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Abstract—During emulation and post-silicon validation of
networks-on-chip (NoCs), lack of observability of internal op-
erations hinders the detection and debugging of functional bugs.
Verifying the correctness of the control-flow portion of the NoC
requires tests that exercise its functionality, while abstracting the
data content of traffic. We propose a methodology where network
packets are repurposed for the storage of debug information
collected during execution. Debug data pertaining to each packet
is collected at routers along its path and stored by replacing
the packet’s original data content. Our solution is coupled with
a detection scheme consisting of small checkers that monitor
execution and flag bugs. Upon bug detection, we analyze the
debug information to reconstruct network traffic. We also provide
relevant statistics for debugging, such as packet interactions and
packet latencies, per router. In our experiments, this approach
allows us to reconstruct over 80% of the packets’ routes.
Moreover, the obtained statistics facilitate debugging erroneous
network behavior and identifying performance bottlenecks.

I. INTRODUCTION

Networks-on-chip (NoCs) have become the prevalent
communication paradigm for current and future chip-
multiprocessor (CMP) and system-on-chip (SoC) architectures.
In today’s market, large chip-multiprocessors, incorporating
hundreds of processing elements, are developed to provide the
computational power needed to run parallel and high perfor-
mance computing applications. Concurrently, SoC design is
experiencing an increasing trend of high integration, where
a number of IP blocks, commonly obtained from third party
vendors, are integrated on to a single chip through a com-
munication substrate. The network-on-chip model constitutes
a distributed and generalized architecture that can meet the
growing communication needs of SoCs and CMPs.

A NoC consists of a set of routers connected according
to a chosen topology. In the mainstream approach of worm-
hole routing, messages sent over the NoC are divided into
packets, which in turn are divided into equal size segments
of data called ‘flits’. A generic router design includes several
storage buffers and arbitration and allocation units to assign
resources to packets-in-flight. Router designs are often com-
plex, as router architectures may include a number of advanced
features, such as virtual channels and intricate arbitration units.
Moreover, a number of regular and irregular topologies can
render the packet flow and the overall network subsystem
extremely complex. In addition, network complexity is further
increased when deploying elaborate routing protocols that
utilize network state to guide routing decisions.

For these large CMP and SoC architectures, a great deal
of effort is spent in the functional verification process of the
individual cores and IP blocks, the NoC interconnect itself,
as well as the entire system. With the increase in the size

and complexity of these systems, along with shrinking time-
to-market windows, a lot of this effort is shifting towards
the heavy use of emulation and post-silicon validation to
ensure functional correctness. A key underlying reason for
this trend is the vast complexity of modern CMP and SoC
designs and their communication subsystem, which are often
too large for formal and software-based validation solutions. In
emulation, the design under test is mapped onto configurable
hardware units, such as FPGA-based platforms. Tests are run
on the emulation platform, which provides orders of magnitude
speedups relative to software-based simulations of the design’s
RTL description. On the other hand, post-silicon validation
comes at a later stage, when the first few silicon prototypes of
the chip become available. During this phase, tests run directly
on the hardware and at-chip speed, enabling a faster and hence
more thorough validation of the system’s functionality. In the
context of validating the NoC design, emulation and post-
silicon validation provide great advantages in speed but suffer
from limited observability of the design under test. Lack of
visibility of internal operations makes the detection, diagnosis
and debug of errors an extremely challenging process. More-
over, general solutions that enhance observability, such as scan
chains, do not always provide sufficient debug data to permit
a fast and efficient functional validation of the NoC.

In our work, we aim to address the challenge of validating
the complete network subsystem on these fast platforms (emu-
lation and post-silicon). In performing the functional validation
of NoCs, we can consider any NoC design to consist of
two components: data flow and control flow. Validating the
data flow correctness means ensuring that data sent over the
network is not corrupted in transfer. Verifying the correctness
of the control flow portion essentially means validating all
functionality, and hence control decisions made in the network.
The NoC functionality is entirely dependent on the traffic
patterns observed and it is agnostic to the data content of
the messages. Therefore, specialized test cases can be run
with the goal of exercising as much of the network’s func-
tionality as possible. When running such tests, the packets’
data contents are effectively irrelevant. In this context, we
propose a methodology to greatly enhance the observability
of the network traffic and its internal state to facilitate the
detection and debug of control-flow functional errors. Our
solution, called DIAMOND, proposes to replace packets’ data
contents with debug information collected during the network’s
execution. At every router along a packet’s path, we gather
debug data that encapsulate the packet’s current state and
we systematically substitute the data flits of the packet with
this information. Once packets arrive to their destinations,
they are stored at the local cache or memory associated with
those nodes. Along with this data collection mechanism, we



instrument routers with small checkers that can detect various
functional errors. Upon error detection, the collected debug
data accumulating throughout the network is analyzed by
software-based algorithms running on the CMP/SoC cores or
off-chip. The information that can be extracted from this data
includes a detailed overview of the packets’ paths, analysis of
performance metrics at internal routers, as well as the sequence
of events observed at a given router during a given interval.
Armed with this enhanced visibility into the network behavior,
verification engineers can more promptly localize and debug
functional (and in some cases performance) bugs.

