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Abstract—The declining robustness of transistors and their

ever-denser integration threatens the dependability of future
microprocessors. Classic multicores offer a simple solution to
overcome hardware defects: faulty processors can be disabled
without affecting the rest of the system. However, this approach
becomes quickly an impractical solution at high fault rates.

Recently, distributed computer architectures have been pro-
posed to mitigate the effects of faulty transistors by utilizing fine-
grained hardware reconfiguration, managed by fully decoupled
control logic. Unfortunately, such solutions trade flexibility for
execution locality, and thus they do not scale to large systems.
To overcome this issue we propose Cobra, a distributed, scalable,
highly parallel reliable architecture. Cobra is a service-based
architecture where groups of dynamic instructions flow indepen-
dently through the system, making use of the available hardware
resources. Cobra organizes the system’s units dynamically using
a novel resource assignment that preserves locality and limits
communication overhead. Our experiments show that Cobra is
extremely dependable, and outperforms classic multicores when
subjected to 5 or more defects per 100 million transistors. We also
show that Cobra operates 80% faster than previous state-of-the-
art solutions on multi-programmed SPEC CPU2006 workloads
and it improves cache hit rate by up to 62%. Our runtime fault
detection techniques have a performance impact of only 3%.

I. INTRODUCTION
Current digital systems comprise billions of transistors in

a single chip, and such dense integration is expected to
grow even further at future fabrication technology nodes.
Experts agree that shrinking device sizes will cause severe
degradation in overall system reliability by increasing the
susceptibility to both transient and permanent faults [5]. The
consequences of this trend are twofold: 1) lower production
yields due to higher rates of manufacturing defects and 2)
higher incidence of runtime failures in deployed systems –
for instance due to electromigration, gate oxide breakdown,
negative-bias temperature instability (NBTI) and hot carrier
injection [25]. Neglecting runtime hardware faults can lead to
serious consequences, such as service disruption and output
corruption [19].

Faulty cores in modern CMPs can be individually dis-
abled without compromising the availability of other com-
ponents [23]. Unfortunately, since a single permanent defect
is sufficient to disable an entire core, this solution is only
viable for systems subjected to a limited number of faults. As
emerging technologies promise to deliver massive integration
of highly unreliable nanodevices [26], a scenario where digital
systems are affected by a large number of failures is likely.
Therefore, future computers will require novel architectures
that can perform even when faced with high fault rates. To this
end, researchers recently proposed to break apart the hardware
units of classic hard-wired pipelines, dissolving them into a
sea of redundant hardware components.

These architectures are composed of smaller hardware
units organized in a distributed fashion to avoid single
points of failure – such as centralized control logic – by
construction [11, 18]. Distributed architectures can achieve
high reliability without sacrificing performance. Upon a fault

detection, such designs can modify the hardware configuration
by dropping the faulty hardware component and including a
new one. This dynamic approach enables distributed-control
architectures to achieve high-throughput, even on silicon
substrates tainted by hundreds of permanent faults. Hence,
these designs enable seamless fault isolation and dynamic
reconfiguration.

Recent studies evaluated the performance achievable by dis-
tributed architectures, and found that these designs can tolerate
orders of magnitude more hardware failures than previous so-
lutions [11]. Unfortunately, in achieving good reliability, cur-
rent distributed architectures compromise execution locality,
and thus suffer major limitations, including: communication
bottlenecks, dispersed resource allocation, memory contention,
and inefficient testing. These shortcomings jeopardize the
scalability, performance, and testability of such reliable design.
In this work we present Cobra, a novel distributed architecture
that overcomes the issues above, enhancing and extending
prior distributed solutions. Cobra provides a comprehensive,
scalable and reliable solution for highly parallel chips.
A. Contributions

Cobra is a new distributed-control architecture that promotes
both scalability and reliability as top-priority design concerns,
developing a novel system design and a new mechanism to
dynamically assign hardware resources to running applica-
tions. Furthermore, Cobra supports a variety of fault detection
techniques, ranging from redundant instruction execution to
periodic online testing. Software requiring maximum reliabil-
ity can either make use of fully redundant execution or of
periodic hardware tests. Meanwhile, applications that strive to
maintain fast fault detection latency at a lower performance
price can opt for protecting only the most vulnerable portions
of a program. Finally, software that does not require any
correctness guarantee can disable all online reliability mech-
anisms for a performance benefit: in Cobra each application
can employ any reliability feature independently from other
workloads. We make the following contributions:
1. A scalable highly parallel design that relies on the

service-oriented execution paradigm. This work overcomes
the issues tainting previous fully distributed architectures,
making this powerful execution paradigm viable in practice.
Compared to previous state-of-the-art solutions, Cobra has
better performance (80%), improves memory utilization (up
to 62% and 3% higher cache hit rates for local instruction
and data caches, respectively) and reduces the overhead of the
reconfiguration mechanism by roughly 50%.
2. A full-chip dependable system that can sustain a large

number of defects and gracefully degrades performance as
faults accumulate in its hardware. We believe that this is the
first work to analyze in detail the reliability characteristics of a
fully distributed computer architecture. In our experiments we
measure that, for systems affected by more than 1 permanent
fault in 20 million transistors, Cobra always outperforms a



classic CMP of comparable size.
3. A system that allows designers to tradeoff performance

for robustness, and users to adapt runtime protection to
application demands. Cobra can adapt to different reliability
needs, enabling designers to tune a system to a targeted fault
rate and allowing applications to trade performance overhead
(as low as 3%) for fault detection latency.

