bit is flipped by a particle strike and, subsequently,
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Fig. 5. Transient fault masking phenomena. (a) A particle strikes the first AND gate, but the
formed faulty pulse is logically masked by the following AND gate. (b) The faults that do not
reach the latch’s input during the latching window get timing masked. (c) The fault’s pulse gets
attenuated by the subsequent logic gates chain and eventually does not affect the following latch.

the register’s value gets overwritten by a new value without the wrong value
ever having been read, then the fact that, for a period of time, the register’s
value was incorrect is transparent to the application’s correct execution and
the transient fault is successfully masked by microarchitectural phenomena.
There is also the case where an incorrect value latched in a flip-flop is sub-
sequently masked either by electrical, logic, or time-related masking in the
next stage, and is thereby prevented from propagating to the design’s output.
Since the state of the design is incorrect for at least one cycle, we consider
this case microarctitectural-related masking, no matter how the transient
fault was subsequently masked.

* Software Masking: Even when a transient fault propagates an error to the
output of the microprocessor, the error can be masked at the software level
[Messer et al. 2004]. For example, when an error is propagated outside of the
microprocessor’s domain and causes an incorrect value at a memory location,
which is then overwritten by the application or the operating system without
having been used, then the error is software-masked and it is transparent to
the correct execution of the application or the operating system. The quan-
titative analysis of software masking is out of the scope of this article, as it
occurs outside of a microprocessor’s domain.

These five masking phenomena significantly decrease the estimated raw soft-
error rates for complex circuit designs but, at the same time, because their
analysis requires accurate models that track cycle-by-cycle details of circuit
activity the aforementioned phenomena, place high demands on the soft-error
analysis infrastructure.

5.2 Exposure to Transient Faults

To evaluate the design’s exposure to transient faults, we used the simulation
infrastructure described in Section 3.1, along with realistic workloads from
communication traces derived from the TRIPS architecture [Sankaralingam
et al. 2003]. In these experiments, we simulate a single switch in a 5 x 5 on-
chip meshlike operand network connecting ALUs and memory components.
The switch chosen for simulation exhibited average communication traffic. The
TRIPS network packets carry data (operands for instructions or addresses to
memory) and status information associated with them. We used traffic traces
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Table I. Simulated Benchmarks?®

# of Comm. Clock cycles Mean Sim.
Benchmark transactions | to completion | Util. (%) | time (s)
ammp 64664 356452 18.14 758.53
art 44060 549648 8.01 531.64
bzip2 69014 686084 10.06 823.22
compress 60306 1304340 4.62 715.28
equake 67608 641020 8.99 664.00
gzip 76538 572473 13.37 909.39
m88ksim 58336 814768 7.16 689.42
mef 76866 704404 10.91 920.78
mgrid 71786 258160 27.81 822.63
parser 80338 1429220 5.62 951.34
swim 47105 236272 19.94 540.58
twolf 59529 1009868 5.89 731.58
vortex 70848 439440 16.12 842.99
adpcm 79257 1454536 5.45 969.68
det 70786 175120 40.42 836.07
hydro2d 62026 302728 20.49 728.78
mpeg2encode 58368 533684 10.94 680.13
tomcatv 51796 208952 24.79 602.62
turb3d 38695 416412 9.29 448.12
hi_util 40005 57150 70.00 505.05

“The benchmark pool consists of 13 benchmarks from the SPEC2000 suite, 6 from
the MediaBench suite, and 1 synthetic benchmark. For each benchmark, we list the
number of communication transactions, the clock cycles needed to complete these
transactions, the switch’s mean utilization, and the simulation time (s).

for 13 benchmarks from the SPEC2000 benchmark suite, 6 benchmarks from
the MediaBench suite, and 1 synthetic high-utilization traffic trace (hi_util), as
shown in Table I.

Each traffic trace consists of 32-bit packet communication transactions,
where each communication transaction is specified by the incoming input chan-
nel, the header of the flit with the destination node (needed for the routing of
the packet), the data of the packet, and the clock cycle that the packet is injected
into the switch. The mean switch utilization for each traffic trace is specified by
the ratio between the number of communication transactions and the number
of clock cycles needed to complete all the communication transactions.

The maximum propagation delay of an injected fault to propagate to the de-
sign’s output in the simulated CMP switch design is 160 clock cycles. Therefore,
we let the CMP switch warm up for the first 10,000 cycles and then start in-
jecting faults, in the design, with intervals of at least 200 clock cycles between
each injected fault. For each injected fault, we keep track of its effects on the
design by monitoring the design’s state and outputs and comparing them with
those of the golden model.

In Fig. 6a, we classify the injected faults into four categories: (1) the faults
that caused an error, (2) faults that were microarchitecturaly masked, (3) faults
that were timing masked, and (4) faults that were logically masked. This clas-
sification is presented per transient fault type. The first type (column) are
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Fig. 6. Assessing the SEU vulnerability of the CMP switch. (a) The graph classifies the effect of
transient faults on: logically masked time-masked, microarchitecturally-masked faults, and those
faults that caused errors. The classification is devised for six different categories of transient faults
with different characteristics, and for the combination of all the different fault categories. In part
(b), the estimated failure rates resulting from transient faults are projected for six different process
technologies, for designs with different clock frequencies, and for various workloads. The raw SER
is projected as well.
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state-bit flipping transient faults, while the next five are transient glitches
with a pulse duration of 100, 80, 60, 40, and 20% of the design’s clock pe-
riod, respectively. The last column is the classification for all types of transient
faults combined (weighted based on the transient faults model described in
Section 3.1). The presented data are averages over all the SPEC2000 and Me-
diaBench benchmarks.

When all transient fault types are combined, we observe that 51.7% of them
are logic masked, 2.2% are timing masked, and 42.9% are microarchitectural
masked. The remaining 3.2% of the injected transient faults propagate the fault
at the output of the design and consequently cause an error in the application’s
execution.