A. Contributions

e We introduce a novel solution to gather debug data during
the emulation or post-silicon validation of NoC interconnects
and, specifically, while running tests targeting the validation
of the NoC’s control-flow.

e We present a complete framework that couples our debug
data collection mechanism with a bug detection scheme. We
also present a debug data processing methodology to extract
relevant information that facilitates the diagnosis and debug of
functional errors in the NoC design.

e Our solution introduces minimal perturbations and requires
minor hardware additions. We also provide three modes of
operations to configure our data collection mechanism, trading-
off the exhaustiveness of the debug data gathered with the
degree of perturbation to the original system.

e In addition to detecting and debugging functional errors, our
solution can also detect performance bugs, such as starvation
and misroutes. It can also provide performance statistics at
internal network routers, which in turn aids in analyzing the
NoC'’s overall performance.

II. RELATED WORK

Previous work on post-silicon validation of NoCs have
proposed various approaches to increase NoC observability.
In [1], authors instrument routers and network interfaces with
monitors. These monitors filter network traffic to identify
transactions of interest, as well as analyze performance and
validate data flow errors. Similarly, approaches proposed by
[2], [3] add monitors to network routers that observe traffic
and abstract it into events or transactions. The extracted events
and transactions are then transferred over the network for
further analysis. Our solution differs from these approaches by
focusing on the validation of functional bugs in the control-
flow portion of NoC designs. It can also detect and debug some
types of performance bugs. In contrast to the above works, we
provide a complete framework that can collect debug data,
detect functional bugs, and then analyze the data for diagnosis
and debugging. The collected debug data is transferred by
substituting the original data content of packets. Moreover,
the type of debug data collected and how it is analyzed is
independent of network topology and router architectures.

Other recent work proposes a post-silicon solution that
relies on taking periodic snapshots of traffic to reconstruct
packet paths and identify functional errors related to forward
progress [4]. By periodically sampling traffic, this solution can
only provide low error detection probability for those bugs
that are transient in nature, such as misroutes or starvations.
It also fails to detect other types of bugs, such as dropped

packets. On the other hand, our approach achieves a much
better observability of network traffic, as all data packets can
be observed, for most or all of their paths. We can also
reconstruct longer and more uniform routes for each packets,
achieving a reconstruction rate of more than 83%. In addition,
since debug data is collected per packet and then stored within
each packet’s body flits, the amount of debug data logged is
proportional to the amount of traffic and not the test execution
length.

A number of works have targeted emulation of networks-
on-chip [5]-[9], where authors proposed different ways of
implementing an emulation platform that allows the modeling
and exploration of various NoC designs. The emulated NoC
is evaluated by relying on traffic generators and receptors that
can be configured to inject different traffic patterns and analyze
received packets. These works focus mostly on designing an
emulation platform and a methodology that allows modeling
different NoCs to speed up design exploration and validation.
Our work is complementary to these approaches. Indepen-
dently of how the NoC is emulated, we provide a methodology
to collect debug data from network routers to facilitate the
debugging of functional errors in the control flow portion
of the design. Moreover, the traffic receptors proposed are
limited to analyzing end-to-end correctness and performance
metrics and can not provide insights regarding the internal
events that occurred in the network. In contrast, our debug
data collection mechanism provides a detailed view of internal
network behavior, generating results about packet interactions
within routers, packet latencies observed per router, as well as
the routes followed by the packets.

NoC execution Analysis

1) Traffic reconstruction — local analysis

debug data from R1

E replaces data flit
i

2) Statistics — global analysis
- latency per router

- sequence of
to local events per router

storage
post-silicon/emulation platform

hardware checkers

- relative order of
events across routers

Fig. 1.  Overview of our solution. During NoC execution, debug data
is collected at every hop and stored in the packet, overwriting data flits.
Routers are instrumented with hardware checkers that monitor execution and
flag functional errors. Upon error detection, the debug data is analyzed to
reconstruct traffic, as well as provide a number of relevant statistics.

