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ABSTRACT

This work presents a minimally-intrusive, high-performance, post-
silicon validation framework for validating memory consistency
in multi-core systems. Our framework generates constrained-random
tests that are instrumented with observability-enhancing code for
memory consistency verification. For each test, we generate a set
of compact signatures reflecting the memory-ordering patterns
observed over many executions of the test, with each of the sig-
natures corresponding to a unique memory-ordering pattern. We
then leverage an efficient and novel analysis to quickly determine
if the observed execution patterns represented by each unique sig-
nature abide by the memory consistency model. Our analysis de-
rives its efficiency by exploiting the structural similarities among
the patterns observed.

We evaluated our framework, MTraceCheck, on two platforms:
an x86-based desktop and an ARM-based SoC platform, both
running multi-threaded test programs in a bare-metal environ-
ment. We show that MTraceCheck reduces the perturbation in-
troduced by the memory-ordering monitoring activity by 93% on
average, compared to a baseline register flushing approach that
saves the register’s state after each load operation. We also re-
duce the computation requirements of our consistency checking
analysis by 81% on average, compared to a conventional topo-
logical sorting solution. We finally demonstrate the effectiveness
of MTraceCheck on buggy designs, by evaluating multiple case
studies where it successfully exposes subtle bugs in a full-system
simulation environment.
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1 INTRODUCTION

Over the past decade, microprocessor designs have been integrat-
ing an increasing number of cores in a single chip, to keep power
consumption in check while maximizing computing capability.
Indeed, individual cores in a many-core system are tailored for
energy efficiency, significantly improving throughput per watt by
exploiting thread-level parallelism. To take advantage of this par-
allelism, cores can be programmed to collectively contribute to
advance a single application, thus offering higher energy effi-
ciency than a high-frequency single-core system with the same
power budget. For instance, the Oracle SPARC M7 chip [30] in-
cludes 32 cores and can execute 256 threads in a single chip, en-
abling massive thread-level parallelism for parallel applications.

Many-core systems are commonly equipped with large caches
and memory units integrated alongside the cores. All threads par-
ticipating in a multi-threaded application share a common mem-
ory space, and, for the most part, they communicate with each
other via shared memory. In the absence of inter-thread synchro-
nizations, each thread runs its own program code without being
subject to interruptions by other threads, and thus accesses to the
shared memory may be arbitrarily interleaved. This mainstream
setup leads to non-deterministic outcomes, posing a difficult chal-
lenge to microprocessor verification engineers, who validate a
test execution by comparison with its correct outcome.

During post-silicon microprocessor validation, the primary ac-
tivity is to detect rarely occurring bugs, triggered by complex
corner cases, deep down in a design’s state space. It is thus cru-
cial to run as many tests as possible in the limited time available
before product release, so as to expose as many of those rare bugs
as possible. Fortunately, post-silicon validation platforms operate
at a chip’s native speed, generating a vast number of test results
on the fly. However, this high production rate requires the vali-
dation methodology to keep the pace with test output generation.
Moreover, in this setup, only a handful of internal signals can be
observed at runtime [1, 27, 39]; hence, verifying a system in the
presence of variable, non-deterministic memory-access interleav-
ings becomes even more challenging.

To address the latter challenge, some modern processors in-
clude trace buffers, such as Intel’s Branch Trace Store (BTS) [25]
or ARM’s Embedded Trace Macrocell (ETM) [8]: they can trace
branches, interrupts and exceptions in one case and instructions
and data in the other. However, these tracing structures are often
limited and unfit in size for memory-ordering validation tasks,
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Figure 1: MTraceCheck overview. Multi-threaded constrained-
random tests are generated and then augmented with our
observability-enhancing code, which generates a memory-access
interleaving signature at runtime. After multiple test runs, sig-
natures are collectively checked by exploiting their similarities,
accelerating the validation process.

which require logging and checking the outcome of each memory
operation. To address the heavy computation required for check-
ing test outputs, further exacerbated by the potentially high non-
determinism of memory ordering, researchers have proposed so-
lutions to enhance the observability of memory access orderings
by either introducing additional hardware or through intrusive
software modifications of the application’s code. In the former
category, [14, 35], for instance, propose to modify the memory
subsystem’s hardware for the sole purpose of validation. As an
example of the latter approach, [24] performs additional memory
accesses to record the results of the application’s memory opera-
tions. These additional accesses, in turn, may alter the execution
flow of the original test programs (i.e., they are intrusive). More-
over, when memory access traces are checked in a host machine,
the amount of data to be transferred to the host can be extremely
large, affecting the performance of the overall validation process.
In addressing these problems, we strive to minimize intrusive-
ness in gathering insights on each specific test execution flow
and drastically reduce the computational overheads in validating
test outcomes, thus greatly boosting the number of tests that can
be run in post-silicon validation.

In this paper, we propose a post-silicon memory-ordering val-
idation framework, called MTraceCheck, that efficiently checks
non-deterministic interleavings of memory accesses in multi-core
systems. Figure 1 summarizes the MTraceCheck validation flow
in four steps: constrained-random tests generation, code instru-
mentation, tests execution, and violation checking. Firstly, our
validation flow generates multi-threaded tests to stimulate rare
memory-access interleavings. The generated tests are then aug-
mented with our observability-enhancing code, which computes
a compact signature, corresponding to the observed memory-access
interleaving for a given test execution (Section 3). After tests are
run multiple times in a post-silicon validation platform, we col-
lect and classify all the signatures generated. Signatures are col-
lectively checked by our novel analysis framework, which detects
and exploits similarity among distinct memory-access interleav-
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multi-threaded test
thread 0 thread 1
®: r0 < mem[0] |®: r1 <« mem[1]
@: mem[1] < 1 |®: mem[0] < 1
initial memory values: mem[0]=mem[1]=0
register values after test execution: r0=r1=1

constraint graph

dependency type
—>: enforced by TSO
(determined statically)
—>: observed order
(decided dynamically)

Figure 2: A two-threaded test execution and its constraint
graph. Among various test results, rO=rI=1 is considered invalid
in the TSO model. Correspondingly, its constraint graph identi-
fies a cycle.

ings, thus avoiding repetitive, duplicate checks (Section 4). In

this paper, we make the following contributions:

e We introduce a novel code-instrumentation technique to en-
hance the observability of memory-access interleavings in post-
silicon multi-core validation. Our technique is minimally intru-
sive; it reduces by 93% the memory operations unrelated to
the test execution, compared to a conventional register-flushing
technique.

e We present a collective test executions’ graph checking algo-
rithm that significantly reduces the amount of computation to
validate memory consistency, by 81% on average, compared to
a conventional, individual execution’s graph checking.

e We validate that our solution is minimally intrusive, and capa-
ble of finding subtle bugs through bug-injection case-studies
conducted in a full-system simulator.

e We quantify and validate non-deterministic memory orderings
in two bare-metal systems, an x86-based desktop and an ARM-
based SoC platform, across various constrained-random test
configurations.

2 BACKGROUND AND MOTIVATION

In multi-core systems, cores usually share caches and one or
more main memory blocks, which are connected through on-chip
interconnects. Since data can reside in any of the caches and
memory, access latency may significantly vary among different
data accesses, depending on where the actual data resides. Cache
coherence protocol and memory consistency model, which sup-
port the transfer of data between cores and storage units and are
responsible for enforcing retrieval and update policies, may also
affect the variability of access latency, since they involve com-
plex interactions among caches. Consequently, multi-threaded pro-
grams experience a variety of memory-access interleavings.

In this work, we focus on checking that the memory-access
interleavings observed during tests executions comply with the
memory consistency model (MCM). An MCM provides an in-
terface between hardware designers and software developers, by
specifying what memory re-orderings are acceptable and could
be observed during a software execution [2, 3, 29, 42, 44]. For
instance, with reference to the simple program in Figure 2, there
are 4 different outcomes allowed by a weak MCM (e.g., relaxed
memory order (RMO) [9, 37, 47]): O with either 0 or 1, and r/

with either 0 or 1. Some of these outcomes are forbidden in a

stronger MCM (e.g., total store order (TSO) [25, 42]). As pro-
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gram’s size increases, so does the number of memory accesses
and of re-orderings.