II. DISTRIBUTED EXECUTION MODEL
Classic pipelined processors partition an instruction’s exe-

cution into multiple stages and assign specific hard-wired tasks
to each. In such designs, hardware modules are tightly inter-
connected for performance reasons. In contrast, distributed-
control architectures organize the hardware in a network of
isolated, loosely coupled components. Each such component
can accomplish one or more services for the instructions
running on the system (examples of such services can be:
“fetch”, “decode”, “execute addition”, etc.).

To successfully execute an instruction, components are
dynamically arranged in a hardware configuration capable of
providing all the services required by the instruction. Hardware
configurations can be established at compile time [15], when
a workload is launched [11], or while it is executing by dedi-
cated scheduling units [18]. Although this latter case requires
hardware components and scheduling units to negotiate service
assignments on the fly, it appears to be the most versatile, as
it can dynamically mesh workloads’ needs with the available
resources. Several recent solutions share most or some of the
traits defining distributed computer architectures. Among these
designs, Wavescalar [27], for instance, is capable of dynami-
cally allocating instructions to available processing elements;
StageNet [11] and Viper [18] use a finer granularity and allow
the dynamic allocation of all functionalities provided by an
ISA. These three solutions differ greatly in the granularity of
the allocated services, reconfigurability and program execution
model. However, they all operate on clusters of instructions
(instead of individual ones) to improve performance or to
lower energy consumption. Expensive operations, such as
scheduling and hardware reconfigurations, can then be shared
among the entire cluster. These groups of instructions are
called waves in Wavescalar, macro operations in StageNet and
bundles in Viper. Here we adopt this latter term since, like
Viper, Cobra partitions a dynamic stream of instructions into
sequences terminating with a control operation (e.g., jump).

In order to create a robust system, the resource allocation is
not managed by a centralized unit, but it is instead achieved by
allowing hardware units to independently advertise their avail-
ability to the instruction bundles awaiting execution. Service
advertisement and negotiation can be handled through several
distributed mechanisms, as long as resources are assigned se-
quentially to avoid deadlocks – examples of possible solutions
are: exchange of credits, token broadcasts, and service queues.

Each instruction bundle running on this system is uniquely
identified through a sequential ID, generated by increasing the
ID of the bundle immediately preceding it. Each bundle in
flight is associated to a scheduling unit, which is responsible
for managing and tracking all hardware resources operating
on its instructions. Scheduling units do not store operations
or values, but only the information relative to bundle execu-
tion progress: allocated hardware units, pointers to operand
locations, data to manage program flow, and instruction order.
Scheduling units are connected in a linked list to maintain
program order. Once the address of the next instruction bundle
is computed, a new scheduling unit is allocated to coordinate
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Fig. 1. Limitations of traditional distributed control architectures: 1)
dispersed resource assignments lead to high communication latencies between
units (in green) leading to dispersed hardware configurations; 2) hardware
configuration setups entail a large communication overhead (in blue); 3)
scattered workload executions penalize the performance of stateful resources,
such as caches (red); 4) random accesses to memories affect memory
operations’ performance and correctness (in yellow); 5) inefficient hardware
tests affect system’s performance (in orange).

its execution. Even though bundles can execute out-of-order,
bundles commit their results sequentially, following the order
enforced by their IDs [18].
A. Limitations

In a distributed control architecture, instructions can be
scheduled to utilize any available hardware unit that suits
them. On one hand, this execution paradigm maximizes system
availability and increases its resiliency to failures. On the other
hand, distributed architectures present several drawbacks that
hinder their scalability, performance, and testability. Figure 1
illustrates these issues, summarized below:
1. Physical dispersion of its hardware configurations.

Hardware resource assignment based exclusively on instruc-
tion demands does not account for the physical distance
between the selected components, possibly leading to longer
execution runtimes, due to increased communication latencies.
2. Large communication overhead due to the frequent

dynamic reconfiguration of the hardware resources assigned
to execute an application.
3. Scattered execution of a workload. Since resources are

allocated dynamically, consecutive code segments may execute
on different sets of units, erasing the benefits of data and
instruction locality.
4. Random accesses to memory structures that can affect

both the correctness and the performance of load and store
memory operations.
5. System’s inefficiency in self-testing its components and

checkpointing and restoring software state upon a failure.
Indeed, processes executing in such architectures could poten-
tially execute on any component, and thus a single hardware
failure could taint all software applications running on the
machine.