III. THE DIAMOND SOLUTION
A. Overview

The aim of DIAMOND is to provide observability of the
network’s operation to facilitate the diagnosis and debug of
functional errors in the NoC’s control flow. Tests used to
validate the NoC functionality aim at creating various network
traffic scenarios, while abstracting away the data content of
messages. When running such tests, our solution relies on
using the contents of packets to store debug data collected
during execution. Network execution is partitioned into epochs,



during which the network is instrumented for bug detection, as
well as debug data collection. As packets traverse the network,
their data content is substituted with debug information col-
lected at every hop, as illustrated in Figure 1. Once a packet is
delivered to its destination node, it is stored in the local cache
or memory associated with that node. In parallel with debug
data collection, small hardware checkers monitor the network’s
execution and detect functional bugs. Upon flagging an error,
execution is halted and the debug data that has been collected
in the caches is analyzed. This analysis process is first carried
out locally, where each processor core examines the debug
data of packets that were destined to itself, and then globally,
where debug data from all nodes are aggregated at a central
location for a global overview of the network’s behavior. On
the other hand, if the epoch ends without the detection of any
bugs, the collected debug information in the caches is simply
overwritten in the following epoch.
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Fig. 2. Functional validation flow. During the emulation or post-silicon
validation of NoC designs, debug data is collected during testbench execution.
The debug logs can be stored in the local cache or memory associated with
each node or in on-chip trace bufters. Upon the detection of an error, execution
is halted and the collected debug data is analyzed by the on-chip processor
cores or can be transferred off-chip and analyzed separately.

Since this approach relies on utilizing each packet’s flits
to carry debug information, the amount of debug data that can
be collected is limited by the packet’s size and the length of
its path through network. However, in practice, this limitation
does not always cause a lack of scalability. With low packet
latency being a primary concern, NoC designs, even if large in
topology, commonly incur a low average hop count for packets
in flight. Moreover, in this paper, we consider a baseline CMP
system, where each node consists of a processing element and
a local cache, but our solution is also adaptable to SoC designs,
where the system consists of general purpose processors, as
well as other IP modules. In this context, only nodes with
memory/cache modules store debug data. It is also common
during post-silicon validation and emulation to have additional
on-chip trace buffers, which can be utilized to store debug data
for nodes without caches. The debug data analysis process can
be carried out by running a software program on the on-chip
cores or by performing the analysis off-chip. Figure 2 shows
the complete validation flow of our proposed solution.

B. Debug Data Collection

Debug data is collected for every packet injected into the
network and at every hop during its flight. At each hop, the

debug data associated with each packet is stored in one of the
packet’s flits replacing the original data content.

For every input buffer within the router, we add a register,
called log_buffer, to store the collected debug information. In
addition, we require each router to include a packet counter
(pckt_cntr) that is incremented upon receiving a packet. The
log_buffer is updated everytime a new packet is at the head of
its corresponding input buffer. The information collected and
stored in the log_buffer consists of:

1) The router ID

2) Arrival timestamp (timestampA) that indicates the value
of the pckt_cntr when the header flit of the packet was
received by the router.

3) Departure timestamp (timestampD) that indicates the
value of pckt_cntr when the header flit was sent from
the router. Logging timestampA and timestampD allows
us to order packets passing through each router, as well
as reason about packet interactions within a router.

4) A third timestamp (pckt_latency) that indicates the
amount of time (in cycles) the packet’s header flit re-
mained in the router. This timestamp allow us to analyze
packet latencies observed at interval routers.

5) The packet’s input port and input virtual channel.

6) The output port and virtual channel the packet requests.

Once the log_buffer is complete, the debug data is written
to one of the packet’s body flits. The index of the flit to
be written is maintained by a counter that is added to the
packet’s header flit. When a packet arrives to a router and
reaches the head of one of its input buffers, we first extract
the flit index where the debug data will be written. Then,
timestampA, the input port and the input virtual channel are
logged in the log_buffer. When the header flit completes its
route computation and virtual channel allocation, the requested
output port and requested virtual channel are logged. Finally,
when the header flit is sent to the next router (or ejected if
it is at a destination router), timestampD and pckt_latency are
logged. Once the packet’s header has been routed to the next
hop, the packet’s body flits follow. Based on the flit’s write
index, the log_buffer is simply written in the appropriate flit.