Constraint graph. To validate the correct implementation of
the MCM in post-silicon, or any other simulation-based envi-
ronment, the observed ordering of memory operations must be
recorded on the fly. These access logs are then checked against
the re-ordering rules allowed by the MCM of the multi-core ar-
chitecture. Several works have proposed to use a constraint graph
to validate the observed access sequence (e.g., [4, 13, 14, 16, 24,
32, 33, 35, 36]). The vertices of this graph correspond to each
memory operation (either store or load), while edges mark a de-
pendency between two operations. Figure 2 provides the con-
straint graph for a simple two-threaded program execution un-
der the TSO model. The outcome shown in the figure reveals a
consistency violation because there is a cyclic dependency in the
corresponding constraint graph. Indeed, in TSO, store operations
cannot be speculatively performed before a preceding load op-
eration, thus 0 and r] cannot be both equal to 1 at the end of
the execution. The violation is thus indicative of a microarchi-
tectural optimization that allows multiple outstanding memory
operations, against the model’s requirements.

Constraint graph construction has also been thoroughly stud-
ied in recent years. In this work, we adopt the same notation as in
previous work [4, 32] and model three types of ‘observed’ edges
as follows: reads-from (1f), from-read (fr), and write serialization
(ws). Besides observed edges, we also model intra-thread consis-
tency edges as defined by the MCM. For instance, in TSO, the
only reordering allowed is that loads can be completed before
the preceding store operation.

Note that checking for cyclic dependencies in a constraint graph
is usually a computation-heavy task. There are two conventional
approaches: topological sorting and depth-first search (DFS). For

both methods, the computational complexity is known to be © (V +E )

where V and E are the set of vertices and edges, respectively [17].
In post-silicon validation, where many test results are generated
at the system’s native speed, checking these graphs can be the key
bottleneck of the entire memory validation process, as we show
in Section 6.2.

To capture memory-access interleavings at runtime, test pro-
grams must be instrumented as in prior works [24, 35]. Specif-
ically, every store operation is assigned a unique ID, which is
the value actually written into memory, so that the operation can
be easily identified by subsequent loads. In addition, memory-
access interleavings are captured by inspecting the values read
by load operations. Thus, we can establish the uniqueness of
a test execution based on its reads-from relationships; two exe-
cutions have experienced distinct memory access interleavings
when they exhibit at least one different reads-from relationship.

Testing framework. In this work, we adopt a constrained-
random testing framework as follows: we first generate a num-
ber of test programs that are designed to likely exhibit numerous
distinct memory-access interleavings. Each test program is run
repeatedly until rare interleavings are observed. There are a num-
ber of prior studies focusing on test generation (Section 9); in
contrast, we focus mainly on the subsequent verification steps.
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thread 0 (4 ops) thread 1 (3 ops) thread 2 (3 ops)
@ store to 0x100  ® store to 0x104 store to 0x104
@ load from 0x100 ® store to 0x100 ® store to 0x100
® load from 0x104 @ load from 0x100 @ store to 0x104
@ store to 0x100 (©: initial shared memory value)
I L step 1: static code analysis
valid values for @: {©,8,0}, 3: {©,0,0,0}, @: {0,®,6,0}
@ step 2: weighting each valid value
thread 0 (2 loads) thread 1 (1 load)
@:{®-0, ®—1, @2} @:{®-0, ®=1, ®—2, ©—-3}
®:{0—-0, ®—-3, ®—6, ©—9} (underlined: observed at runtime)
@ step 3: accumulating weights at runtime
‘ signature: 2+6=8 (thread 0), 1 (thread 1), O (thread 2) ‘

original test

Figure 3: Memory-access interleaving signature. Each signa-
ture value corresponds to a unique memory-access interleaving,
observed during the test run. For each load, we profile all possi-
ble values, and each is assigned an integer weight. At runtime,
the weights of the observed values are accumulated, forming a
per-thread signature. Per-thread signatures are then gathered to
form an execution signature.

Specifically, we strive to (1) improve the observability of the
memory-access interleavings occurring during test execution while
minimally perturbing the original access sequences. We also want
to (2) reduce the computation requirements for violation check-
ing, so to boost the coverage and efficiency that can be attained
in validating the MCMs in post-silicon [27].

3 CODE INSTRUMENTATION

This section discusses our code instrumentation approach that
records the memory-access interleavings observed during a test’s
execution in post-silicon validation. Our solution is inspired by
the control-flow profiling methodology proposed in [11]. How-
ever, instead of profiling control-flow paths, we repurpose the
profiling framework to log memory-access interleavings in a com-
pact signature format, that will then be categorized and checked
during the subsequent checking step, discussed in Section 4.

3.1 Memory-access interleaving signature

To track memory-access interleavings, we need to log the val-
ues that are being loaded throughout the test execution. This task
can be carried out by simply flushing the values loaded into the
register file to a dedicated memory area, as illustrated in [24].
Lacking a dedicated storage resource and transfer channel, this
task is bound to interfere with the execution flow of a test, pos-
sibly altering the latency and interleavings experienced by the
test’s accesses. Moreover, it burdens overall execution time with
additional memory store operations.

Thus, to reduce the impact of data logging, we introduce the
new concept of memory-access interleaving signature: MTrace-
Check bypasses the frequent storing of loaded values by comput-
ing a compact signature of the loaded values. To this end, we
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thread 0

init: sig=0

@ store to 0x100

@ load from 0x100
if (value==®) sig+=0
else if (value==®) sig += 1
else if (value==0) sig += 2
else assert error

® load from 0x104
if (value==©) sig+=0
else if (value==0®) sig += 3
else if (value==®) sig += 6
else if (value==®) sig += 9
else assert error

@ store to 0x100
finish: store sig to memory

thread 1

init: sig=10

® store to 0x104

® store to 0x100

© load from 0x100
if (value==®) sig+=0
else if (value==®) sig +=1
else if (value==®) sig += 2
else if (value==®) sig += 3
else assert error
finish: store sig to memory

(thread 2 is not shown here;
it always stores sig=0 to memory,
as it does not have a load operation.)

Figure 4: Code instrumentation. A signature is computed as
the test runs, using chains of branch and arithmetic instructions.
The computed signature is then stored in a non-shared memory
region at the end of the test.

must augment the original test with signature-computation code.
Note that our signature computation resembles the path-encoding
computation in [11].

Figure 3 illustrates our code instrumentation process. In the
first step, we perform a static code analysis to collect all possible
values that could be the result of each load operation, as illus-
trated in the first and second boxes. This static analysis can attain
perfect memory disambiguation if the test generator is config-
ured to do so. This is straightforward to attain with a constrained-
random test generator. In the case of general software test pro-
grams, it is still possible to do this analysis either (1) by exclud-
ing from the signature computation all the memory addresses that
cannot be statically disambiguated, or (2) by dynamic profiling
of the actual accesses using a binary instrumentation tool.

We then assign a weight to each loaded value, as illustrated in
the third box of the figure. The weights are integer values con-
sciously assigned to obtain unique final signature values. Specif-
ically, we use consecutive integers for the first load operation.
Then, if the first load operation could retrieve n distinct values,
we use multiples of n for the weights of the second load oper-
ation, and so on. For instance, load operation @ can only read
the value stored by either (D, © or (9). The weights for these
values are assigned to 0, 1 and 2, respectively. Moving to the
next load operation, 3), we use multiples of 3 for the weight of
each possible loaded value because we had three options in the
prior load operation. If there were another load operation after
@, we would use multiples of 12 for its weight, because there
are already 3 x4 combinations for the previous loads. By allocat-
ing non-aliasing weights (except for 0) to each loaded value and
operation, we can guarantee a unique correspondence between
signatures and set of loaded values, that is, a 1:1 mapping be-
tween signatures and interleavings. In the figure, suppose that
two underlined values ((9) and (8)) are observed in thread 0, then
the signature value for this thread would be 8. Note that weights

Algorithm 1

1. Input: signature, multipliers, store_maps
: Output: reads_from

Signature decoding procedure

[

. for each load L from last to first in test program do
multiplier < multipliers[L)
index < signature | multiplier
signature <— signature % multiplier
reads_from[L] < store_maps[L][index]

end for

return reads_from

e A

are assigned and accumulated independently for each thread. Fi-
nally, we form the execution signature for the test execution by
concatenating the per-thread signatures obtained.