The aspects of a design that are important in its tolerance to transient faults
are the transistor density (number of transistors per area unit), the raw soft-
error rate of a single device in the design, the design’s area, and the design’s
clock frequency. All of these design parameters change with process technology
scaling, except for the design area of microprocessor chips which, based on ITRS
[2004] projections, will stay constant for future generation microprocessor de-
signs. In order to derive a design’s failure rate, we need to know all of the above
along with the design’s SER derating factor. Based on the design’s masking
derated SER, derived from simulations using our simulation infrastructure,
and projections for the characteristics of future designs from ITRS [2004], we
estimated the failure rates of a 5 x 5 on-chip meshlike interconnection network
for current and future process technologies.

Figure 6b presents the estimated failure rates of six different process tech-
nologies for varied workloads. Across the different process technologies the
architecture of the CMP switch design is kept the same. The vertical axis
represents the design’s failure rate in FITs, which is the number of failures
in a billion hours of operation, and it is plotted in logarithmic scale. The top
line is the raw SER, where each energetic particle strike that hits the design
is assumed to cause an error in the application’s execution. The other lines
project the estimated failure rates for two different designs for varied work-
loads, considering fault masking. Since the design’s clock frequency is one of
the major design aspects that affect its tolerance to transient faults (and typical
interconnection networks are clocked with much slower frequencies than micro-
processors), we estimate the failure rates for two designs: one with projected
clock frequencies for interconnection networks and a second with projected
clock frequencies for microprocessors (though the architecture of the design is
the same). As we can see, from the graph, the failure rates for the higher-clock
frequency design are an order of magnitude larger than that of the lower-clock
frequency design.

For each design, we present the failure rates for different workloads: the syn-
thetic high-utilization benchmark, the average failure rate over the SPEC2000
benchmarks, and the average failure rate over the MediaBench benchmarks.
The failure rates for the SPEC2000 and MediaBench benchmarks overlap,
which indicates that realistic workloads exhibit similar masking effects to tran-
sient faults. The failure rate for the high-utilization benchmark is higher than
that of the realistic benchmarks.
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Fig. 7. Baseline design reliability. The graph superimposes the FIT rates of the bathtub model
with the fault tolerance of two variants of the CMP switch design: a baseline unprotected version
and a variant with a traditional TMR technique.

Clearly, for even switch-dominated designs, with high clock frequencies and
unrealisticly high switch utilization, SEU-related FIT rates are extremely low.
Considering that we estimate the post-65-nm fault rate resulting from transis-
tor wear-out to be 55,000 FIT, SEU-related faults do not become a relatively
major concern for any experiment. This result is because of the fleeting na-
ture of transient fault glitches, which make it extremely difficult for them to
influence the state of the system. In fact, at most, 3.2% of all faults result in a
corrupted flit transmission. Our switch design is mostly comprised by combi-
national logic. Thus, most glitches are injected into combination logic and are
subsequently masked. As a result of this initial study, we chose to focus the
remainder of our design efforts and analysis at reducing the impact of silicon
defects.

6. RELIABILITY OF THE BASELINE CMP SWITCH DESIGN

In this section, we evaluate the resiliency of the baseline CMP switch when
exposed to hard silicon defects. In Fig. 7, we used the bathtub curve fitted for
the post-65-nm technology node as derived in Section 3.2. The FIT rate of this
curve is 55000 during the grace period, which corresponds to a mean time to
first component failure (MTTF) of 2 years. We used this failure rate in our
simulation framework for permanent failures and plotted the results.

The baseline CMP design does not deploy any protection technique against
defects and one defect is sufficient to bring down the system. Consequently, the
graph of Fig. 7 shows that in a large population of parts, 50% of the parts will
be defective by the end of the second year after shipment, by the fourth year
almost all parts will have failed. In this experiment, we have also analyzed a
design variant that deploys triple-module-redundancy (TMR) at the full-system
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level (i.e., three CMP switches with voting gates at their outputs). Designs with
TMR applied at different granularities are evaluated in Section 8.

The TMR model used in this analysis is the classic TMR model which as-
sumes that when a module fails, it starts producing incorrect outputs and, if
two or more modules fail, the output of the TMR voter will be incorrect. This
model is conservative in its reliability analysis because it does not take into
account compensating faults. For example, if two faults affect two independent
output bits, then the voter circuit should be able to correctly mask both faults.
However, the benefit gained from accounting for compensating faults rapidly
diminishes with a moderate number of defects, because the probabilities of
fault independence are geometrically less likely. Further, though the switch it-
self demonstrated a moderate number of independent fault sites, submodules
within the design tended to exhibit very little independence. Also, in Saxena
and McCluskey [1998], it is demonstrated that even when TMR is applied on
diversified designs (i.e., three modules with the same functionality, but differ-
ent implementation), the probability of independence is small. Therefore, in
our reliability analysis, we choose to implement the classical TMR model and
for the rest of the article whenever TMR is applied, the classical TMR model is
assumed.

From Fig. 7, the simulation-based analysis finds that system-level TMR pro-
vides very little reliability improvements over the baseline designs, because of
the few number of defects that can be tolerated. Furthermore, the area of the
TMR protected design is more than three times the size of the baseline design.
The increase in area raises the probability of a defect being manifested in the de-
sign, which significantly affects the design’s reliability. In the rest of the article,
we propose and evaluate defect-tolerant techniques that are significantly more
robust and less costly than traditional defect-tolerant techniques.

7. SELF-REPAIRING CMP SWITCH DESIGN

A design that is tolerant to permanent defects must provide mechanisms that
perform four central activities related to faults: detection, diagnosis, repair,
and recovery. Fault detection identifies that a defect has manifested as an error
in some signal. Normal operation cannot continue after fault detection, as the
hardware is not operating properly. Often, fault detection occurs at a macro-
level. Thus it is followed by a diagnosis process to identify the specific location
of the defect. Following diagnosis, the faulty portion of the design must be re-
paired to enable proper system functionality. Repair can be handled in many
ways, including disabling, ignoring, or replacing the faulty component. Finally,
the system must recover from the fault, purging any incorrect data and recom-
puting corrupted values. Recovery essentially makes the defect’s manifestation
transparent to the application’s execution. In this section, we discuss a range
of techniques that can be applied to the baseline switch to make it tolerant
of permanent defects. The techniques differ in their approach and the level at
which they are applied to the design.