A typical flit width in NoCs is between 128 and 256 bits
[10]. In our evaluation, we assume a flit width of 128 bits and
a log_buffer size of 64 bits. Therefore, the debug data collected
at every hop occupies only half a flit, with the remaining half
written at the next hop. In order to implement this functionality,
the flit write-index field in packet headers is extended by 1 bit,
which indicates whether the debug data will replace the first
or second half of a body flit. Moreover, the flit write-index
field is incremented once every two hops. Figure 4 shows the
various fields of packets’ header flits.

In the case of packets that do not have enough flits to store
the collected debug information, we provide three solutions
for our approach, depending on the needs of the verification
methodology in use: drop remaining, drop at alternate hops,
and append. Figure 3 illustrates the behavior of each mode.
In these three modes, the verification process can be tuned
to trade-off debug capabilities with the degree of perturbation
introduced to the original system.

1) Drop Remaining: During drop remaining, when the
number of hops in a packet’s path exceeds the available flits
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Fig. 3. Debug data collection. In drop remaining, if the number of hops
exceeds the available data flits, additional debug data is simply dropped.
During drop at alternate hops, additional debug data replaces alternating
entries providing a more uniform overview of the packet’s path. The last
mode, append, creates new flits as needed and appends them to the packet.

in the packet, additional debug data is dropped. This mode
of operation is simple to implement at the expense of low
observability for packets with long routing paths.

2) Drop at Alternate Hops: In this mode of operation, de-
bug data collection is implemented as before. However, when
the space in the packet is exhausted, new debug data overwrites
older debug data, creating an every-other-hop scheme. For
example, as shown in Figure 3, the debug data collected at
router R5 replaces older debug data collected at router R2. As
opposed to drop remaining, this mode provides a longer and
more uniform overview even of long routing paths. Moreover,
data belonging to the alternating missing hops can be partially
reconstructed or extrapolated from the debug data that remains.
For example, the output port requested along with the router
ID can be used to determine the downstream router, for which
we have no log. Similarly, the input port and router ID can be
used to determine the missing upstream router.

3) Append: We also provide a mode of operation that
allows routers to append new flits to the packet. New flits
are appended before the tail flit, as illustrated in Figure 3.
While this mode provides the complete path of a packet, it
requires additional hardware to add the new flits. It also alters
the network’s original execution by creating longer packets,
potentially masking bugs. It is also possible for the perturbation
created by increasing the length of some packets, to expose
bugs that would have not been observed otherwise.

C. Error Detection

Our debug data collection methodology is orthogonal to
the mechanism by which functional bugs are detected in the
NoC. We propose the use of a fine-grain detection approach
that relies on adding small checkers to the NoC routers. These
checkers monitor runtime execution for signs of erroneous
behavior, while targeting a wide range of functional bug
manifestations detailed below. Instead of localizing the root
cause of a functional bug, our detection mechanism targets the
bug’s manifestation on the traffic in-flight. Whereas, our debug

collection mechanism stores low level debug data pertaining to
each stage of a router’s control path (route computation, virtual
channel allocation and switch allocation), which later permits
a more detailed diagnosis and debugging analysis. In terms of
detection, irrespective of its exact location, a functional bug
in a NoC can manifest by affecting the traffic in-flight in a
finite number of ways. First, a functional bug can lead to bit
corruptions in the transferred data, which can be detected by
including an error correction code (ECC) in each flit. However,
in this work, we target the validation of the control flow portion
of the NoC design and therefore only focus on that subset of
functional bug manifestations. In terms of control flow and at
the level of packets, a functional bug can hinder the forward
progress of packets through the network, such as in the cases
of deadlocks, livelocks, starvations, and misroutes. It could
also lead to entire packets being dropped or duplicated. At the
level of flits, a functional bug in the control flow can manifest
as dropped or spurious flits.

Deadlock and starvation: Packets involved in a deadlock are
permanently blocked waiting on each other to free needed
resources. On the other hand, starvation occurs when a packet
is temporary blocked waiting for resources that are allocated to
other packets due to unfair arbitration and allocation schemes.
Note that unless bounded packet delivery is a system require-
ment, starvation does not always affect the correctness of
execution and it is often considered a performance bug. A
common technique to detect blocked packets adds counters to
routers, one associated with each input buffer. After a header
flit, marking the beginning of a new packet, reaches the head
of an input buffer, its corresponding counter is incremented in
every cycle. The counter is reset when the tail flit is observed.
If the counter exceeds a user-defined threshold, it flags an
error [11]. In our work, we differentiate between deadlock and
starvation by allowing the network to drain after the error is
flagged. In contrast to deadlock, starved packets will eventually
acquire the resources they need to move forward and their
corresponding counters reset to zero.