Figure 4 illustrates an example of instrumented code corre-
sponding to the original code shown in Figure 3. The sig vari-
able is initialized at the beginning of the test, and increased after
each load operation. Specifically, each load operation is followed
by a chain of branch statements depending on the loaded value.
While not essential for observability enhancement, we append an
additional assertion at the tail of the chain so that obvious errors
(e.g., a program-order violation) can be caught instantly without
running a constraint-graph checking. This instrumentation does
not perturb the sequence of memory accesses in the test execu-
tion, unless an error is caught by the assertion. With branch pre-
dictors in place, MTraceCheck only slightly increases test execu-
tion time as shown in Section 6.2. Note that this approach may
entail minimal false-negatives due to these added branch opera-
tions, which could alter the original branch-prediction pattern of
the test.

3.2 Per-thread signature size and decoding

In a weak MCM with no memory barrier, the signature size is
proportional to the number of memory-access interleavings that
are allowed by the MCM. Namely, the more diversified the inter-
leavings possible, the larger the signature. This relationship does
not hold for stronger MCMs, such as TSO, as we discuss later in
Section 8.

We estimate the size of the signatures generated under the as-
sumption that all accesses can be disambiguated and used for
signature computation (as it is the case for constrained-random
tests). Let 7' be the number of threads, S and L the number of
stores and loads per thread, respectively, and A the number of
shared memory locations. If assuming that addresses are uniformly
randomly chosen, each load operation could read the same ex-
pected number of distinct values. The value read during a load
is either the last stored value from the same thread (the 1 in the
expression), or any of the stored values ( %) from any of the other
threads (T — 1). Hence, we estimate that each per-thread signa-
ture must be capable of representing

S
signature cardinality = {1+X(T—l)}L

distinct values. Note that the L power is required to extend our
estimation to all the load operations in the thread. The execution
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legend (dependency type)
thread 0 thread 1 —: enforced by MCM
O st A 0 st B —> : reads-from relationship
@(ld B @ 1d Al | > from-read relationship
Vo — -
L
constraint graph topological sort

Figure 5: Topologically-sorted constraint graph. The con-
straint graph on the left can be topologically sorted as shown on
the right, indicating no consistency violation.

signature requires 7 times that space, since each thread gener-
ates a per-thread signature. As an example, with S=L=50, A=32
and 7'=2, a per-thread signature must be capable of representing
{1+39 (2—1) 10 22.7 x 102 ~ 2% sets of loaded values. Thus,
68-bit of storage are required for each thread. In the systems
that we used in our evaluation (Section 5), registers are either
64-bit or 32-bit wide; thus, a 68-bit signature must be split into
multiple words. To support multi-word signatures, we statically
detect overflow when instrumenting the tests with observability-
enhancing code. When an overflow is detected, we add another
register to store the signature for the thread (and another variable
sig2 in Figure 4); we then start over the signature computation in
the new register, resetting the weight multipliers. In Section 6.3,
we provide detailed experimental results on the average signature
size for various constrained-random tests. We further discuss how
to reduce the signature size in Section 8.

Reconstructing memory-access interleavings and constraint
graphs. Algorithm 1 summarizes our decoding process for a per-
thread signature. The goal of the reconstruction process is to
translate a signature into a set of observed reads-from relation-
ships, which will allow us to build a constraint graph for the
corresponding test execution. The algorithm we developed first
splits the execution signature into a set of per-thread signatures.
Then it applies reconstruction to each signature obtained, starting
from the last load operation in the test, and walking backwards
toward the first one. Note that we maintain a special table for
each test under analysis, called the multipliers. The table keeps
track of the weight multiplier used for each load instruction in
the test, and it is generated during test instrumentation. Simul-
taneously, we maintain the index-store mapping table for each
load operation, called the store_maps. Thus, during reconstruc-
tion, our algorithm searches the weight multiplier to use for the
load operation from the multipliers, and the corresponding store
operation using the store_maps (third box in Figure 3). Then the
signature is decreased accordingly to remove the weight compo-
nent of the load just reconstructed.

Note that all other information necessary to build the constraint
graph is gathered statically during the instrumentation process.
That is, the multipliers, the store_maps, the intra-thread depen-
dencies specified by the MCM (e.g., load —load) and the write-
serialization order. We then use this information to generate con-
straint graphs, as discussed in Section 2, one for each distinct test
execution.
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Figure 6: Measuring similarity among constraint graphs us-
ing k-medoids clustering. The number of differing reads-from
relationships decreases as k increases. However, the cluster tight-
ness is reduced with a more diverse pool of possible interleavings
(test 2).

4 COLLECTIVE GRAPH CHECKING

As briefly introduced in Section 2, topological sorting is a classic
solution to check for a memory consistency violation. A topolog-
ical sort of a directed graph is a linear ordering of all its vertices
such that if the graph contains an edge (u,v), then u appears be-
fore v in the ordering [17]. If a constraint graph cannot undergo
topological sorting, that is an indication that a cyclic dependency
is present, hence a violation of the MCM occurred. Note, how-
ever, that if some dependency edges are missing, false negatives
may result from the analysis. Figure 5 shows an example of a con-
straint graph and its topologically sorted correspondent. In this
example, there is no violation and thus a topological sort exists.

In prior works, where topological sorting was applied to con-
straint graphs obtained from post-silicon tests, the graph obtained
from each test execution was analyzed individually. However, as
we illustrate in Section 6.1, we observed that many test runs ex-
hibit similar memory-access interleaving patterns. Thus, we pro-
pose to leverage the similarity among test runs to reduce the com-
putation required to validate each execution. Below, we present
a collective constraint-graph checking solution: we first investi-
gate similarities among constraint graphs (Section 4.1), and then
present our novel re-sorting technique that can quickly validate a
collection of constraint graphs (Section 4.2). In the following dis-
cussion, we assume that all duplicate identical executions have
been removed beforehand. In our implementation, duplicate exe-
cutions are filtered out when execution signatures are sorted (Sec-
tion 4.1).

4.1 Similarity among constraint graphs

Constraint graphs generated from a same test program have all
the same vertices but possibly different edges. Thus, we identify
the difference between two constraint graphs by tagging these dif-
fering edges. After we isolate the portion of a graph that differs
from a previously-analyzed graph, we can isolate the discrepant
portion for the sake of topological sorting. Thus, the graph-checking
computation can be greatly reduced by incrementally verifying,
that is, sorting only this portion.

Limit study — k-medoids clustering. While this incremental
verification is promising, finding the graph most similar to the
one under analysis is non-trivial and often computation-heavy. To
gain insights on this aspect, we performed a preliminary study to
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Figure 7: Re-sorting a topologically-sorted graph for a series of test runs. To check for a consistency violation, the topological sort
from the previous run is partially re-sorted for the next run. The sorting boundaries (leading and trailing) are calculated from backward
edges. When no topological sort exists in the segment between the boundaries, it indicates a violation.

identify a handful of graphs representative of the entire set of con-
straint graphs generated from many executions of a test. Specifi-
cally, we conducted a k-medoids clustering analysis [26] for con-
straint graphs from each of two test programs, measuring the to-
tal number of different reads-from relationships from the closest
medoid graph. The selected k medoid graphs are considered rep-
resentative of the entire set. Here, reads-from relationships are
obtained from an in-house architectural simulator, which selects
memory operations to execute in a uniformly random fashion,
one at a time, and without violating sequential consistency (SC)
[29]. For simplicity, we assumed single-copy store atomicity [10]
for this limit study.

Figure 6 shows the number of total differing reads-from rela-
tionships for varying k values. In test 1, where we obtained 172
unique executions out of 1,000, the reads-from relationships de-
crease rapidly as k increases. However, in test 2, where every ex-
ecution is unique, many discrepant reads-from relationships per-
sist into high & values, indicating that the representative medoids
are vastly different from the individuals. Moreover, the compu-
tational complexity of finding the optimal solution of k-medoids
clustering is very high [26]. Thus, using this approach is compu-
tationally prohibitive, and it negates the performance benefits of
a fast topological sorting.

Our solution - sorting signatures and diffing correspond-
ing graphs. Instead of finding the graph most similar to the one
under analysis, MTraceCheck opts for using a lightweight com-
putation that finds a graph sufficiently similar to it. For this pur-
pose, we re-use our memory-access interleaving signatures, intro-
duced in Section 3. Once we collect all signatures from multiple
executions of a test, we sort the execution signatures in ascending
order. Since adjacent signatures in the order correspond to graphs
with small differences between each other, we can use the graph
analyzed for one signature as the basis against which to analyze
the next one.

As noted in Section 3.1, execution signatures are generated by
concatenating per-thread signature words from all test threads.