In Dally et al. [1994] the authors present the reliable router (RR), a switch-
ing element design for improved performance and reliability within a mesh

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 2, Publication date: March 2007.



20 . K. Constantinides et al.

interconnect. The design relies on an adaptive-routing algorithm, coupled with
alink-level retransmission protocol in order to maintain service in the presence
of a single node or link failure within the network. Our design differs from the
RR in that our target domain involves a much higher fault rate and focuses
on maintaining switch service in the face of faults rather than simply routing
around faulty nodes or links. However, the two techniques can be combined to
provide a more reliable multiprocessor interconnection network.

7.1 General Techniques

The most commonly used protection mechanisms are dual-and triple-modular
redundancy, or DMR and TMR [Siewiorek and Swarz 1998]. These techniques
employ spatial redundancy combined with a majority voter. With permanent
faults, DMR provides only fault detection. Hence, a single fault in either of
the redundant components will bring the system down. TMR is more effective,
as it provides solutions to detection and recovery. In TMR, the majority voter
identifies a malfunctioning hardware component and masks its effects on the
primary outputs. Hence, recovery is trivial, since the defective component is al-
ways outvoted when it computes an incorrect value. Because of this restriction,
TMR is inherently limited to tolerating a single permanent fault. Faults that
manifest in either of the other two copies cannot be handled. DMR/TMR are
applicable to both state and logic elements and, thus, are broadly applicable to
our baseline switch design.

Storage or state elements are often protected by parity or error-correction
codes (ECC) [Siewiorek and Swarz 1998]. ECC provides a lower overhead solu-
tion for state elements than TMR. Like TMR, ECC provides a unified solution to
detection and recovery. Repair is again trivial as the parity computation masks
the effects of permanent faults. In addition to the storage overhead of the actual
parity bits, the computation of parity or ECC bits generally requires a tree of
exclusive-ORs. This hardware has moderate overhead, but, more importantly, it
can often be done in parallel, thus, not affecting latency. For our defect-tolerant
switch, the application of ECC is limited because of the small fraction of area
that holds state.

7.2 Level of Protection

The error resiliency achieved by employing redundancy is highly dependent on
the granularity of the redundant partitions. In general, the larger the granu-
larity of the redundant partitions, the less robust the design. However, as the
granularity of the redundant partition becomes smaller, more logic is required
to implement protection mechanisms. For example, with TMR, each output for
a given partition requires a MAJORITY gate.

To illustrate these trade-offs, consider once again the baseline switch in
Fig. 4a. TMR can be applied on the system-level where the whole switch is
replicated and each output requires a single MAJORITY gate. A single perma-
nent error makes one copy of the switch completely broken. However, the area
overhead beyond the redundant partitions is limited to only a gate for each
primary output. A slightly more resilient design considers partitioning, based
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on the components that make up the switch. For instance, each of the five input
controllers can have a redundant partition along with the arbiter, crossbar, and
the crossbar controllers. This partitioning approach leaves the design more pro-
tected as a permanent defect in the input controller would make only that small
partition broken and not the other four input controllers. The area penalty of
this approach is slightly higher as the sum of the outputs, for each partition
is greater than the switch, as a whole. However, the added unprotected logic
is still insufficient to worsen the error resiliency of the design. Finally, if the
design is partitioned at the gate level, each gate is in its own partition. In this
scheme, the error resiliency for each partition is extremely high, because the
target is very small. However, the overhead of this approach requires an extra
gate for each gate in the switch design. Thus, the area would be four times
the original design. In addition, because each added gate is unprotected, the
susceptibility of this design to errors may be greater than designs protected at
higher levels of granularity.

The previous analysis shows that the level of partitioning effects the error
resiliency and the area overheads of the design. In this article, we introduce
a technique called, automatic cluster decomposition, that generates partitions
that minimizes area overhead and the amount of unprotected logic while max-
imizing error resiliency.

7.3 Automatic Cluster Decomposition

Automatic cluster decomposition (ACD) takes a netlist and creates parti-
tions, with the end goal that each partition is approximately the same size
and that there is a minimal amount of outputs required for each partition
generated. Generating these partitions requires that the netlist be converted
into a hypergraph! that can then be partitioned using a balanced-recursive
min-cut algorithm.

The min-cut algorithm is based on multilevel-hypergraph partitioning.
Specifically, we utilize the algorithm implemented by the AMETIS graph par-
titioning tool [Karypis et al. 1997]. As illustrated in Fig. 8, the algorithm is
comprised of three phases: (1) the coarsening phase, (2) the initial partition-
ing phase, and (3) the uncoarsening and refinement phase. The goal of the
coarsening phase is to construct a sequence of successively smaller hyper-
graphs so that a good bisection of the small hypergraph is not significantly
worse than the bisection directly obtained for the original hypergraph. During
the initial partitioning phase, a bisection of the coarsened hypergraph is com-
puted. Finally, in the uncoarsening and refinement phase, the partitioning of
the coarsest hypergraph is used to obtain a partitioning for the finer hyper-
graph. Using a partitioning refinement algorithm, the cuts between partitions
are reduced and thus the quality of the partitioning is improved. For more
details about the partitioning algorithm, we refer the reader to Karypis and
Kumar [1998].