III. LOCALIZED HARDWARE CONFIGURATIONS
The first issue that Cobra strives to overcome is the physical

dispersion of hardware configurations. Naı̈ve resource assign-
ment policies do not account for the time spent to transfer
instructions and operands across the system. As the number of
components in a system grows – and therefore the average dis-
tance among them increases – this issue is greatly exacerbated,
undermining the scalability of a distributed architecture. Cobra
overcomes this issue by leveraging a simple but cost-effective
algorithm, which preserves locality without compromising
reconfigurability. Note that a straightforward solution would
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Fig. 2. To setup hardware configurations in Cobra, we use location
coordinates. Each coordinate is always encoded as a sequence of bits, whose
length corresponds to the maximum number of segments it span. Each segment
is identified by the number of “1s” in the leading bits of its coordinate. The
distance between two components in a hardware configuration (in yellow) is
then determined by summing each direction’s hamming distances.

consist of limiting the reach of a service broadcast to a small
local region of the chip; however, this approach would limit
Cobra’s ability to reconfigure around faulty components.
A. Creating a Localized Hardware Configuration

When a scheduling unit assembles a hardware configuration,
Cobra evaluates the physical location of the units that advertise
their availability. In order to do so, components are logically
organized in a mesh, so that the distance between any pair
of hardware units can be easily computed as their Manhattan
distance. Instead of greedily allocating resources as soon as
they become available, Cobra’s scheduling units store service
providers’ (hardware units’) proposals for a certain number
of cycles so as to choose the best among several alternative
configurations. Each scheduling unit then generates a hard-
ware configuration based on the services required, taking into
account the distances between units in its candidate pool. The
target is to minimize communication latency by reducing the
overall distance among all the hardware elements forming
a configuration. An optimal solution to this problem would
require the prohibitive (in hardware) application of Dijkstra’s
algorithm. Instead, in Cobra we opted for a simpler approach
(described below) that fits our purpose while imposing a very
small overhead.

Once a new bundle is initiated, its associated scheduling
unit accepts proposals from the available hardware units. In
order to avoid starvation and deadlocks, the service assign-
ment policy prioritizes the oldest bundle in flight, and then
it assigns resources in the same order as they are needed
by the instructions in a bundle. Differently from previous
solutions, Cobra’s scheduling units do not immediately include
components in their configurations as their services become
available. Instead, our algorithm starts from the location of
the scheduling unit and adds each required service provider,
one at a time, selecting the available unit that is closest to the
previously allocated one. To accomplish this, a scheduling unit
stores, for a preset number of cycles, every service proposal
that 1) provides forward progress towards the generation of a
complete hardware configuration and 2) is physically closer
than other proposals received within the preset time window.
This technique quickly converges to generate a configuration
that minimizes communication latency. This mechanism only
requires some additional storage for the location of the next
best candidate and a cycle counter to track the search time-
window.

Figure 2 provides an example of this process. The location
of each hardware unit is represented by a pair < X,Y > of
coordinates. Components’ physical locations are encoded so
that distances can be calculated by computing the Hamming
distance between coordinates in each dimension and summing
them together. Specifically, we use as many bits as the size
in the corresponding dimension (6 for the X coordinate, 5
for the Y, in Figure 2), and encode the position by setting a
corresponding number of bits to 1.

IV. HARDWARE CONFIGURATION LIFESPAN
Dynamic on-demand hardware reconfiguration is the key

feature that allows a service-oriented distributed architec-
ture to seamlessly adapt the execution of a workload to
the available resources. One method of negotiating services
between scheduling units and providers is to allow hardware
components to independently advertise their availability to the
scheduling units. Components whose services are accepted are
then notified back by the scheduling unit. This process dynam-
ically allocates the hardware resources that fit a program’s
requirements without requiring centralized control structures.
However, this mechanism leads to message proliferation, due
to the large number of advertisements and notifications ex-
changed among the hardware components.

To understand the magnitude of this problem, consider for
instance a distributed architecture composed of 5 services, 4
providers for each service and 2 active instruction bundles.
The maximum number of messages exchanged between the
hardware units and the scheduling units is: 5(services) ×
4(providers) × 2(bundles) = 40 service proposals and
5(services) × 2(bundles) = 10 acceptance notifications.
Considering that more of 95% of the bundles in typical
applications contain up to 16 instructions [18], the number of
messages exchanged to execute a rather short portion of the
program is significant. Such overhead grows linearly with the
number of service providers and in-flight instruction bundles
and it is further exacerbated for workloads requiring redundant
execution for reliability purposes.