Livelock: Packets are in livelock if they are continuously
transferred between routers without making forward progress
to their destinations. A common approach to detecting a
livelock adds a hop counter to the header flit of every packet.
The counter is incremented at every hop and a livelock is
flagged if the counter exceeds a pre-defined threshold [12].

Dropped and duplicated packets: To detect dropped packets,
we utilize the approach proposed by [13], where a packet
counter is maintained per router. The counter is incremented
upon receiving a tail flit and decremented upon sending one.
If packets are not dropped within the router, then the counter
should reach a value of zero at some point within a checking
window. Similarly, a packet counter reaching a negative value
can be used to identify packet duplication or spurious packet
creation. In the case of dropped packets, it is possible for
this approach to exhibit false positives, particularly under
high congestion traffic. High congestion can also mask packet
duplications, causing this technique to exhibit false negatives.
However, [13] shows that choosing a suitable checking window
size can practically eliminate false positives. Moreover, false
negatives are rare and duplications will eventually be detected.

Dropped and duplicated flits: In order to identify dropped
and duplicated flits within packets, we require the addition of a



size field to the header flit. A simple counter and comparator
added to every input buffer are then used to keep track of
the number of flits observed. If the tail flit is reached and the
counter does not match the size field, then a flit must have
been duplicated, created or dropped.

Misrouting: A packet is misrouted if it is sent to the wrong
destination. To detect such errors, we perform a check upon
packet delivery to ensure that the destination field in the
header flit matches. Misrouting could also occur if a packet is
delivered to the correct destination, but takes incorrect routes
along its path. In such cases, misroutes can be detected by
adding simple checkers to internal routers. The exact checker
implementation is dependent on the routing protocol. For
example, for deterministic or minimal routing algorithms, a
simple lookup table or assertion can detect such errors [13].

D. Debug Data Analysis

Once an error has been flagged, execution is halted and the
network is allowed to drain. Packets blocked, due to deadlocks
or livelocks, are permitted to drain to the closest node. At this
point, all the debug data that was collected during execution
is residing in the content of packets, which are stored in the
local caches or trace buffers across the network. This data
is processed in two steps: local and global, each providing a
different overview of the network’s execution.

1) Local Processing: The content of each local cache is
individually analyzed by a software application running on
the corresponding core. The data can also be loaded off-chip
for a similar analysis. By examining the contents of every
packet, its path through the network can be reconstructed.
The path overview allows the identification of any livelock
cycles, as well as any misrouted segments along its route.
In the case of adaptive routing algorithms, the reconstructed
paths provide insights regarding the performance and effec-
tiveness of the routing protocol. In addition, by examining the
recorded pckt_latency timestamps, network performance can
be analyzed. Periods of high packet latency can be identified
along with the routers where this high latency was recorded.
Finally, by comparing a packet’s requested output port and
output virtual channel within a router relative to the input port
and input virtual channel of the downstream router, functional
bugs in switch arbitration logic can be flagged.

2) Global Processing: Through the local processing step,
execution intervals or routers of interest are identified. Then,
data from all local caches are aggregated at a central location,
where another software algorithm, running on one of the cores
or running off-chip, groups this data on a per router basis.
Then, using the timestampA and timestampD counters, each
router’s data is sorted by increasing time. The sorted infor-
mation basically encapsulates the series of packets and events
witnessed by each router during execution. This, in turn, gives
insights regarding packet interactions within routers, allowing
us to reason about the source of the error observed. Since
each router’s timestampA and timestampD represent the value
of the router’s packet counter, these timestamps do not have a
notion of physical time. Therefore, the arrival and departure of
packets from different routers can not be correlated. However,
by leveraging techniques similar to those used in ordering
events for distributed systems [14], we can still construct a

partial order of events by using packets as points of reference.
A packet transferred from routerA to routerB serves as a
synchronization point, where events observed in routerA before
the packet was sent can be classified to have happened before
the events occurring in routerB after the arrival of the packet.
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Fig. 4. Debug data collection - hardware implementation. Additional
fields are added to the header flits of packets. A register, log_buffer, is added
to each input buffer to store debug data. A packet counter is required per
router to provide the timestampA and timestampD values.