1A hypergraph is a generalization of a graph, where the set of edges is replaced by a set of hy-
peredges. A hyperedge extends the notion of an edge by allowing more than two vertices to be
connected by a hyperedge.
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Fig. 8. Overview of the multilevel partitioning algorithm. The multilevel partitioning algorithm
implemented by the AMETIS tool consists by three phases: (1) the coarsening phase, (2) the initial
partitioning phase, and (3) the uncoarsening and refinement phase.
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Fig. 9. The process of automatic cluster decomposition. In part (a) a sample netlist is shown
with 2 primary outputs, along with its corresponding hypergraph in part (b). Part (¢) shows the
hypergraph after a min-cut bisection creating two unbalanced partitions. Part (d) shows the final
3-way partition resulting from a bisection of the largest partition.

Figure 9 shows an example of how these partitions are generated from the
netlist of a design. First, the netlist pictured in (a) is used to generate the hy-
pergraph shown in (b). For this example, we show a three-way partitioning of
the circuit. In Fig. 9¢, the hypergraph is bisected and the number of hyperedges
cut is reported. Figure 9d shows the final partitioning assignment of the hy-
pergraph, along with the number of hyperedges cut, which corresponds to the
number of total outputs for all the partitions not including the original outputs
of the system.

Table II shows the area, delay, and wire-length overheads for switch design
configurations with different number of partitions. The first design configura-
tion considers the whole design as one partition and the partition cut edges are,
therefore, the outputs of the design. The second design configuration considers
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Table II. Area, Delay and Wire-Length Overheads for Switch Design Configurations with
Different Number of Partitions®

Num. of | Cut Cut edges Critical path | Critical path | Wire-length
Description | partitions | edges | area overhead (%) | cut edges delay (%) |overhead (%)
System 1 165 1.57 0 0.00 4.85
Components 12 405 4.38 0 0.00 6.58
Gates 10540 |10540 100 18 100 NA
ACD-2 2 293 2.79 0 0.00 5.42
ACD-4 4 395 3.78 1 5.56 9.17
ACD-8 8 445 4.29 1 5.56 4.37
ACD-16 16 457 4.48 2 11.11 2.22
ACD-32 32 497 5.01 3 16.67 1.49
ACD-64 64 558 5.9 3 16.67 6.47
ACD-128 128 746 8.29 4 22.22 17.09
ACD-256 256 1060 12.47 5 27.78 28.04

“The percentage overheads shown for the different switch-design configurations are over the baseline unparti-
tioned and unprotected design.

as partitions the twelve functional components of the switch (the sizes of the
components are unequal). The third design configuration listed represents the
limit of the design space where each individual gate in the design is consid-
ered as a different partition. The rest of the listed switch design configurations
are designs with different number of partitions created by employing the ACD
technique.

For generating the data reported in Table II, the initial router design was
partitioned using the AMETIS tool. After optimal partitions were identified,
multiplexers were added for each cut net because of the partitioning. The re-
sulting design was then automatically placed and routed (APR) using the tool
CAPO [Riess and Ettelt 1995]. The data reported in Table II suggests that
the number of total cut edges, the area overhead because of cut edges, the
cut edges in the critical path, and the critical path delay, are all increasing as
the number of partitions in the design are increasing. On the other hand, the
wire-length overheads show a slight decrease followed by an increase. These
wire-length overheads result from the additional controlling wires to the parti-
tion selection multiplexers and to the wires needed for connecting the partition
inputs/outputs to the added multiplexers. By having fewer and bigger parti-
tions, the added multiplexers coresponding to each partition, span a larger area.
Therefore, the partition controlling wires span longer distances, thus increas-
ing the design’s wire-length. However, by having more and smaller partitions,
eventually the number of added multiplexers offset the benefit of having each
partition’s multiplexers close to each other.

In order to study the error resiliency provided to a switch-design configu-
ration, we introduce a new metric, the silicon protection factor (SPF), which
gives us a more representative notion about the amount of protection that is of-
fered to the system by a given defect-tolerance technique. Specifically, the SPF
is computed by dividing the mean number of defects needed to cause a switch
failure in the area overhead of the protection technique. The key advantage of
the SPF metric is that it takes into account the size of the protected design and
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Fig. 10. Defect resiliency as a function of the number of partitions. As an example, we plot the
mean defects to failure and SPF defect tolerance of a switch design configuration with one extra
redundant partition for each partition in the design. The results are shown for a varying number
of partitions generated by the ACD algorithm.

the degree to which unprotected logic is exposed to faults. In other words, the
higher the SPF factor, the more resilient each transistor is to defects.

Figure 10 shows the dependency of the mean defects to failure and the SPF
value over the number of decomposed partitions for a switch design configu-
ration with one extra redundant partition for each partition in the design. We
can see that for the given design configuration the peak SPF occurs around 200
partitions. As the per partition size decreases, the SPF value increases; as the
number of cut edges per partition increases, the SPF value decreases. Therefore,
the initial rise of the SPF occurs because the area per partition was decreasing
as the number of decomposed partitions was getting larger. After the optimal
point of 200 partitions, the overhead of the extra unprotected logic required for
each cutting edge between partitions causes the SPF to start declining.

7.4 Resource Sparing

Instead of employing a TMR technique for providing defect tolerance to the
switch design we use resource sparing for selected partitions of the switch.
During the switch operation only one spare is active for each distinct partition
of the switch. For each spare added in the design, there is an additional over-
head for the interconnection and the required logic for enabling and disabling
the spare. For resource sparing, we study two different techniques: dedicated
sparing and shared sparing. In the dedicated-sparing technique, each spare is
owned by a single partition and can be used only when the specific partition
fails. When shared sparing is applied, one spare can be used to replace a set
of partitions. In order for the shared sparing technique to be applied, it re-
quires multiple identical partitions, such as the input controllers for the switch
design. Furthermore, each shared spare requires additional interconnect and
logic overhead because of the need of having the ability to replace more than
one possible defective partitions.
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Fig. 11. End-to-End error detection and recovery mechanism. (a) The interconnection switch is
enhanced by CRC and recovery logic for providing data-corrupting error detection. The input buffers
are enhanced with an extra recovery head pointer to mark the last correctly checked flit. (b) A more
detailed view of the switch with end-to-end error detection is shown. Flits are split into two parts,
which are independently routed through the switch pipeline.