This overhead occurs because of the short life-span of a
hardware configuration: one for each instruction bundle. In
practice, however, it is infrequent for a system to reconfigure
because of a newly discovered fault or because of changes
in the hardware demands of a workload. For instance, it has
been empirically shown that program execution often presents
a phasic pattern, with sections of millions (or billions) of
cycles where instructions rely only on a subset of the available
hardware resources [17]. It thus makes sense to use the same
set of resources over longer execution periods, amortizing
hardware setup costs among many groups of instructions. The
remainder of this section introduces the mechanisms that we
developed in Cobra to extend the lifespan of a configuration.
A. Hardware Configuration Transferring

Cobra allows an instruction bundle to pass on its hardware
configuration to the following bundle. Compared against a
baseline distributed system that generates a hardware configu-
ration for each new bundle, this enhancement does not entail
any major design modification, as it only requires transferring
the already established configuration to the scheduling unit
assigned to manage the next bundle. This simple operation
greatly reduces the cost of the service negotiation procedure,
since – in the common case – it only consists of notifying the
hardware components servicing the current bundle that they
will also be employed by the following one. If the instructions
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Fig. 3. When a scheduling unit and its associated hardware configuration
(yellow area) complete the execution of a bundle, the hardware configuration
is transferred to the scheduling unit servicing the following bundle (blue area),
adding more units if needed (an FPU in the Figure).

in this latter bundle require additional services, the associated
scheduling unit will initiate a service negotiation procedure to
acquire providers only for the additionally required services.
Note that this process serializes bundle execution; therefore
Cobra trades off out-of-order performance to reduce hardware
configuration overhead.

Figure 3 illustrates this approach with an example. The units
in the yellow area belong to a hardware configuration that has
completed the execution of a bundle. When the next bundle
begins execution, its corresponding scheduling unit (marked in
blue) receives the set of hardware units from the previous one.
This setup information can be piggybacked on the notification
that allocates a new bundle to a scheduling unit. Lastly, the
bundle associated with the blue scheduling unit requires the
services of a FPU, which is then added to the set of hardware
units servicing the bundle.

B. Hardware Configuration Tearing Down
While our configuration transferring approach greatly re-

duces communication overhead, at times it is beneficial to tear
down a configuration and create a new one from scratch. This
is the case, for instance, when a program no longer needs a
service, or when a fault manifests in an service provider from
an active hardware configuration. In either circumstance, the
corresponding scheduling unit simply prevents the transfer of
its current hardware configuration to the following bundle.

To track the relevant events related to resource utilization,
Cobra’s scheduling units monitor resource utilization via a
single-bit flag per service. Flags are propagated from a bundle
to the next, updated every time a new instruction bundle is
fetched, and reset periodically to keep them relevant.

Monitoring service utilization is also beneficial in managing
scarce resources. Scheduling units that cannot obtain avail-
ability from one or more service providers, can request the
scheduling units owning such resources not to forward their
hardware configuration – thereby forcing a new service nego-
tiation procedure. This solution guarantees forward progress
and can rely on those same mechanisms used by hardware
units to negotiate their services.

Finally, hardware configurations are torn down when at least
one of their units is hit by a fault or must go offline for testing.
At this point the scheduling unit that did not benefit from a
transfer will proceed to set up a new hardware configuration
– faulty units or units under test will simply not advertise
their services, and thus they will not be included in any new
configuration.

V. TEMPORARY DATA PERSISTENCY
Workloads running on a dynamically configured architec-

ture may experience scattered execution due to the fact that
consecutive bundles belonging to the same process can be
executed by different hardware units. This severely affects
the effectiveness of units that leverage temporal locality to
enhance performance, such as caches and branch predictors.

In Cobra, this problem is solved as a by-product of our
hardware configuration transferring approach. Indeed, when
the same hardware configuration is used to service a large
number of subsequent bundles, temporary data is naturally
and effectively used in caching structures. Our experimental
evaluation quantifies this benefit over a baseline distributed-
control architecture.

VI. BOOSTING MEMORY ACCESS PERFORMANCE
Managing data memory operations is particularly challeng-

ing in a distributed architecture because program semantics
expect memory operations to be issued and completed in order.
This expectation may not be easy to meet when instructions
from distinct bundles execute on different hardware config-
urations. Moreover, different bundles (possibly one logically
following the other) might need to update a same memory
location, leading to multiple “store”-service hardware units
requesting exclusive access to the same cache line – a rather
expensive procedure, as it requires all caches to invalidate their
local copy.

A simple solution is to provide a single memory access
point for the entire system. While this is effective in boosting
the single cache hit rate, it comes with a high impact in
memory access time and leads to poor system scalability.
In contrast, our target is to keep a multitude of caches in
the system, geographically distributed and relatively small, to
boost performance. To this end, Cobra maps caches in the
system to a set of threads: each thread in the set shares the
cache assigned to it exclusively with the other threads in
the same set. This is realized by mapping each Load-Store
Queue (LSQ) to only one data cache. Since each hardware
configuration (and thus, each thread) can only include one
LSQ, this guarantees that memory ordering and data locality
benefits can be attained within the set. At the same time, this
solution provides system scalability, since overall, a system
can still leverage multiple memory structures.