IV. IMPLEMENTATION OF DEBUG DATA COLLECTION

In order to implement DIAMOND’s debug data collection
solution, we include additional fields in the header flits of
packets, as shown in Figure 4. A header flit commonly carries
the router IDs of the packet’s source and destination nodes.
It also commonly has unused bits, which we can utilize for
our solution. Therefore, we include a small counter, which
along with the source and destination, serves as an ID that
can uniquely identify the packet in the network. Moreover, to
keep track of the flit ID where the debug data will be stored
at each router, we require an additional flit_write_index field.
The flit_write_index is a counter that is incremented every
two hops. It also has an extra bit, which indicates whether
the debug data will replace the first or second half of the
flit, as explained in Section III-B. Note that the length of the
Slit_write_index is determined by the number of body flits in
a packet and would typically be 3-4 bits. Table II shows the
various fields added to header flits and their length.

We also require some minor additions to the NoC routers.
Debug data collected at each router is stored in a register,
the log_buffer, before its written to the appropriate data flit.
We require one log_buffer for every input buffer. The size of
the log_buffer register depends on the network size and router
architecture. Table I lists the various entries of a log_buffer
and their lengths. In addition, we add a packet counter per
router, which tracks the number of packets received by the
router and which provides the timestampA and timestampD
values. In order to record the pckt_latency, we make use of
the same deadlock/starvation counter needed for bug detection
(Section III-C). As for the remaining entries in the log_buffer,
they can be recorded directly from the original router imple-
mentation and do not require any additions. Once a packet is
received by a router, the flit_write_index field of the header
flit is extracted. Then, a simple combinational logic counts
the number of data flits observed and when it matches the
fit_write_index, it copies the log_buffer to the appropriate
half of the data flit. We implemented these additions and the
detection checkers in the Verilog model of the baseline router
architecture that is described in Section V. Synthesis results
show an area overhead of 2%. Moreover, the incurred power



overhead is minor and is in itself not a significant concern
during the emulation and post-silicon validation of the NoC.
These hardware modifications are also decoupled from the
router’s functionality and can be disabled when the chip is
released.

V. EXPERIMENTAL EVALUATION

To evaluate our solution, we modeled an 8x8 mesh network
using the cycle-accurate Booksim simulator [12]. Our baseline
router architecture consisted of a general input-queued virtual
channel router, with 5 input ports and 2 virtual channels per
port. We ran both random directed traffic, as well as network
flow traces from the PARSEC benchmark suite [15]. For
uniform random traffic we varied the packet size between 5
flits/packet (a header, a tail and 3 body flits) and 7 flits/packet.
As for the PARSEC network flow, traffic consisted of both
control packets and data packets. While data packets consisted
of 5 flits, control packets were only 1-flit long.

. number

log_buffer entries of bits
routerID 6 bits
timestampA 15 bits fields number of bits
timesatampD 15 bits PID 8 bits
pckt_latency 10 bits flit_write_index 3-4 bits
input port 3 bits size 4 bits
input virtual channel 1 bit total additions 14-15 bits
Ou:pu: pf’? rfqueswd 3 bits TABLE II.  ADDITIONS TO
output virtua 1 bit HEADER FLITS.
channel requested
total 64 bits

TABLE I. LOG_BUFFER.

We modified Booksim to implement the three modes of the
data collection mechanism: drop remaining, drop at alternate
hops and append. Based on the network size and router archi-
tecture, we determined the length of the log_buffers required at
every router, as shown in Table 1. The lengths of timestampA
and timestampD (and hence the pckt_cntr) were chosen to
be 15 bits, to ensure that the packet counter does not wrap
around too frequently. In the event that a wrap-around occurs
at any router, we force the epoch to end early, which permits
clearing the previously collected debug data from the caches
and restarting the counters. We chose a length of 10 bits for
the pckt_latency field, limiting the maximum latency value that
can be logged to 1,024 cycles. Finally, we assume a flit size
of 128 bits, which is a common flit length [10]. Therefore, we
are able to store the log_buffers collected along two hops in
each flit, as explained in Section III-B.

Our implementation also requires adding several fields to
each packet’s header flit, which are listed in Table II. We
chose the packet ID to be an 8 bit counter, which along with
the packet’s source and destination node IDs forms a unique
identifier of each packet. The length of size, which is used for
the detection of dropped and duplicated flits (Section III-C),
depends on the number of flits in a packet. In our evaluation,
we consider packets of size 5 and 7 flits, making the size field
4 bits long. Similarly, flit_wr_index depends on the number of
body flits in a packet, with an additional bit to indicate which
half of the flit is to be written.