7.5 Domain-Specific Techniques

The properties of the wormhole router can be exploited to create domain-specific
protection mechanisms. Here, we focus on one efficient design that employs end-
to-end error detection, system diagnosis, and reconfiguration.

7.5.1 End-to-End Error Detection and Recovery Mechanism. Within our
router design, errors can be separated into two major classes. The first class is
comprised of data-corrupting errors, for example, a defect that alters the data
of a routed flit, so that the routed flit is permanently corrupted. The second
class is comprised of errors that cause incorrect operation, for example, a defect
that causes a flit to be misrouted to a wrong output channel or to get lost and
never reach any of the switch’s output channels.

The first class of errors, the data-corrupting errors, can be addressed by
adding cyclic redundancy checkers (CRC) at each one of the switch’s five output
channels, as shown in Fig. 11a. When an error is detected by a CRC checker,
all CRC checkers are notified about the error detection and any further flit
routing is blocked. The same error-detection signal used to notify the CRC
checkers also notifies the switch’s recovery logic. The switch’s recovery logic
logs the error occurrence by incrementing an error counter. In case the error
counter surpasses a predefined threshold, the recovery logic signals the need
for system diagnosis and reconfiguration.

In case the error counter is still below the predefined threshold, the switch re-
covers its operation from the last “checkpointed” state, by squashing all inflight
flits and rerouting the corrupted flit and all following flits. This is accomplished
by maintaining an extra recovery head pointer at the input buffers. As shown
in Fig. 11a, each input buffer maintains an extra head pointer which indicates
the last flit stored in the buffer which is not yet checked by a CRC checker. The
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recovery head pointer is automatically incremented four cycles after the asso-
ciated input controller grants access to the requested output channel, which
is the latency needed to route the flit through the switch, once access to the
destination channel is granted. In case of a switch recovery, the recovery head
pointer is assigned to the head pointer for all five input buffers, and the switch
recovers operation by starting rerouting the flits pointed by the head pointers.
Further, the switch’s credit backflow mechanism needs to be adjusted accord-
ingly, since an input buffer is now considered full when the tail pointer reaches
the recovery head pointer. In order for the switch’s recovery logic to be able to
distinguish soft from hard errors, the error counter is reset to zero at regular
intervals.

The detection of functional errors is considerably more complicated, because
of the need to be able to detect misrouted and lost flits. A critical issue for the
recovery of the system is to assure that there is at least one uncorrupted copy
for each flit in flight in the switch’s pipeline. This uncorrupted flit can then be
used during recovery. To accomplish this, we add a buffer checker unit to each
input buffer. As shown in Fig. 11b, the buffer checker unit compares the CRC
checked incoming flit with the last flit allocated into the input buffers (tail flit).
Further, to guarantee the input buffer’s correct functionality, the buffer checker
also maintains a copy of the head and the tail pointers, which are compared
with the input buffer’s pointers whenever a new flit is allocated. In the case that
the comparison fails, the buffer checker signals an allocation retry, to cover the
case of a soft error. If the error persists, this means that there is a potential
permanent error in the design, which signals the system diagnosis and recon-
figuration procedures. By assuring that a correct copy of the flit is allocated into
the input buffers and that the input buffer’s head/tail pointers are maintained
correctly, we guarantee that each flit entering the switch will correctly reach
the head of the queue and be routed through the switch’s pipeline.

To guarantee that a flit will get routed to the correct output channel, the flit
is split into two parts, as shown in Fig. 11b. Each part will get its output channel
requests from a different routing logic block, and access the requested output
channel through a different switch arbiter. Finally, each part is independently
routed through the crossbar. To accomplish this, we add an extra routing logic
unit and an extra switch arbiter. The status bits in the input controllers that
store the output channel reserved by the head flit are duplicated as well. Since
the crossbar routes the flits at the bit-level, the only difference is that the
responses to the crossbar controller from the switch arbiter will not be the
same for all the flit bits, but the responses for the first and the second parts
of the flit are fitted from the first and second switch arbiters, respectively. If a
defect causes a flit to be misrouted, it follows that a single defect can impact
only one of the two parts of the flit, and the error will be caught later at the
CRC check.

The area overhead of the proposed error detection and recovery mechanism is
limited to only 10% of the switch’s area. The area overhead of the CRC checkers,
the recovery logic and the buffer checker units is almost negligible. More specif-
ically, the area of a single CRC checker is 0.1% of the switch’s area and the area
for the buffer checker and the recovery logic is much less significant. The area
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Fig. 12. TIterative system diagnosis and reconfiguration. The algorithm recovers to the last correct
state, reconfigures the system, and replays the execution until no error is detected.

overhead of the proposed mechanism is dominated by the extra switch arbiter
(5.7%), the extra routing logic units (5 x 0.5% = 2.5%), and the additional CRC
bits (1.5%). As we can see, the proposed error detection and recovery mechanism
has a 10X times less area overhead than a naive DMR implementation.

7.5.2 System Diagnosis and Reconfiguration. As a system diagnosis mech-
anism, we propose an iterative trial-and-error method, which recovers to the
last correct state of the switch, reconfigures the system, and replays the execu-
tion until no error is detected. The general concept is to iterate through each
spared partition of the switch and swap in the spare for the current copy. For
each swap, the error detection and recovery mechanism performs a system re-
play. Eventually, the partition that happens to possess the current error will
be disabled and its corresponding spare enabled. When this occurs, the system
diagnosis mechanism will detect correct system behavior and terminate the
replay mode. Using this approach, the faulty piece of logic is identified and
correctly disabled. A flow chart of the system diagnosis and reconfiguration
algorithm is shown in Fig. 12.