An available LSQ unit is assigned to the first bundle
generated by a new thread – this is performed through the same
negotiation mechanisms used to allocate any other service in
the system. Systems that want to maximize throughput and
availability can share a LSQ among multiple threads. The
mapping between a thread and a LSQ unit is recorded in
the relevant scheduling units, and it is propagated from one
bundle to the next, releasing the LSQ only when a thread
terminates or it is de-scheduled by the OS. Note that a bundle
can be associated to a hardware configuration with multiple
execution units; however, the configuration would still have
only one LSQ unit. In addition, memory operations ordering
is enforced by using the bundle sequence ID.

VII. HANDLING RUNTIME FAILURES
Cobra’s objective is to maximize system availability in the

face of hardware failures. In the remainder of this section we
detail how distributed architectures can detect and manage run-
time faults. Overcoming these events is a three stage process
consisting of: 1) fault detection, 2) hardware reconfiguration,
and 3) system state restoration.



First, a comprehensive reliable system must be able to dy-
namically detect errors and diagnose faulty components. Three
techniques are available for this purpose: redundant execution,
symptom-based detection, and online testing. Unfortunately,
none of them has been tailored to distributed architectures, thus
here we focus on enabling these fault detection mechanisms
for this novel design paradigm, particularly Cobra.

Second, the distributed processor architecture developed in
Cobra empowers a system to automatically reconfigure itself
around hardware errors. Hardware units deemed faulty can be
selectively turned off, thus preventing them from advertising
their services to the rest of the system.

Third, independently from the fault detection mechanism
deployed, upon fault detection all bundles in flight are flushed
through a system-wide broadcast signal to all scheduling
units. The hardware failure is then diagnosed, and the newly
discovered faulty component disabled. Both architectural state
and memory system is restored to a previous safe checkpoint
through techniques such as ReVive or SafetyNet [21, 24],
and each checkpointed program is restored and mapped to
an available scheduling unit. Cobra stores the information
necessary to manage program execution in the scheduling
units, while the architectural register values are located in
the reconfigurable fabric. These two pieces of information
are synchronized to build a single checkpoint state when
instruction bundles commit.

It is worth noting that handling faults in the scheduling units
does not require advanced mechanisms. The vast majority of
the area in these units consists of storage elements, which
can be protected through ECC, while their relatively small
logic can be made resilient through hardware duplication [18].
Finally, in this work we do not account for failures on
caches and on-chip interconnect, as these subsystems can be
effectively protected by other techniques [1, 9].

The remainder of this section considers three classes of fault
detection solutions: full redundancy, selective redundancy and
periodic online testing.
A. Full Redundancy

Full redundancy is the simplest and fastest mechanism to
detect any type of hardware errors. Each instruction executes
multiple times on different hardware components, and the
results are then compared to detect or possibly correct eventual
errors. Although highly effective, full redundancy is very
performance and resource demanding, and only applications
that value reliability as a key requirement adopt it. Corrupted
results are recognized immediately, and a faulty hardware
component is diagnosed by comparing the outcomes of mul-
tiple executions.

To deploy this fault detection mechanism in Cobra, we
enhance the scheduling units to accommodate redundant hard-
ware configurations, containing non-overlapping sets of ser-
vice providers. In addition, they must include a voting unit
to compare results produced by the redundant configurations.
This check can be done at a fine granularity, comparing each
result produced by every instruction, or at the bundle level,
comparing only the results that are transferred to subsequent
bundles. In addition, the scheduling unit must allow results to
be committed to memory only after they have been success-
fully checked.

Bundles to be executed redundantly are tagged by a special
flag, so that all units servicing such bundles are aware that
the instructions within require special handling: they are not

allowed to alter process state, memory, or program flow
until after they have been deemed fault-free – in our system
we maintain a single software process for all the redundant
executions.
B. Selective Redundancy

Most programs do not require the degree of protection
guaranteed by a fully redundant execution. In fact, it has been
shown that simply monitoring software anomalies, such as
kernel panics, fatal traps and illegal memory accesses, can
reveal up to 95% of permanent faults and 60% of transient
faults [8, 13, 28].

Unfortunately, even though this approach provides a signif-
icant fault coverage for most hardware failures, it is not very
effective in detecting faults that silently corrupt an applica-
tion’s outputs. Cobra provides an ad-hoc solution for checking
the portions of a workload that are particularly susceptible to
silent data corruptions (SDC). It has been empirically shown
that particular types of instructions – integer divisions and mul-
tiplications, floating point operations, and SIMD instructions –
are particularly prone to SDCs [13, 19]. Since the scheduling
units of a distributed system maintain detailed information
about the services required by the executing bundles, they can
dynamically flag the portions of a program that are vulnerable
to SDCs. Therefore, we allow processes to request “selective
redundancy”: Cobra will activate redundant executions only
for the bundles that include operations vulnerable to SDCs.
This technique represents a good compromise for processes
that need high fault coverage but that cannot afford the cost
of a fully redundant execution, and it is also very effective in
exposing permanent failures [16].
C. Periodic Online Testing