Specifically, we place the signature word from the first thread in
the most significant position, and the one from the last thread
in the least significant position. If per-thread signatures require
multiple words, we place the first signature word in the most sig-
nificant position, and the last in the least significant position. To
evaluate the impact of this data layout, we also performed a sen-
sitivity study, placing signature words from related code sections
in different threads near each other. This alternative layout, how-
ever, led to worse similarity between constraint graphs from ad-
jacent signatures.

4.2 Topological order re-sorting

With the signatures sorted in ascending order, MTraceCheck ex-
amines each of the corresponding constraint graphs for consis-
tency violations. Our checking starts with the first constraint graph
in the sorted order. This first-time checking is performed as a
complete, conventional graph checking, topologically sorting all
vertices. Starting from the second graph, our checking algorithm
strives to perform a partial re-sorting only for the portion that
differs from the prior graph.

The re-sorting region is determined by two boundaries: lead-
ing boundary and trailing boundary. Only the vertices between
the two boundaries need to be re-sorted. The leading (trailing)
boundary is the first (last) vertex in the original sorting that is
adjacent to a new backward edge from the graph under consid-
eration. Note that neither forward nor removed edges need be
considered here, since they only release prior sorting constraints.
If there is no new backward edge, re-sorting is unnecessary and
is thus skipped. Our re-sorting method is as precise as the con-
ventional topological sorting; we omit the formal proof here due
to limited space.

Figure 7 illustrates our re-sorting procedure on four constraint
graphs obtained from a two-threaded program. The first run’s
topological sort is computed using a conventional complete graph
checking. For the second graph, MTraceCheck examines each of
the newly added edges in the graph, (D—@ and @—(3). Only



MTraceCheck

System 1. x86-64 — Intel Core 2 Quad Q6600
MCM x86-TSO [25, 42]
operating frequency 2.4 GHz
number of cores 4 (no hyper-threading support)
cache architecture 32+32 kB (L1), 8 MB (L2)
cache configuration write back (both L1 and L.2)

System 2. ARMv7 — Samsung Exynos 5422 (big.LITTLE)
MCM weakly-ordered memory model [7, 9]
operating frequency 800 MHz (scaled down)
number of cores 4 (Cortex-A7) + 4 (Cortex-Al5)
A7:32+32kB (L1), 512 kB (L2)
A15: 32432 kB (L1), 2 MB (L2)
write back (L1), write through (L2)
Table 1: Specifications of the systems under validation

cache architecture

cache configuration

the former is backward, as shown by the backward arrow below
the topological sort of the first run. Thus, @ is the leading bound-
ary and (D) is the trailing one. The order of the two nodes is then
simply swapped to achieve a new topological sorting, as shown
in the second run’s diagram. Similarly, in the third run, four ver-
tices must be re-sorted. The fourth run exposes a bug: indeed
there is no topological sort for the four affected vertices due to
the backward edge @—(@). The absence of topological sort is
also illustrated by the cycle highlighted in the bottom right part
of the figure.

5 EXPERIMENTAL SETUP

Systems under validation. MTraceCheck was evaluated in two
different systems, an x86-based system and an ARM-based sys-
tem, as summarized in Table 1. For each system, we built a bare-
metal operating environment (i.e., no operating system) special-
ized for our validation tests. In our x86 bare-metal environment,
the boot-strap processor awakens the secondary cores using inter-
processor interrupt (IPI) messages, followed by cache and MMU
initializations. Test threads are first allocated in the secondary
cores, and then in the boot-strap core, but only when no sec-
ondary core is available. In our ARM bare-metal environment,
the primary core in the Cortex-A7 cluster runs the Das U-Boot
boot loader [18], which in turn, calls our test programs. At the
beginning of each test, the primary core powers up the secondary
cores. The secondary cores are then switched to supervisor mode
and their caches and MMUs are initialized. Note that the pri-
mary core remains in hypervisor mode to keep running the boot
loader.! Test threads are allocated in the big cores in the Cortex
A15 cluster, then in the little cores in the Cortex A7 cluster.

Test generation. Table 2 shows key parameters used when
generating constrained-random test programs. We chose 21 rep-
resentative test configurations by combining these parameters, as
shown on the x-axis of Figure 8. The naming convention for the
21 configurations is as follows: [ISA]-[test threads]-[memory
operations per thread]-[distinct shared addresses].
For example, ARM-2-50-32 indicates a test for the ARM ISA

'We could not launch a test thread in the primary core, because of the discrepancy of
the operating mode, causing unexpected hangs.
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number of test threads 2,4,7
number of static memory operations per thread | 50, 100, 200
number of distinct shared memory addresses 32, 64, 128

Table 2: Test generation parameters

with 2 threads, each issuing 50 memory operations using 32 dis-
tinct shared memory addresses. For each test configuration, we
generated 10 distinct tests, and ran each 5 times. The tests per-
form load and store instructions with equal probability (i.e., load
50% and store 50%), transferring 4 bytes for each operation.

Each test run executes a loop that encloses the generated mem-
ory operations so as to observe various memory-access interleav-
ing patterns. Unless otherwise noted, the iteration count for this
loop is set to 65,536. In addition, the beginning of the loop in-
cludes a synchronization routine waiting until the previous iter-
ation is completed, followed by a shared-memory initialization
and a memory barrier instruction (mfence for x86 and dmb for
ARM). The synchronization routine is implemented with a con-
ventional sense-reversal centralized barrier. To remove dependen-
cies across test runs, we applied a hard reset before starting each
test run.

6 EXPERIMENTAL RESULTS

6.1 Non-determinism in memory ordering

The dark-blue bars in Figure 8 present the number of unique
memory-access interleaving patterns across various test config-
urations, measured by counting unique signatures. Each multi-
threaded test program runs 65,536 times in a loop, except for
ARM-2-200-32* where each test program runs 1 million itera-
tions. We then average our findings over 5 repetitions of the same
experiment. To summarize the figure, we observe almost no du-
plicates in several configurations on the left linear-scale graph,
while we observe very few distinct interleavings in several test
configurations on the right logarithmic-scale graph. For instance,
ARM-7-200-64 presents 65,536 unique memory-access interleav-
ing patterns (100%), while ARM-2-50-32 only reveals 11 unique
patterns on average (0.02%).

Among the three parameters of Table 2, the number of threads
affects non-determinism the most. We measured about 7 distinct
patterns in ARM-2-50-64, 22,124 patterns in ARM-4-50-64, and
65,374 patterns in ARM-7-50-64. Note that the total number of
memory operations is different in these three configurations. To
keep the total number of operations constant, we compared con-
figurations with the same total number of operations (ARM-2-100
-64 versus ARM-4-50-64), observing again a significant increase
(123 versus 22,124).

We also noted that the number of memory operations per thread
affects non-determinism, but less significantly than the number of
threads does. We observed 11 patterns in ARM-2-50-32, 508 pat-
terns in ARM-2-100-32, and 35,679 patterns in ARM-2-200-32.
We also found that increasing the number of shared memory lo-
cations leads to fewer accesses to a same location, thus reducing
the number of unique interleaving patterns. ARM-2-200-64 ex-
hibits only 9,638 patterns, much fewer than the 35,679 patterns
of ARM-2-200-32.
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Figure 8: Number of unique memory-access interleavings. Unique memory-access interleavings diversify as more threads share the
same memory space. Short two-threaded tests only exhibit a handful of distinct interleavings, while long seven-threaded tests generate
new unique interleavings in almost all iterations. False sharing increases contentions, thus further diversifying interleavings. The OS
contributes to creating additional unique interleavings in two-threaded tests, while the opposite trend holds in four-threaded and seven-

threaded tests.

In most seven-threaded configurations, we found that almost
all iterations exhibit very different memory-access patterns. This
is partly because of the relatively low iteration count, which is
set to 65,536. To evaluate the impact of iteration count, we per-
formed a limited sensitivity study for ARM-2-200-32, where we
compared the results from two iteration counts: 35,679 unique
interleavings out of 65,536 (54%) versus 311,512 unique inter-
leavings out of 1,048,576 (30%). We expect a similar trend in the
seven-threaded configurations, that is, that the fraction of unique
interleavings decreases as the iteration count increases.

In the x86-based system, we observe that interleaving diver-
sity is limited compared to the ARM-based system, because the
MCM of the x86-based system is stricter. We believe that the
MCM is the major contributor for this difference, among other
factors, such as load store queue (LSQ) size, cache organization,
interconnect, etc. For comparison fairness, we used the same set
of generated tests (i.e., same memory-access patterns) for both
systems.