We also consider the use of built-in-self-test(BIST) as an alternative for pro-
viding system diagnosis. For each distinct partition in the design, we store in
ROM automatically generated test vectors. During system diagnosis with BIST,
the system operation is interrupted and these test vectors are applied to each
partition of the system through scan chains to check its functionality correct-
ness and locate the defective partition. Once the defective partition is located,
in the case that there is a nondefective spare of the partition in the design,
the defective partition is disabled by swapping it with the nondefective spare
partition. After reconfiguration, the switch recovers to the last correct state
and restarts execution. In the case that the design is not augmented with a
nondefective spare, the defect is a fatal defect and the system will not be able
to repair the defective switch.

Although the BIST approach is much faster than the iterative replay diagno-
sis technique, it comes with the extra overhead of additional scan logic needed
for on-line testing, and storing on-chip the test vectors of each partition in the
design. In order to generate overhead estimates for the BIST system diagno-
sis technique for several switch design configurations, we used the Synopsys
TetraMAX ATPG tool. TetraMAX, provides a completely automated design flow

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 2, Publication date: March 2007.



28 . K. Constantinides et al.

Table III. Built-In-Self-Test System Diagnosis Technique Overheads®

Design Num. of Scan-logic Test vector | Test vectors Total area
description partitions | overhead (%) bits overhead (%) | overhead (%)
System 1 14.2 34,680 2.7 16.9
Components 12 12.2 22,568 4.3 16.5
ACD-2 2 15.6 7,216 0.6 16.2
ACD-4 4 14.6 28,864 1.9 16.5
ACD-8 8 14.7 57,640 3.8 18.5
ACD-16 16 14.7 115,115 7.1 21.8
ACD-32 32 15.0 229,984 14.5 29.5
ACD-64 64 15.6 460,128 29.8 45.4
ACD-128 128 17.6 920,360 59.6 77.2
ACD-256 256 18.7 1,839,520 217.3 236.0

“The overheads of the built in self-test system diagnosis technique consist by the additional scan logic
needed for on-line testing and on-chip storage for test vectors. This table shows the area overhead estimates
for various design configurations.

for adding the scan logic needed for enabling design on-line testing at the syn-
thesized gate-level design model. It also provides automatic generated quality
test vectors for high-fault coverage design testing. For estimating the area over-
head of on-chip storing of the test vectors in ROM, we used the Synopsys ROM
generator. These area overhead estimates are shown in Table III for various
switch-design configurations that we consider in this work.

The test vectors generated for the presented configurations provide at least
90% fault coverage (in some cases, having 100% fault coverage is prohibitively
expensive). This means that if the defect is not covered by the generated test
vectors, then after running a full system diagnosis, the system will not be able
to locate which partition is defective and thus it will not be able to recover.
Unlike the BIST technique, the iterative replay system diagnosis technique
can guarantee that if there is a nondefective spare of the defective partition in
the design, then the system will be able to locate the defective partition and
recover.

The test vector bits shown in Table III account for the total test vector bits
for all the partitions in the design. Even though the overhead of the BIST
system diagnosis technique is relatively low for design configurations with
moderate number of partitions, the overhead is significantly increased for de-
sign configuration with more than 64 partitions, reaching up to 236% for a
design configuration with 256 partitions. As shown in Section 7.3, these are the
design configurations that lead to higher defect resiliency.

Both the iterative replay and BIST techniques can be implemented as a sep-
arate module from the switch and the area overhead for their implementation
can be shared by a wide number of switches in a chip multiprocessor design,
thus mitigating the overhead of system diagnosis. Further results comparing
the two system diagnosis techniques will be presented in Section 8.

8. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our domain-specific defect tolerance tech-
niques in protecting the switch-design, we simulated 38 different switch-design
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Table IV. Mnemonic Table for Design Configurations®

29

Mnemonic group Mnemonic Description
Level of applying |S System level
defect-tolerance C Component level
technique G Gate level
S+CL System level clusters (clustering is applied at
C+CL the whole design)
Component level clusters (clusters are limited
only within components)
Defect-tolerance TMR Triple Modular Redundancy
techniques (can be | #SP # dedicated spares for each partition
applied in #SH(X) # shared spares for partition of type X
combinations) ECC Error-correction codes applied at state
System diagnosis | IR Iterative replay
technique BIST Built-in-self-test
Example S+CL_1SP_IR System level clusters with one spare for each
configurations C_2SH(IC)+1SP_BIST | partition and iterative replay.
C+CL_.TMR+ECC Component level with two shared input
controllers and one dedicate spare for the rest of
the components. BIST for system diagnosis.
Component level clusters TMR with ECC
protected state.

%For each portion of the naming convention, we show the possible mnemonics with the related description. The
last portion provides some example design configurations.

configurations with both traditional and domain specific fault-tolerant design
techniques. Each configuration providing a defect-tolerant switch design is
characterized by three parameters: level of protection, techniques applied, and
system diagnosis method. For each configuration, we use the following naming
convention:

< level > _ < technique > _ < diagnosis >

The configurations using TMR as the defect tolerance technique do not use
the end-to-end error detection, recovery, and system diagnosis techniques, since
TMR fully incorporates error detection, diagnosis, and recovery. All other con-
figurations use the end-to-end error detection and recovery technique, along
with either iterative replay or BIST for system diagnosis. Table IV describes
the choices that we considered in our simulated configurations for the three
parameters, and it gives some example configurations along with their naming
conventions.