Periodic online testing is a low-cost solution to protect
software from permanent hardware failures. This approach
assumes that results generated by a processor cannot be trusted
until the underlying hardware components have been tested.
Only after all tests succeed, a process is allowed to commit its
results. With this approach, execution time is partitioned into
epochs, which are typically a few million of instructions long,
and hardware tests are executed at the end of each epoch.
Periodic hardware testing has been shown to be both very
economical and effective [7, 17]. Handling faults in the test
logic is a problem common to all solutions that adopt this
fault detection technique, and in this work we assume that a
faulty self-test unit causes its related hardware component to
be marked as non-functional.

VIII. EXPERIMENTAL SETUP
We modeled a Cobra system that implemented the x86-

64 ISA and evaluated both its performance scalability and its
ability to endure hardware failures. To this end, we compared
Cobra against two similarly sized designs: a classic CMP
comprising 2-wide out-of-order cores and an unoptimized
Viper design [18]. We chose the former because it matches the
characteristics of modern CMPs [4, 10], and the latter because
it represents a state-of-the-art distributed architecture. In order
to measure Cobra’s scalability, we considered systems which
can execute 1, 2, 4, 8 and 16 threads, and whose processor
logic (caches excluded) occupies 20M, 40M, 80M, 160M and
320M transistors, respectively.
A. Hardware Model

All three architectures evaluated in this work are clocked at
a frequency of 2.0GHz. Cores in the classic CMP configuration
have an execution window of 32 instructions, can commit up to



Service Hardware Number Test Transistorsunit of units cycles
Fetch bundle Fetch 4 1.25M 4MGenerate next PC
Decode bundle Decode 4 1.25M 2.5M
Tag generation Tag 4 1.25M 3M
Integer ALU

Execute

8 1.25M 1.6M
Load & Store 4 951K
Integer mult. & div. 8 327K 1.27M
FP ALU 8 230K 635K
FP mult. & div. 8 230K 635K
SIMD 4 1.57M 635K
Update register file Commit 4 1.25M 1MCommit stores

Create new bundle Scheduling 32 – 15KUnit

TABLE I
CHARACTERISTICS OF THE DISTRIBUTED ARCHITECTURES EVALUATED:
COBRA AND VIPER [18]. BOTH ARCHITECTURES PROVIDE 13 SERVICES

USING 6 DIFFERENT HARDWARE UNITS.

2 instructions per cycle, and contain: 2 integer pipelines, 2 FP
units, 1 load/store unit. Each OoO core uses dedicated 32KB
L1 data and instruction caches, while all service providers in
Cobra and in the baseline distributed architecture can make use
of similarly sized data and instruction caches – one for each
thread executed on the machine. In order to ensure program
correctness, both distributed architectures tie a process to
only one data cache before starting execution, as discussed
in Section VI.

To setup both the distributed architectures under analysis,
Cobra and Viper, we partitioned the x86-64 ISA into 13 dif-
ferent services, which are provided by six different hardware
units, as listed in Table I. In our fault model, a failure hitting
a multi-service unit disables only one service in that unit. For
instance, an “Execution” unit, which is hit by a fault in its
“FPU ALU” service provider, will no longer be able to execute
any bundle that requires that service, but can still provide its
other services. Periodic self-tests are scheduled independently
on each unit after a certain number of completed instructions,
20M in our case [17]. In order to trigger self-tests, we embed
an instruction counter in each hardware unit: once the limit
is reached, the hardware tests are serially performed on all
the services still available. With reference to our example,
the “Execution” unit would skip testing the hardware of its
already faulty “FPU ALU” service. Table I reports several
characteristics of the distributed architectures considered. Con-
figurations supporting a different number of programs are
scaled proportionally (the 16-threads configuration will have
16 fetch units). The last two columns of the table report the
number of cycles required to test each service and an area
estimate for the unit. Connectivity between scheduling units
and service providers is established through a crossbar, which
has a point-to-point latency of 4 cycles [29]. Both distributed
architectures arrange the “Fetch”, “Decode”, “Tag”, “Execute”
and “Commit” units in a mesh, each unit connects to its
neighbors with 256-bit wide links. The communication latency
between two adjacent nodes is 1 cycle [18].
B. Software Benchmarks

We used the SPEC CPU2006 benchmark suite [12] to
evaluate Cobra’s performance. Due to the detail and com-
plexity of our simulations, we could not run all benchmarks
to completion. Instead, we evaluated their performance when
they reached a steady execution state. The benchmarks in this
suite were run with the “test” input set. We evaluated perfor-
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Fig. 4. Throughput vs. system’s size. The plot compares Cobra (solid lines)
against a CMP and a baseline distributed architecture.