Impact of false sharing of cache line. In cache-coherent sys-
tems like the ones we evaluated here (Table 1), the MCM is in-
tertwined with the underlying cache-coherence protocol. Data is
shared among cores at a cache-line granularity, so placing mul-
tiple shared words in a same cache line creates additional con-
tention among threads, further diversifying memory-access inter-
leaving patterns. For the dark-blue bars in Figure 8, only one
shared word (4 bytes) is placed in each cache line (64 bytes),
thus no false sharing exists.

The orange and green bars in Figure 8 present the numbers
of unique memory-access interleaving patterns for two different
data layouts; 4 and 16 shared words per cache line, respectively.
As expected, false sharing contributes to diversifying memory-
access interleaving patterns. x86-4-50-64 shows the most dra-
matic increase among others: from 3,964 (no false sharing) to
46,266 (4 shared words) to 60,868 (16 shared words) unique pat-
terns. The increase is more marked for the x86-based system than
for the ARM-based system.

Impact of the Operating System. Our bare-metal operating
environment allows only the test program to run when testing
is in progress; there is no interference with other applications.
However, when our test programs are running under the control
of an operating system, some test threads can be preempted by
the OS scheduler. In addition, the layout of shared memory may
be shuffled by the OS.

To quantify the perturbation of an OS, we re-targeted the same
set of tests to a Linux environment: Ubuntu MATE 16.04 for the
ARM-based system and Ubuntu 10.04 LTS for the x86-based sys-
tem. Test threads are launched via the mSthreads library [12],
although, after launch, synchronizations among test threads are
carried out by our own synchronization primitives as in the bare-
metal environment.

The light-blue bars in Figure 8 report our findings for the
Linux environment with no false sharing. There are two notice-
able trends. Firstly, in two-threaded tests, the number of unique
interleavings increases compared to the bare-metal counterparts.
In both four-threaded and seven-threaded tests, on the contrary,
the opposite tendency holds. We believe that fine-grained (i.e.,
instruction-level) interferences dominate in two-threaded tests,
while coarse-grained (i.e., thread-level) interferences dominate
in more deeply multi-threaded setups, such as four-threaded and
seven-threaded tests.

6.2 Validation performance

We measured two major component costs of validation time. We
first evaluated the time spent checking for MCM violations on a
powerful host machine equipped with an Intel Core i7 860 2.8
GHz and 8 GB of main memory, running Ubuntu 16.04 LTS. We
also report the time spent executing tests in our ARM bare-metal
system. We carried out the violation checking on a host machine,
instead of the system under validation, because of the heavy com-
putation involved.

Figure 9 compares the topological-sorting time for our collec-
tive graph checking solution, normalized against a conventional
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Figure 9: MCM violation checking — topological sorting
speedup. MTraceCheck reduces overall topological sorting time
by 81% on average, compared to a conventional individual-graph
checking.

approach that checks each constraint graph individually. We ob-
serve that our collective checking greatly reduces overall com-
putation, consistently across all test configurations. Compared to
the conventional solution, MTraceCheck takes only 9.4% (ARM-2
-200-64) to 44.9% (x86-4-200-64) of the time spent by the con-
ventional topological sorting, achieving an 81% reduction on av-
erage. We also observe a noticeable difference between the ARM
and x86 platforms: the benefit of our technique is smaller in the
x86 platform. We provide insights on this difference in Section 8.

In this evaluation, for reproducibility, we adopted a well-known
topological-sort program, tsort, included with GNU core utili-
ties [23]. We then modified the original tsort to support multiple
constraint graphs generated from the same test. Specifically, for
both the conventional and MTraceCheck techniques, vertex data
structures are recycled for all constraint graphs, while edge data
structures are not. The measured time excludes the time spent in
reading input files, thus assuming that all graphs are loaded in
memory beforehand. We ran tsort 5 times for each evaluation
to alleviate random interferences due to the Linux environment.
Due to extremely slow communication between our bare-metal
systems and the host machine, we used the signatures obtained
in the Linux environment (the light-blue bars in Figure 8). For
fairness, we considered only unique constraint graphs for both
the conventional and our techniques.

Figure 10 summarizes the test execution time, measured us-
ing performance monitors [9]. We measured three components
of MTraceCheck’s execution: (1) the execution time of the orig-
inal test, (2) the execution time of our observability-enhancing
code (signature computation), and (3) the time spent in sorting
signatures (signature sorting).>

The original test takes 0.09—1.1 seconds to run 65,536 itera-
tions. Our signature computation minimally increases the execu-
tion time: from as low as 1.5% (ARM-2-50-64) to up to 97.8% in
an exceptional worst case (ARM-2-200-32). The lowest increase
can be explained by noting that the test generated only about 7
unique interleaving patterns, thus the branch predictor can almost
2We implemented the signature-sorting program by using a balanced binary tree, written

in C. We ran this program on the primary core in the Cortex-A7 cluster, after test
executions completed.
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Figure 10: Test execution — MTraceCheck execution over-
head. Our signature computation / sorting requires 22% / 38%
of the original execution time on average, respectively.

perfectly predict branch directions for our instrumented code. On
the contrary, ARM-2-200-32 exhibits a wide variety of distinct in-
terleaving patterns, thus the performance penalty of the branch
mis-predictions becomes noticeable. Our signature sorting algo-
rithm also contributes to increasing the execution time, ranging
from 3.9% (ARM-2-50-64) to 93.5% (ARM-2-200-32). While not
shown in the graph, we observed a 140% signature-sorting over-
head in the 1 million-iteration version of ARM-2-200- 32. Note
that the signature computation and sorting overheads can be high
when there are a small number of threads in the test, because the
execution of the original test entails only a minimal amount of
cache coherence messages.

6.3 Intrusiveness

To quantify the intrusiveness of MTraceCheck, we measured the
amount of memory accesses unrelated to the original test exe-
cution, as shown in Figure 11. Compared to previous work [24],
where all loaded values were stored back to memory, our signature-
based technique requires only 7% additional memory accesses on
average, ranging from 3.9% (ARM-2-100-64) to 11.5% (ARM-7
-200-64). The variation can be explained by noting that test con-
figurations providing higher data contention, i.e., tests with more
threads, more memory operations, and fewer shared locations,
lead to a bigger per-thread signature footprint and in turn, to more
data transferred due to signature collection.

Inside each bar of the figure, we report the average size of an
execution signature. In low-contention configurations, the signa-
ture size is bounded by the register bit width. For instance, we
need 16 bytes in x86-2-50-32. Note that in this configuration,
the per-thread signature size merely exceeds 32 bits per thread,
which leads to an average execution signature size of 8.4 bytes
in ARM-2-50-32. However, the instrumented code uses the en-
tire 64 bits of a register, even when fewer are needed. In high-
contention configurations, the gap between 32-bit and 64-bit reg-
isters becomes narrow, as the per-thread signature requires mul-
tiple words. An extreme case is illustrated by ARM-7-200-64,
where the signature size is 324 bytes on average (46 bytes per
thread).
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Figure 11: Intrusiveness of verification. Memory accesses un-
related to test execution are minimal compared to a register-
flushing approach, only 7% on average.

A drawback of our solution is its increased code size. Fig-
ure 12 quantifies this aspect across various test configurations.
We measured only the size of test routines, excluding initializa-
tion and signature sorting sections. The ratio of the size of the in-
strumented test to the original test ranges from 1.95 (ARM-2-50-64)
to 8.16 (ARM-7-200-64). While this increase is conspicuous, the
code size is still small enough to fit in the system’s L1 instruction
caches for all test configurations. For example, in ARM-7-200-64,
the instrumented code is 189 kB; when divided by the number of
threads, each core’s code becomes 27 kB, fitting well in the 32
kB L1 instruction cache. Thus, the increased code size merely
impacts locality aspects in instruction caches. A similar obser-
vation is drawn from Figure 10, where signature computation
marginally increases the execution time.

7 BUG-INJECTION CASE-STUDIES

We performed bug-injection experiments using the gem5 simu-
lator [12]. Three real bugs, which have been recently reported
in previous work [19, 28, 32], were chosen for injection. We
confirm that these bugs had been fixed in the recent version of
gem5 (tag stable_2015_09_03). To recreate each of the bugs,
we searched the relevant revision from the gemS5 repository [22]
and reverted the change.