In Table V, we list the design configurations that we simulated. For each
simulated design configuration, we provide the area overhead needed for imple-
menting the specific design. This area overhead includes the extra area needed
for the spare units, the majority gates, the logic for enabling and disabling spare
units, the logic for the end-to-end error detection, and overheads for recovery
and system diagnosis (different configurations have different requirements for
the extra logic added). We note that the design configurations with the higher
area overheads are the ones applying BIST for system diagnosis. This is due
to the extra area needed for storing the test vectors necessary for self-testing
each distinct partition in the design, along with the additional interconnection
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Table V. Results of the Evaluated Designs®

Design Area

Key configuration o.head | Defects SPF *Part. %Dly

1 S_.TMR 3.02 2.49 0.82 1 0.00

2 S+CL.TMR 3.08 16.78 5.45 241 22.22

3 S+CL_TMR+ECC 3.07 6.92 2.25 185 27.78

4 C_TMR 3.04 4.68 1.54 12 0.00

5 C+CL.TMR 3.09 15.86 5.13 223 18.75

6 C+CL_TMR+ECC 3.11 6.25 2.01 298 25.00

7 O_TMR 4.00 4.00 1.00 | 105.40 | 100.00

8 S_1SP_IR 2.22 3.27 1.47 1 0.00

9 S+CL_1SP_IR 2.30 17.53 7.63 206 22.22
10 S+CL_1SP_BIST 3.16 17.53 5.54 206 22.22
11 S+CL_1SP+ECC IR 2.48 5.96 241 183 27.78
12 S+CL_1SP+ECC_BIST 3.34 5.96 1.78 183 27.78
13 C_1SP_IR 2.24 5.87 2.62 12 0.00
14 C_1SP_BIST 2.79 5.87 2.62 12 0.00
15 C+CL_1SP_IR 2.33 16.04 6.88 223 18.75
16 C+CL_1SP_ECC_IR 2.51 5.34 2.13 138 25.00
17 S_2SP_IR 3.32 5.95 1.79 1 0.00
18 S+CL_2SP_IR 3.42 37.99 11.11 206 22.22
19 S+CL_2SP_BIST 4.29 37.99 8.86 206 22.22
20 S+CL_2SP+ECC IR 3.39 8.64 2.55 118 22.22
21 C2SP_IR 3.36 13.07 3.90 12 0.00
22 C_2SP_BIST 3.90 13.07 3.35 12 0.00
23 C+CL2SP_IR 3.44 32.33 9.39 208 18.75
24 C_CL_2SP_BIST 4.31 32.33 7.50 208 18.75
25 C+CL2SP+ECC_IR 3.41 7.49 2.20 103 25.00
26 C_2SH(IC)_IR 1.52 3.15 2.07 12 0.00
27 C_3SH(IC)_IR 1.71 4.14 2.43 12 0.00
28 C4SH(C).IR 1.89 5.02 2.65 12 0.00
29 C_5SH(IC)IR 2.08 5.90 2.84 12 0.00
30 C 2SH(IC)+1SP_IR 1.74 4.40 2.53 12 0.00
31 C_3SH(IC)+1SP_IR 1.93 5.79 3.01 12 0.00
32 C_4SH(IC)+1SP_IR 2.12 7.10 3.34 12 0.00
33 C_5SH(IC)+1SP_IR 2.41 8.39 3.48 12 0.00
34 C_2SH(IC)+2SP_IR 1.93 5.01 2.60 12 0.00
35 C_3SH(IC)+2SP_IR 2.12 6.57 3.09 12 0.00
36 C4SH(IC)+2SP_IR 2.30 8.10 3.52 12 0.00
37 C_5SH(IC)+2SP_IR 2.50 9.58 3.84 12 0.00
38 S_ECC 1.18 1.16 0.98 12 0. 00

“For each design configuration, we report the mnemonic, the area factor over the baseline design,
the number of defects that can be tolerated, the SPF, the number of partitions, and an estimate
of the impact on the system delay.

and logic needed for the scan chains. Another design configuration with high
area overhead is the one where TMR is applied at the gate level because of
the extra voting gate needed for each gate in the baseline switch design. On
the other hand, designs with shared spares achieve low area overhead (un-
der two), since not every part of the switch is duplicated. The area overhead
for the rest of the design configurations depends on the amount of spares per
partition.
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In the fourth column of the table, we provide the mean number of defects to
failure for each design configuration. The design configurations providing high
mean number of defects to failure are the ones employing the ACD (automatic
cluster decomposition) technique. Another point of interest is that techniques
employing ECC, even when coupled with ACD perform poorly. Although state
is traditionally protected by ECC, when a design is primarily combinational
logic, like our switch, the cost of separating the state from the logic exceeds
the protection given to the state elements. In other words, if the state is not
considered in the ACD analysis and is, therefore, not part of any of the spared
partitions, the boundary between the state and the spared partitions must
have some unprotected interconnection logic. This added logic, coupled with
the unprotected logic required by ECC, makes ECC undesirable in a logic-
dominated design.

The SPF values (see Section 7.3) for each design are presented in the
fifth column of Table V. The highest SPFs are given by the design config-
urations that employ automatic cluster decomposition, with the highest be-
ing design S+CL _2SP_IR at 11.11. Even though design S+CL_2SP_BIST uses
the same sparing strategies, the area overhead added from BIST decreases
the design’s SPF significantly. It is interesting that two design configurations
have SPFs lower than one. The first one is TMR applied at the system level,
which can tolerate an average of 2.5 defects, but the area overhead is more
than triple, thus making the new design less defect tolerant than the base-
line switch design by 18%. The second one is where the state is protected by
ECC. Since our design is logic-dominated and the protected fraction of the de-
sign is very small, the extra logic required for applying ECC (which is unpro-
tected) is larger than the actual protected area. Thus, this technique makes
the specific design less defect-tolerant than the baseline unprotected design
by 2%.

The sixth column in the table shows the number of distinct partitions for each
design configuration. As shown in Section 7.3, this parameter is very important
for the configurations employing ACD, since the SPF value provided by a given
design configurations is greatly dependent on the number of partitions in the
decomposed design.

The final column in Table V, %Delay, gives the percentage increase of the
critical path delay in the switch. Our results show that for the best designs,
we always achieve a delay increase of less than 25%. The designs that involve
ACD involve the greatest increase in delay because the partitions generated
frequently split up the critical paths. Designs with minimal amount of clus-
tering, such as the C_2SH(IC)_IR, achieve no overhead as no interconnection
logic is added to any of the critical paths. In general, our results indicate that
achieving high SPF factors require slight delay penalty; however, in principle,
the ACD strategy could be used to try to minimize the number of critical paths
that are partitioned.