A. Path Reconstruction Results

We first examined the observability gained from utilizing
our debug data collection solution by evaluating the fraction of

the path that can be observed for each packet. In our validation
platform, the path reconstruction process is completed during
the local processing phase, where body flits of packets are
examined and the sequence of routers, through which each
packet passed, is reconstructed. Table III shows the average
percentage of each path that can be reconstructed under all
three modes of operation. For the PARSEC network flow, data
packets consist of 3 body flits and could carry complete debug
data from 6 routers along their path. Therefore, under drop
remaining, we are able to achieve full observability (100% path
reconstruction) over packets whose path traverses 6 or fewer
routers. Remaining packets have smaller path reconstruction
fractions depending on their path length. For all PARSEC
benchmarks, the percentage of path reconstruction is 83.76%
on average. During the drop at alternate hops mode, when all
body flits have been utilized, new debug data replaces older
data by over-writing only the second half of each body flit,
as illustrated in Figure 3. Moreover, routers pertaining to the
alternate missing hops can be extrapolated. For the PARSEC
network flow, in addition to the 6 routers that can be extracted
directly from the debug data, the 3 alternate routers that were
overwritten can be deduced from the recorded router IDs and
input ports. Therefore, paths consisting of up to 9 routers
can be fully observed. This mode provides a higher path
reconstruction of 96.54%, on average. Note that, the PARSEC
network flow also consists of 1-flit control packets that do
not have any body flits. For such packets, we are not able to
collect any debug data during these two modes. Finally, for the
append mode, we achieve 100% path reconstruction for both
control and data packet, as expected, since packets can append
as many new flits as needed to store debug information. Similar
results are also observed for uniform random traffic. Results
are averaged over a sweeping injection rate from low injection,
0.04 flits/cycle/node, to high injection, 0.24 flits/cycle/node.

PARSEC drop drop at d
network flow remaining | alternate hops appen
blackscholes 83.2% 96.3% 100%
bodytrack 85.0% 97.1% 100%
dedup 84.4% 96.8% 100%
ferret 84.5% 96.9% 100%
freqmine 83.8% 96.6% 100%
streamcluster 84.3% 96.8% 100%
swaptions 84.2% 96.8% 100%
vips 81.4% 95.4% 100%
X264 83.0% 96.2% 100%
average 83.76 % 96.54% 100 %
uniform traffic

packet size = 5 flits 87.1% 97.8% 100%
uniform traffic

packet size = 7 flits 8% 100% 100%

TABLE III. AVERAGE PATH RECONSTRUCTION

B. Performance Analysis

Under drop remaining and drop at alternate hops, our solu-
tion does not introduce any additional performance overhead.
However, the append mode can increase the length of packets
to create space for storing new debug data. Longer packets
increase network congestion and can slow down execution.
Figure 5 shows the average network latency for the PARSEC
network flow during the 3 modes of operation of DIAMOND,
as compared to a baseline system without our solution. As
expected, the network does not incur a performance impact
when operating during drop remaining and drop at alternate
hops. However, when operating with the append mode, average



140 P
drop remaining

drop at alternate hops

auliniiin

m baseline append

[
N
o

avg. latency (cycles)
» D o] 8
o o o o

N
o

NS o 0 e No° o™ W o™ xe'
C\‘sc‘(‘o ‘006‘\“3 3e9 e N pa “eO\“\\ s\NaQ‘\O R QO
N e
© PARSEC network flow o

Fig. 5. Average network latency for PARSEC network flow traffic. The
append mode of operation provides complete observability of all packets at
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Fig. 6. Average network latency for uniform traffic. The append mode of
operation increases the network’s average latency.

network latency increases by a factor of 1.95, on average.
A similar trend can be observed for uniform traffic with
packets consisting of 5 flits, as shown in Figure 6. At low
to medium injection rates, the impact of the append mode on
network latency is minimal. As injection rate increases, the
increase in average network latency is more pronounced. In
those cases, the network is already congested and the append
mode increases the length of some packets resulting in even
more congestion. On average, the append mode increases the
average network latency by a factor of 1.07. Note that the
PARSEC network flow exhibits a greater performance impact
than uniform traffic. This is due to the fact that PARSEC
benchmarks consist of both data and control packets. With
control packets being only 1-flit long, all of them require
appending additional body flits to carry the collected debug
data. Thus, more packets are affected by extensions than
when running uniform traffic, resulting in a greater increase
in average network latency.