mance for both single– and multi– programmed workloads,
executing independent copies of the same benchmark. In order
to measure Cobra’s scalability we evaluated a system executing
1, 2, 4, 8 and 16 programs, and scaled the resources available
accordingly. As for the other experiments, for reasons of space,
we focused our attention on a medium-sized system executing
four programs, and analyzed in more detail its performance
and reliability. We decided to run multiple copies of the same
benchmark at the same time – instead of a mix of benchmarks
– because we wanted to stress the system by creating high
contention on the hardware components exercised by their
instructions. Finally, reliability estimations are reported as
throughput on the multiprogrammed workloads running four
copies of the same program.
C. Simulation Infrastructure

The microarchitectural simulation platform adopted for this
work is based on the gem5 simulator [3], employing full timing
simulations in system-call emulation mode. The model of the
OoO core provided with gem5 was modified to match the
deeper pipelines typical of modern high-performance proces-
sors. The minimal execution latency of an instruction in such
design is 12 cycles. We developed a model for the distributed
architectures under evaluation building on the template of the
OoO core publicly available with the gem5 simulator.
Fault Model – Since gem5 does not natively include a fault
injection model, we augmented the baseline simulator with:
1) a parameter representing transistor count for each hardware
component; 2) a fault injector capable of randomly triggering
a fault in one of the hardware components.

We focus on permanent failures, which were injected into
the components listed in Table I with a uniform probability
proportional to the number of transistors in each. In order to
gain statistical confidence in our results, each fault injection
experiment was repeated 20 times, each one with a different
random selection of fault locations. Transistor counts are
estimated from known transistor counts of modern commer-
cial designs [18]. Faulty service providers are selected and
disabled before starting the simulations. Note that we did
not consider defects in memory arrays since those can be
easily avoided through ECC and redundant entries. Finally,
we did not inject faults in the intra-chip interconnect, as other
techniques can protect the communication subsystem from
hardware failures [9].

IX. EXPERIMENTAL RESULTS
We first analyzed Cobra’s performance and scalability com-

pared to the CMP and the unoptimized distributed system.
Hence, we measured the impact of the solutions developed in
Cobra on the throughput of systems of different sizes, running
multiple instances of the SPEC2006 benchmarks. No faults
were injected in these first simulations.

We then evaluated Cobra’s robustness to an increasing
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number of permanent failures and compared it against a classic
CMP solution. To the best of our knowledge, we are the
first to quantitatively assess the impact of hardware failures
on a fully decentralized architecture – previous work only
provided reliability projections for such designs [18]. Finally,
we investigate the performance impact of deploying online
fault detection mechanisms on Cobra.
A. Fault-free Throughput

In the first set of experiments, we compared the throughput
of a CMP design and distributed architecture against Cobra,
and evaluated the impact of each technique discussed in Sec-
tions III (localized hardware configurations) and IV (hardware
configuration transferring). We did the comparison using 1, 2,
4, 8 and 16 concurrent processes to gauge the scalability of
the systems analyzed. Our findings are reported in Figure 4,
where we compare the throughput of Cobra (3 solid lines),
against that of a similarly sized CMP design and an unop-
timized baseline distributed solution (Viper). It can be noted
that our two performance-boosting techniques, “localized HW
configurations” and “HW configuration transferring” enable a
distributed-control solution to approach the performance and
the scalability of a classic CMP system.
Localized Hardware Configuration – To avoid starvation,
scheduling units must assign hardware units to services in
an ordered fashion, thus we proceed top-down through the
services listed in Table I. The unoptimized Viper design in
our experiments allocates each required service to the first
hardware unit available in a greedy fashion. In contrast, Cobra
uses our localized configuration approach, buffering service
proposals for some cycles (in our experiments we used 10,
that is, slightly more than twice the crossbar transmission
latency). Figure 5 plots the contribution of this technique
over a baseline distributed architecture (Viper) in a 4-threaded
configuration for each SPEC2006 benchmarks, showing that
it betters performance by 23% on average.
Hardware Configuration Transferring – We then evaluated
the impact of allowing a bundle to directly transfer its hard-
ware configuration to its successor. Hardware configurations
are torn down every 20 million instructions (a reasonable
length for a computational epoch, as shown in [7]). This tech-
nique brings an average performance improvement of 42% on
a 4-threaded system, as indicated in Figure 5. Correspondingly,
we observed a significant reduction in the number of messages
through the crossbar – 61% and 52% for single process and
multiprogrammed benchmarks, respectively.
Cobra – Our experiments report that these two techniques
combined contribute an average performance boost of 79%
over an unoptimized distributed design. When compared to a
CMP system, the performance of Cobra falls short by only
21% – a small incidence when considering its reliability.