The graph in Fig. 13 shows the trade-off between defect tolerance and area
overhead. The horizontal axis of the graph represents the defect tolerance pro-
vided from a design configuration in SPF's and the vertical axis the area over-
head of the design configuration. The further to the right a design configuration
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Fig. 13. Pareto chart of the explored solutions. The design evaluated are plotted on an area versus
SPF chart. The dashed line across the chart connects the set of optimal solutions. (See Table IV for
explanations of design points.)

lies, the higher the defect tolerance it provides, while the lower it is, the lower
the implementation cost.

At the lower left corner, is the design configuration S_ECC providing ECC
protection to the state. This is the cheapest design configuration, but it does not
provide any considerable defect tolerance to the switch design. The rightmost
design configuration, S+CL 2SP_IR, provides a defect tolerance of 11.11 SPF,
by employing automatic cluster decomposition at the system level with 206 par-
titions and two extra spares for each partition, along with iterative replay for
system diagnosis. The area cost for implementing this design configuration is
3.42X and provides the better trade-off between area required and offered defect
protection. Design configurations with moderate SPF's, but with much less cost
in area overhead, are: C_.3SH(IC) IR, C2SH(IC)+1SP_IR,C_3SH(IC)+1SP_IR,
andC 2SH(IC)+2SP_IR. These design configurations use shared spares of in-
put controllers along with dedicated spares for the other components in the
switch design, keeping the area cost less than 2X, but offering SPFs of 2.5
to 3 at the same time. Such designs are interesting, since they keep the im-
plementation cost at low levels and provide an attractive solution for defect
tolerance.

Other two interesting design configurations are C+CL_1SP_IR and S+
CL_1SP_R. These two designs use the same technique, automatic cluster de-
composition with one spare for each partition, with the difference that design
S+CL_1SP_IR applies the ACD technique on the system level, and design
C+CL_1SP_IR at the component level. The area cost of the two designs is al-
most the same, but S+CL_1SP_IR provides 11% more SPF. The same argument
also holds for designs S+CL 2SP IR and C+CL _2SP_IR. This suggests that ap-
plying the ACD technique at the system level can offer more effective defect
tolerance at the same cost in area.

In Fig. 14, we present how some of the design configurations affect the life-
time of the switch design for a future post 65-nm technology where the mean
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Fig. 14. Fault-tolerance of some interesting design configurations. (a) Superimposion the FIT rate
of the bathtub model with the percentage of defective parts over time. (b) The breakdown period is
accounted for.

time between hard transistor failures is 2 years (i.e., a failure rate of 55,000
FITs). The graph’s horizontal axis represents the years that the switch design
is operating. The vertical axis represents the percentage of defected parts over
a population of switches (left axis) and the baseline switch’s failure rate (right
axis). The baseline switch’s lifetime failure rate for the given technology is pre-
sented by the darker thick line, forming the bathtub curve. In Fig. 14a, it only
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forms a part of the bathtub curve since, for this graph, we assume that the de-
sign’s breakdown occurs after 30 years. For each design configured presented
in the graph, there is a line showing the failing rate of switch parts over time.
This line starts from year one, since we assume that the first year of a parts
lifetime is consumed during the accelerated testing (burn-in) procedure, and
that shipped parts are already at their first year of lifetime with a constant
failure rate.

From the graph in Fig. 14a, we can observe that when applying TMR at
the component level, 25% of the shipped parts will become defective by the
first year and 75% after the first 3 years. On the other hand, when TMR is
applied in a design configuration where automated cluster decomposition was
performed at the system level with two spares for each partition, the 25% of
the shipped parts will be defected after 16 years and the 75% after 29 years. If
we define the lifetime of a manufactured product as the period of time where
10% of the manufactured parts become defective, then the clustering design
configuration S+CL 2SP IR increases the switch’s lifetime by 26X over the
TMR design configuration C_TMR.

System designers, can choose a defect tolerance technique that best matches
with their design’s specifications. For example, the design configuration S
+CL_1SP_R, where automatic clustering decomposition is applied at system
level with one dedicated spare for each partition, where 10% of the parts will
get defected after 7 years but with 48% less cost in area than design configura-
tion S+CL_2SP_IR might be a more attractive solution.

The same data as in Fig. 144, is presented in Fig. 14b, with the difference that
here we assume that the breakdown for the switch design starts after 10 years
of being shipped. For the first three design configurations, there is no difference
since by that time all of the parts become defective. For the other two design
configurations, what is interesting to observe is that even after the breakdown
point where the failure rates increase with an exponential rate, most of the
parts will be able to provide the user a warning time window of a month before
failure. This is a very important feature for a design configuration, especially
for designs that require high levels of dependability.

9. CONCLUSIONS AND FUTURE DIRECTIONS

As silicon technologies continue to scale, transistor reliability is becoming an
increasingly important issue. Devices are becoming subject to extreme process
variation, transistor wear-out, and manufacturing defects. As a result, it will
likely be no longer possible to create fault-free designs. In this article, we in-
vestigate the design of a defect-tolerant CMP network switch. To accomplish
this design, we first develop a high-level, architect-friendly model of silicon
failures, based on the time-tested bathtub curve. Based on this model, we ex-
plore the design space of defect-tolerant CMP switch designs and the resulting
trade-off between defect tolerance and area overhead. We find that traditional
mechanisms, such as triple modular redundancy and error correction codes,
are insufficient for tolerating moderate numbers of defects. Rather, domain-
specific techniques that include end-to-end error detection, resource sparing,
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and iterative diagnosis/reconfiguration are more effective. Further, decompos-
ing the netlist of the switch into modest-sized clusters is the most effective
granularity to apply the protection techniques.

This work provides a solid foundation for future exploration in the area of
defect-tolerant design. We plan to investigate the use of spare components,
based on wearout profiles to provide more sparing for the most vulnerable com-
ponents. Further, a CMP switch is only a first step toward the overreaching
goal of designing a defect-tolerant CMP system.
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