We configured gem5 for eight out-of-order x86 cores with a
4x2 mesh network and a MESI cache coherence protocol with
directories located on the four mesh corners. For bugs 1 and 3,
we purposefully calibrated the size and the associativity of the L1
data cache (1 kB with 2-way associativity) so as to intensify the
effect of cache evictions under our small working set, while the
rest of the configuration is modeled after a recent version of the
Intel Core i7 processor. We compiled our tests with the m5threads
library to run simulations under gem5’s syscall emulation mode.

7.1 Bug descriptions

Bug 1 - load—load violation 1 (protocol issue): Bug 1 (fixed
in June 2015) is modeled after “MESI,LQ+SM,Inv” described in
[19]. This bug is a variant of the Peekaboo problem [44], where a
load operation appears to be performed earlier than its preceding
load operation. It is triggered when a cache receives an invalida-
tion for a cache line that is currently transitioning from shared
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Figure 12: Code size comparison. Instrumented code is 3.7
times larger than its original counterpart, on average. However,
all instrumented tests are still small enough to fit in the L1 caches.

state to modified state. When the cache receives the invalidation
message, subsequent load operations to this cache line must be
re-tried after handling the received invalidation. However, this
bug prevents the cache from squashing the subsequent load oper-
ations, causing a load—load violation.

Bug 2 - load—load violation 2 (LSQ issue): Bug 2 (fixed
in March 2014) is reported by two independent works: [32] and
[19]. This bug is similar to bug 1 in its manifestation, but caused
by an LSQ that does not invalidate subsequent loads upon the
reception of an invalidation message.

Bug 3 - race in cache coherence protocol: Bug 3 (fixed in
January 2011) is modeled after the “MESI bug 1” detailed in [28],
which is also evaluated in [19]. This bug is triggered by a race
between an L1 writeback message (PUTX) and a write-request
message (GETX) from another L1.

7.2 Bug-detection results

For each bug, we deliberately chose the test configuration in Ta-
ble 3 after analyzing the bug descriptions,® and generated 101
random tests. The iteration count was greatly reduced to 1,024
from 65,536 in Section 6, because of the much slower speed of
gem5 simulations, compared to native executions.

We report our bug-detection results on the third column of Ta-
ble 3. Overall, MTraceCheck successfully found all injected bugs.
Note that bug 1 was detected by only one test (out of 101): in this
test, we found that 29 signatures (out of 1,024 unique signatures)
exhibited invalid memory-access interleavings. Bug 2 was easier
to expose than bug 1; ten tests revealed 1 invalid signature each,
with one test revealing 2. The impact of bug 3 is much more dra-
matic, crashing all gemS5 simulations with internal error messages
(e.g., protocol deadlock and invalid transition).

bug test configuration bug detection results
1 x86-4-50-8 (4 words/line) 1 test, 29 signatures
2 |x86-7-200-32 (16 words/line) | 11 tests, 12 signatures
3 | x86-7-200-64 (4 words/line) all tests (crash)

Table 3: Bug detection results

3We were able to find bugs 2 and 3 without much effort in selecting test configurations.
For bug 1, we also tried the same seven-threaded random tests, as well as a few hand-
crafted tests, to no avail. With advanced test-generation techniques (Section 9), the bug
detection rate can be greatly improved.
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(20 ops omitted) 1 d 0OxO0 Id 0x3 Id Ox6
Id 0x2 st 0x3 st 0x6 st 0x2
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Figure 13: Detected load—1load ordering violation. Loads 2
and (3) show an invalid re-ordering due to bug 1.

Figure 13 provides a snippet of the test exposing bug 1. The
first 20 memory operations of thread 0 are omitted for simplic-
ity. The starred instruction % is the first store to memory address
0x1. Both threads 1 and 2 perform a store operation to @x1, while
thread 3 executes three consecutive load operations from 0x1.
Among these three loads, the first and the third read the initial
value of the memory location, while the second reads the value
from . From the second and third loaded values, we identify
a cyclic dependency illustrated with red arrows in the figure: %
happens before () (reads-from), which should happen before (3)
(load—load ordering), which in turn happens before % (from-
read).

8 INSIGHTS AND DISCUSSIONS

We attribute the speedup of our collective graph checking (Fig-
ure 9) to two factors. Firstly, we notice that many constraint
graphs can be validated immediately without modifying the pre-
vious topological sort. This situation is highlighted in the left-
most bar (ARM) of Figure 14, where all constraint graphs beside
the first do not require any re-sorting. tsort unwittingly places
store operations prior to load operations since stores do not de-
pend on any load operations in absence of memory barriers, as
it is the case for our generated tests. Note that tsort is MCM-
agnostic, so it still needs to check every new backward edge.
Secondly, for x86 tests, we also observe that a majority of con-
straint graphs are incrementally checked. The blue bars in Fig-
ure 14 show the percentage of such graphs, ranging from 82%

(x86-2-50-32) to almost 100% (x86-4-200-64). For these graphs,

we measure the average percentage of vertices affected by re-
sorting in the line plotted in the figure: this percentage ranges
from 21% (x86-4-50-64) to 78% (x86-4-200-64). It is the high
incidence of re-sorting that negatively affected the violation check-
ing performance boost shown in Figure 9.

Pruning invalid memory-access interleavings. Our code in-
strumentation (Section 3) makes a conservative assumption to
support a wide range of MCMs in a single framework; each mem-
ory operation can be independently reordered, regardless of its
preceding operations. This conservative assumption comes at the
cost of increased signature and code sizes (Figures 11 and 12). To
address these two drawbacks, we can leverage microarchitectural

information when instrumenting observability-enhancing code (static

pruning). For instance, the number of outstanding load and store
operations are often bounded by the number of LSQ entries, efc.
Using this additional information, we can reduce the number of
options for loaded values (as in [43]), thus decreasing the sizes
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Figure 14: Breakdown of our collective graph checking. For
ARM tests, most of graphs do not require any re-sorting. For x86
tests, up to 16% of the graphs can bypass re-sorting. Among the
others, up to 78% of the vertices are affected.

of instrumented code and signatures. In our real-system evalua-
tions, however, we could not gather sufficient microarchitectural
details to employ this optimization.

Moreover, in a strong MCM (e.g., TSO), we can also apply a
runtime technique to reduce signature size (dynamic pruning). At
runtime, each thread would track the set of the recent store oper-
ations performed by other threads, computing a frontier of mem-
ory operations. Any value loaded from a store operation behind
this frontier would be considered invalid. However, with this dy-
namic pruning, signature decoding becomes complicated as the
length of signatures varies. Also, instrumented code size further
increases due to frontier computation.

Scalability. As discussed in Section 3.2, the size of a per-
thread signature increases quickly as the numbers of threads and
memory operations increase. Although we demonstrated MTrace-
Check with test-cases that are much larger than typical litmus
tests, even larger test-cases can be obtained by merging multi-
ple independent code segments, where memory addresses are as-
signed in a way that leads only to false sharing across the seg-
ments.

Store atomicity. Our proposed solution (Sections 3 and 4)

makes no assumption on store atomicity (single-copy atomic, multiple-

copy atomic, or non-multiple-copy atomic). However, our evalua-
tion (Sections 5 through 7) does not include a single-copy atomic
system.* We expect that constraint graphs for such systems would
need additional dependency edges [10, 33]. We also expect that
our collective checking would still perform better than conven-
tional checking, but the advantage would decrease due to larger
re-sorting windows.

9 RELATED WORK

Dynamic validation of memory consistency. With the growing
popularity of multi-core systems, validating memory consistency
has gained research interest in both academia and industry. One
class of research work takes a dynamic validation approach, striv-
ing to check the memory re-ordering observed while running

“While developing MTraceCheck, we encountered false positives by wrongly assuming
single-copy atomicity on the x86-based system. These false positives have been resolved
by ignoring intra-thread store-load dependency edges [10].
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either a constrained-random test or a real application. TSOtool
[24] is one of the early efforts to validate SPARC TSO [47] us-
ing a constraint graph approach. MTraceCheck improves on this
work by reducing the computation requirements of constraint-
graph checking and by minimizing memory-access perturbation.
DVMC [38] proposes to augment the memory subsystem to ver-
ify memory re-orderings at runtime. Chen et al. [14] take a simi-
lar approach, where each memory operation is piggybacked with
a unique ID. Compared to these two works, MTraceCheck is a
purely software-based approach that does not require any hard-
ware support. Also, we strive to find bugs in the post-silicon
validation stage, while those two works are specialized for run-
time validation, after deployment. LCHECK [16] provides a fast
validation framework for systems with store atomicity [10]. The
relaxed scoreboard solution by [43] tracks a tight set of valid
loaded values for pre-silicon validation. DACOTA [35] proposes
a hardware-software hybrid solution for post-silicon MCM vali-
dation.