We also evaluated the ability of Cobra to boost memory ac-
cess performance. Data caches are affected by only a minimal

performance difference, since both Cobra and Viper map one
cache per process to maintain correct execution. In contrast,
instruction caches improve their hit rate by 16%, on average.
B. Reliability

The next set of results evaluates Cobra’s reliability and mea-
sures the effects of permanent faults on its performance. For
these experiments we only considered the multiprogrammed
SPEC2006 benchmarks and injected faults at the beginning of
each simulation. Since our reliability-boosting techniques are
unaffected by the scale of the system, we only provide results
for 4-threaded systems and workloads.
Performance in presence of faults – We measured the
performance degradation of our system when subjected to
permanent failures as reported in Figure 6. For this study we
only considered faulty systems that can still execute all ISA
instructions, and we averaged our results over all SPEC2006
benchmarks, running 20 distinct simulations per benchmark to
gain statistical confidence.

It can be noted that Cobra’s average throughput degrades
gracefully with increasing faults, roughly halving at 15 faults.
Figure 6 reports max and min relative IPC, in addition to
the average overall all 20 runs for the 24 benchmarks. We
observed that injecting a moderate number of faults (between
1 and 5) can occasionally lead to a performance boost (as it can
be noted from the max line in Figure 6). This is due to the fact
that our resource assignment algorithm is based on algorithms
that searches for a local optimum. Thus, small variations in the
available resources may lead to a better-performing solution.

Finally, Figure 7 compares Cobra’s performance against
that of a CMP design in presence of faults. Values are
reported relatively to the performance of a single fault-free
OoO core. The CMP design considered in these experiments
is not affected by the interactions between the different cores;
thus, in its fault-free state, its performance is 4 times that
of the reference OoO core. The curves reporting Cobra’s
performance are obtained by disabling faulty components at
the hardware unit or service granularity (see Table I for a list
of units and services). Note that under fault-free conditions,
Cobra is outperformed by the CMP by more than a factor of 2.
This is due to Cobra’s larger area footprint and its overhead to
setup and manage dynamic hardware configurations. However,
as faults increase, the margin of benefit is reduced quickly with
Cobra providing better performance after only 4 faults. Since
the systems we modeled roughly occupy 100 million transistor,
this crossover point in our experiments occurs when a device
is affected by 1 fault every 20M transistors.
C. Online Fault Detection

Finally, we evaluate the performance impact of deploying
online fault detection mechanisms in Cobra. The full redun-
dancy approach (dual-module redundancy) experiences the
highest performance costs of 26% for single-process bench-
marks and 61% for multiprogrammed ones. The reason for
the smaller impact on single-process programs lies on the
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multiplicity of hardware units available, which can be used
to hide the additional computation required. The performance
cost of selective redundancy is less steep: 19% and 26%
for single- and multi- process benchmarks, respectively. For
this solution we protected with dual redundancy only bundles
including FPU and SIMD operations and mult/div instructions.

Finally, the performance impact of periodic testing is only
3%. We implemented this solution by performing a periodic
self-test of all hardware units (not already known to be faulty)
every 20M instructions – a typical interval for processors self-
tests [7, 17]. The performance we measured is much lower
than that of similar approaches in pipelined architectures (16%
as reported in [17]). Such limited impact is due to the fact that
in Cobra it is straightforward to take a unit off-line temporarily
for testing purposes, without affecting the rest of the system.

X. RELATED WORK
High availability commercial systems ensure high reliability

by sporting modular redundant configurations and thus invest
large portions of silicon area and large performance overhead
to guarantee performance in the face of failures [2].

Several research focused on developing low-cost fault-
tolerant techniques for classic pipelined processors. Proposed
solutions can rely on online testing [17], runtime fault detec-
tion [14], defect isolation [11] or replication of hardware units
[6]. Researchers have also considered options that salvage par-
tially functional cores to improve total system availability [20].

Core cannibalization is a first example of distributed archi-
tecture [22]. This CMP architecture comprises several simple
cores and different pipeline stages from each of them can be
composed to build a functional processor. StageNet extends
this concept to a next level: its reconfigurable fabric connects
multiple hardware units, each of which can perform the tasks
associated with the individual stages of a typical pipelined
processor [11]. The hardware stages are partitioned into islands
to allow the solution to scale, but this constraints the system’s
connectivity and reconfigurability. Viper is the first design to
propose a service-oriented execution paradigm [18]. Since it
is affected by a number of limitations typical of distributed-
control architectures, its performance and scalability compares
poorly against traditional CMPs. In contrast, Cobra’s perfor-
mance is very close to that of a CMP under no-fault conditions,
and it quickly out-performs faulty CMPs.

XI. CONCLUSIONS
We presented Cobra, a new reliable and scalable distributed-

control architecture. We designed a novel memory organiza-
tion and developed a new algorithm to dynamically assign
available hardware resources to instructions to be executed. As
a result, Cobra provides high system scalability and boosts the
performance of distributed-control architectures. In addition,
Cobra enables the adoption of low-cost fault detection mech-
anisms on a distributed architecture. By analyzing Cobra’s
reliability, we found that it outperforms a traditional CMP
design beyond the occurrence of 1 fault per 20M transistors in

our setup, while the performance cost of online fault detection
is only 3%.
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