C. Case Study: Analysis Results

Packet interactions. Our solution also allows examining
packet interactions within routers, as well as constructing
a partial overview of global network behavior. During the
global analysis phase, debug data from all nodes is aggregated
and grouped per router. Each router’s data is then sorted by
increasing timestampA values, allowing us to order packet
arrival and departure to and from each router. As an example,
we ran uniform traffic over an 8x8 mesh at an injection rate
of 0.19 flits/node/cycle. Figure 7 shows the packets traversing

Router0 Routerl

P31(src=0,dest=56 1 P34(src=1, dest=61)
J\ 1 P34 ,_—-V
A° P16(src=1, dest=61)
P87(src=0,dest=35) P31 P16 2
2 /
P87 a P62(src=4, dest=8)
P62
pe2 > P87
| 5 P117(src=1, dest=47)
P132(src=0,dest=49)~< P117 1"
= P132 4
6
P132
P143(src=2, dest=0
. P143 7| P13 )
P143 40— | 1
v
timestampA timestampA

Fig. 7. Example of reconstruction of packet interactions. TimestampA
values are used to construct the sequence of events observed in each router.
For example, the packet with ID 31 (P31) is received and sent from router O
at timestampA=1. Dashed lines indicate packets sent from routerQ or routerl
to other routers in the network.

routerQ and routerl in the first 100 cycles of the simulation,
as obtained from our solution. Note that since each router’s
pckt_cntr operates independently, the timestampA values are
not synchronized across routers, preventing the establishment
of a complete global order of events across the network. How-
ever, by leveraging common packets as points of reference, we
can establish a partial order. For example, in Figure 7, packet
132 is a common packet between routers 0 and 1. Based on
that, events relating to packets 31, 87 and 62 in routerO (i.e.,
the events that occurred before sending packet 132) happened
before events associated with packet 143 in routerl.

Latency at internal routers. Typically, during the perfor-
mance validation of NoCs, the debug information that can
be collected relies on end-to-end analysis of latencies and
throughput. However, our solution has the benefit of providing
performance statistics at internal routers, since debug data is
collected at every hop along a packet’s path. By examining
the pckt_latency field recorded in the debug data, we can
study the average and maximum packet latencies observed
at every router and throughout the network’s execution. This
information facilitates debugging performance bugs, where
the execution is functionally correct but does not meet the
performance specifications of the design, such as in the case
of starvation errors. As an example of the type of results that
can be generated, Figure 8 shows packet latencies, averaged
over all routers for the various PARSEC benchmarks. Some
benchmarks, such as dedup and ferret, exhibit larger average
packet latencies within routers, as compared to others.

We can also plot average packet latencies observed within
each router during a specific testbench execution. For example,
Figure 9 shows this information for the dedup benchmark,
where we can observe that router 49 exhibits the highest
average packet latency compared to other routers. Using such
results, we can identify potential performance bottlenecks in
the network. It is also possible to use our scheme to examine
packet latency values over time and per router. For example,
Figure 10 shows the variation in packet latencies observed
at router 49 throughout the execution of dedup. Based on
that, execution periods of interest can be identified for further



analysis, such as the period highlighted in Figure 10, where we
record the first significant increase in latency. By examining
packet interactions and path reconstruction results for the
dedup benchmark, we identify the packet associated with this
latency and find that it is blocked in router 49 due to congestion
in the downstream router 41. Router 41, in turn, has several
packets that are also waiting for busy virtual channels. By
means of inspection, we realized that the simulated router
design was setup to utilize a basic credit-flow mechanism that
releases the output virtual channel only after the entire packet
is transferred, which amplifies the packet latencies in the pres-
ence of congestion. This example highlights how DiAMOND
provides high quality diagnosis and traffic-inspection capabil-
ities in post-silicon or emulation environments, inculding the
ability to investigate performance flaws in the network. This
technique can also be utilized for non-verification purposes
early on in design process, particulary during NoC design
exploration and performance profiling.
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Fig. 8. Average packet latency at internal routers. Results are shown for
the PARSEC network flow, averaged over all routers
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Fig. 9. Average packet latency for a sample benchmark. For the dedup
network flow, we show the average packet latency observed at each router.

VI. CONCLUSION

We presented DIAMOND, a debug solution for the post-
silicon validation and emulation of networks-on-chip. Target-
ing the functional validation of the control-flow portion of
NoCs, we log debug data during network execution and store
it by replacing the data content of packets. Debug information
is collected for every packet, at each router along its path, and
then systematically written in one of its body flits. In addition,
simple hardware checkers are added to routers to monitor
execution and flag functional bugs. Upon bug detection, the
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Fig. 10. Packet latency at router 49 for dedup benchmark.

collected debug data provides increased observability of net-
work traffic. The analysis process reconstructs the packets’
paths, achieving, in most cases, over 80% reconstruction. We
also provide several functional, as well as performance, statis-
tics regarding the network’s operation, including the sequence
of events that occurred within routers and packet latencies
observed per router and over time.
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