Formally verifying MCMs. Another class of research work
takes a formal verification approach, where the memory consis-
tency is modeled as a mathematical, abstract object. The abstract
model captures the dependencies among instructions and micro-
architectural components. The model is then verified by check-
ing whether it satisfies desired properties in the MCM. Alglave
[4] verifies several weak MCMs using the Coq theorem prover
[45]. PipeCheck [32] improves the verification accuracy by lever-
aging additional micro-architectural information, proposing pthb
graphs, which can be also used to verify the interface between
cache coherence and memory consistency [36]. Note that these
proposals use relatively small litmus tests, because the theorem
prover must enumerate every possible memory-access interleav-
ing for the given tests. With increasing test sizes, however, theo-
rem proving scales poorly, limiting its application to post-silicon
tests. Fractal consistency [48] proposes to design MCMs in a scal-
able manner, addressing the scalability challenge of verification.
ArMOR [33] aims to accurately specify MCMs for a dynamic
binary translation between heterogeneous ISAs.

Test generation for memory consistency validation. Vari-
ous litmus tests (e.g., [5—7, 34]) have been developed and are
widely used in memory consistency validation. When validat-
ing full systems, however, these litmus tests are often insuffi-
cient, as illustrated in [19]. Constrained-random test generators
(e.g., [24, 40, 41]) strive to validate corner cases uncovered by
the litmus tests. McVerSi [19] presents a test-generation frame-
work using genetic programming, improving the test coverage
over a random generation. In our evaluation, we only used a
constrained-random generator; however, advanced test genera-
tion can be paired with our code instrumentation and checking
techniques. Program regularization [15] proposes to augment test
programs with additional inter-thread synchronizations to sim-
plify the frontier computation (as discussed in Section 8).

Post-silicon microprocessor validation aims at finding vari-
ous hard-to-find errors in silicon chips. Constrained-random tests
are heavily used in this validation stage [1, 24], often paired with
self-checking solutions [20, 21, 31, 46]. These solutions strive
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to overcome the observability challenge in post-silicon valida-
tion [27, 39], by checking test results directly on chip, without
transferring results to a host machine. However, the solutions pro-
posed so far rely on deterministic behaviors of program execu-
tions. Moreover, many of these solutions restrict test generation
to a great extent. For example, Reversi [46] relies on reversible
instructions (e.g., a pair of add and sub). As we reported in Sec-
tion 6.1, memory-access interleavings are fundamentally diverse,
and thus these self-checking solutions become ineffective. Our
proposal strives to efficiently validate non-deterministic, diverse
behaviors.

10 CONCLUSIONS

Verifying non-deterministic behaviors is an important and de-
manding task in post-silicon microprocessor validation. Our pro-
posal, MTraceCheck, strives to efficiently validate a wide range
of non-deterministic behaviors in memory-access interleavings
observed in multi-core systems. We tackle two major obstacles
in accomplishing this goal in post-silicon validation: limited ob-
servability and heavy result-checking computation. To alleviate
the first obstacle, we present a signature computation method that
encapsulates observed memory-access interleavings in a compact
signature. This observability enhancement minimally perturbs the
memory accesses of the original test, thus it is capable of ex-
posing subtle hardware bugs. To mitigate the second obstacle,
our collective graph checking algorithm reduces computation re-
quirements by leveraging the structural similarities among con-
straint graphs. We have applied MTraceCheck to two silicon sys-
tems with various test configurations, consistently achieving a
remarkable speedup in validating non-deterministic behaviors.
Acknowledgement. We would like to thank Prof. Todd Austin,

Biruk Mammo and Cao Gao for their advice and counseling through-

out the development of this project. The work was supported in
part by C-FAR, one of six centers of STARnet, a Semiconduc-
tor Research Corporation program sponsored by MARCO and
DARPA. Doowon Lee was also supported by a Rackham Predoc-
toral Fellowship at the University of Michigan.

REFERENCES

[1] Allon Adir, Maxim Golubev, Shimon Landa, Amir Nahir, Gil Shurek, Vitali
Sokhin, and Avi Ziv. 2011. Threadmill: A Post-Silicon Exerciser for Multi-
Threaded Processors. In Proceedings of the 48th Design Automation Conference.
860-865. https://doi.org/10.1145/2024724.2024916

Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared Memory Consistency
Models: A Tutorial. Computer 29, 12 (1996), 66-76. https://doi.org/10.1109/2.
546611

Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering—A New Definition. In Pro-
ceedings of the 17th Annual International Symposium on Computer Architecture.
2-14. https://doi.org/10.1145/325164.325100

Jade Alglave. 2012. A Formal Hierarchy of Weak Memory Models. Formal
Methods in System Design 41, 2 (2012), 178-210. https://doi.org/10.1007/
$10703-012-0161-5

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010. Fences
in Weak Memory Models. In Computer Aided Verification: 22nd International
Conference, CAV 2010. 258-272. https://doi.org/10.1007/978-3-642-14295-6_25
Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2011. Litmus:
Running Tests Against Hardware. In Tools and Algorithms for the Construction
and Analysis of Systems: 17th International Conference, TACAS 2011. 41-44.
https://doi.org/10.1007/978-3-642-19835-9_5

[2

3

[4

(5

[6


https://doi.org/10.1145/2024724.2024916
https://doi.org/10.1109/2.546611
https://doi.org/10.1109/2.546611
https://doi.org/10.1145/325164.325100
https://doi.org/10.1007/s10703-012-0161-5
https://doi.org/10.1007/s10703-012-0161-5
https://doi.org/10.1007/978-3-642-14295-6_25
https://doi.org/10.1007/978-3-642-19835-9_5

MTraceCheck

[7]
[8]
[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]
[27]

(28]

[29]

[30]

ARM. 2009. Barrier Litmus Tests and Cookbook.

ARM. 2011. Embedded Trace Macrocell Architecture Specification.

ARM. 2012. ARM Architecture Reference Manual — ARMv7-A and ARMv7-R
edition.

Arvind and Jan-Willem Maessen. 2006. Memory Model = Instruction Reordering
+ Store Atomicity. In Proceedings of the 33rd Annual International Symposium
on Computer Architecture. 29-40. https://doi.org/10.1109/ISCA.2006.26
Thomas Ball and James R. Larus. 1996. Efficient Path Profiling. In Proceedings
of the 29th Annual ACM/IEEE International Symposium on Microarchitecture.
46-57. https://doi.org/10.1109/MICRO.1996.566449

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 Simulator. ACM SIGARCH Computer
Architecture News 39, 2 (2011), 1-7. https://doi.org/10.1145/2024716.2024718
Harold W. Cain, Mikko H. Lipasti, and Ravi Nair. 2003. Constraint Graph
Analysis of Multithreaded Programs. In Proceedings of the 12th International
Conference on Parallel Architectures and Compilation Techniques. 4—14. https:
//doi.org/10.1109/PACT.2003.1237997

Kaiyu Chen, Sharad Malik, and Priyadarsan Patra. 2008. Runtime Validation
of Memory Ordering Using Constraint Graph Checking. In 2008 IEEE 14th
International Symposium on High Performance Computer Architecture. 415-426.
https://doi.org/10.1109/HPCA.2008.4658657

Yunji Chen, Lei Li, Tianshi Chen, Ling Li, Lei Wang, Xiaoxue Feng, and Weiwu
Hu. 2012. Program Regularization in Memory Consistency Verification. IEEE
Transactions on Parallel and Distributed Systems 23, 11 (2012), 2163-2174.
https://doi.org/10.1109/TPDS.2012.44

Yunji Chen, Yi Lv, Weiwu Hu, Tianshi Chen, Haihua Shen, Pengyu Wang, and
Hong Pan. 2009. Fast Complete Memory Consistency Verification. In 2009
IEEE 15th International Symposium on High Performance Computer Architecture.
381-392. https://doi.org/10.1109/HPCA.2009.4798276

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms (3rd ed.). The MIT Press.

Das U-Boot — the universal boot loader. Retrieved April 30, 2017 from http:
/Iwww.denx.de/wiki/U-Boot

Marco Elver and Vijay Nagarajan. 2016. McVerSi: A Test Generation Frame-
work for Fast Memory Consistency Verification in Simulation. In 20/6 IEEE
International Symposium on High Performance Computer Architecture. 618-630.
https://doi.org/10.1109/HPCA.2016.7446099

Nikos Foutris, Dimitris Gizopoulos, Mihalis Psarakis, Xavier Vera, and Antonio
Gonzalez. 2011. Accelerating Microprocessor Silicon Validation by Exposing ISA
Diversity. In Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture. 386-397. https://doi.org/10.1145/2155620.2155666
Nikos Foutris, Dimitris Gizopoulos, Xavier Vera, and Antonio Gonzalez. 2013.
Deconfigurable Microprocessor Architectures for Silicon Debug Acceleration. In
Proceedings of the 40th Annual International Symposium on Computer Architec-
ture. 631-642. https://doi.org/10.1145/2485922.2485976

gemS5 mercurial repository host. Retrieved April 30, 2017 from http://repo.gemS.
org

GNU coreutils version 8.25. Retrieved April 30, 2017 from http://ftp.gnu.org/
gnu/coreutils/

Sudheendra Hangal, Durgam Vahia, Chaiyasit Manovit, Juin-Yeu J. Lu, and
Sridhar Narayanan. 2004. TSOtool: A Program for Verifying Memory Sys-
tems Using the Memory Consistency Model. In Proceedings of the 31st An-
nual International Symposium on Computer Architecture. 114—-123. https:
//doi.org/10.1109/ISCA.2004.1310768

Intel. 2015. Intel 64 and IA-32 Architectures Software Developer’s Manual.
k-medoids algorithm. Retrieved April 30, 2017 from https://en.wikipedia.org/
wiki/K-medoids

Jagannath Keshava, Nagib Hakim, and Chinna Prudvi. 2010. Post-Silicon Valida-
tion Challenges: How EDA and Academia Can Help. In Proceedings of the 47th
Design Automation Conference. 3—7. https://doi.org/10.1145/1837274.1837278
Rakesh Komuravelli, Sarita V. Adve, and Ching-Tsun Chou. 2014. Revisiting
the Complexity of Hardware Cache Coherence and Some Implications. ACM
Transactions on Architecture Code Optimization 11, 4 (2014), 37:1-37:22. https:
/ldoi.org/10.1145/2663345

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Trans. Computers 28, 9 (1979), 690-691.
https://doi.org/10.1109/TC.1979.1675439

Penny Li, Jinuk L. Shin, Georgios Konstadinidis, Francis Schumacher, Venkat
Krishnaswamy, Hoyeol Cho, Sudesna Dash, Robert Masleid, Chaoyang Zheng,

[31]

[32]

[33]

[34]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]
[47]

[48]

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Yuanjung D. Lin, Paul Loewenstein, Heechoul Park, Vijay Srinivasan, Dawei
Huang, Changku Hwang, Wenjay Hsu, and Curtis McAllister. 2015. A 20nm
32-Core 64MB L3 Cache SPARC M7 Processor. In 2015 IEEE International
Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers. 1-3. https:
//doi.org/10.1109/ISSCC.2015.7062931

David Lin, Ted Hong, Yanjing Li, Eswaran S, Sharad Kumar, Farzan Fallah, Nagib
Hakim, Donald S. Gardner, and Subhasish Mitra. 2014. Effective Post-Silicon
Validation of System-on-Chips Using Quick Error Detection. /IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 33, 10 (2014),
1573-1590. https://doi.org/10.1109/TCAD.2014.2334301

Daniel Lustig, Michael Pellauer, and Margaret Martonosi. 2014. PipeCheck:
Specifying and Verifying Microarchitectural Enforcement of Memory Consistency
Models. In Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture. 635-646. https://doi.org/10.1109/MICRO.2014.38

Daniel Lustig, Caroline Trippel, Michael Pellauer, and Margaret Martonosi. 2015.
ArMOR: Defending Against Memory Consistency Model Mismatches in Het-
erogeneous Architectures. In Proceedings of the 42nd Annual International Sym-
posium on Computer Architecture. 388—400. https://doi.org/10.1145/2749469.
2750378

Sela Mador-Haim, Rajeev Alur, and Milo M.K. Martin. 2010. Generating Litmus
Tests for Contrasting Memory Consistency Models. In Computer Aided Verifi-
cation: 22nd International Conference, CAV 2010. 273-287. https://doi.org/10.
1007/978-3-642-14295-6_26

Biruk W. Mammo, Valeria Bertacco, Andrew DeOrio, and Ilya Wagner. 2015. Post-
Silicon Validation of Multiprocessor Memory Consistency. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 34, 6 (2015),
1027-1037. https://doi.org/10.1109/TCAD.2015.2402171

Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret Martonosi.
2015. CCICheck: Using phb Graphs to Verify the Coherence-Consistency Inter-
face. In Proceedings of the 48th International Symposium on Microarchitecture.
26-37. https://doi.org/10.1145/2830772.2830782

Luc Maranget, Susmit Sarkar, and Peter Sewell. A Tutorial Introduction to the
ARM and POWER Relaxed Memory Models. Retrieved April 30, 2017 from
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

Albert Meixner and Daniel J. Sorin. 2009. Dynamic Verification of Memory
Consistency in Cache-Coherent Multithreaded Computer Architectures. /EEE
Transactions on Dependable and Secure Computing 6, 1 (2009), 18-31. https:
//doi.org/10.1109/TDSC.2007.70243

Subhasish Mitra, Sanjit A. Seshia, and Nicola Nicolici. 2010. Post-Silicon Valida-
tion Opportunities, Challenges and Recent Advances. In Proceedings of the 47th
Design Automation Conference. 12—17. https://doi.org/10.1145/1837274.1837280
Eberle A. Rambo, Olav P. Henschel, and Luiz C. V. dos Santos. 2011. Automatic
Generation of Memory Consistency Tests for Chip Multiprocessing. In 18th
IEEE International Conference on Electronics, Circuits, and Systems. 542-545.
https://doi.org/10.1109/ICECS.2011.6122332

Amitabha Roy, Stephan Zeisset, Charles J. Fleckenstein, and John C. Huang.
2006. Fast and Generalized Polynomial Time Memory Consistency Verification.
In Computer Aided Verification: 18th International Conference, CAV 2006. 503—
516. https://doi.org/10.1007/11817963_46

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Z. Nardelli, and Magnus O.
Myreen. 2010. x86-TSO: A Rigorous and Usable Programmer’s Model for x86
Multiprocessors. Commun. ACM 53, 7 (2010), 89-97. https://doi.org/10.1145/
1785414.1785443

Ofer Shacham, Megan Wachs, Alex Solomatnikov, Amin Firoozshahian, Stephen
Richardson, and Mark Horowitz. 2008. Verification of Chip Multiprocessor
Memory Systems Using a Relaxed Scoreboard. In Proceedings of the 41st Annual
IEEE/ACM International Symposium on Microarchitecture. 294-305. https://doi.
org/10.1109/MICRO.2008.4771799

Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory
Consistency and Cache Coherence (1st ed.). Morgan & Claypool Publishers.
The Coq proof assistant. Retrieved April 30, 2017 from https://coq.inria.fr

Ilya Wagner and Valeria Bertacco. 2008. Reversi: Post-Silicon Validation System
for Modern Microprocessors. In IEEE International Conference on Computer
Design. 307-314. https://doi.org/10.1109/ICCD.2008.4751878

David Weaver and Tom Germond. 1994. The SPARC Architectural Manual
(Version 9). Prentice-Hall, Inc.

Meng Zhang, Alvin R. Lebeck, and Daniel J. Sorin. 2010. Fractal Consistency:
Architecting the Memory System to Facilitate Verification. IEEE Computer
Architecture Letters 9, 2 (2010), 61-64. https://doi.org/10.1109/L-CA.2010.18


https://doi.org/10.1109/ISCA.2006.26
https://doi.org/10.1109/MICRO.1996.566449
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/PACT.2003.1237997
https://doi.org/10.1109/PACT.2003.1237997
https://doi.org/10.1109/HPCA.2008.4658657
https://doi.org/10.1109/TPDS.2012.44
https://doi.org/10.1109/HPCA.2009.4798276
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
https://doi.org/10.1109/HPCA.2016.7446099
https://doi.org/10.1145/2155620.2155666
https://doi.org/10.1145/2485922.2485976
http://repo.gem5.org
http://repo.gem5.org
http://ftp.gnu.org/gnu/coreutils/
http://ftp.gnu.org/gnu/coreutils/
https://doi.org/10.1109/ISCA.2004.1310768
https://doi.org/10.1109/ISCA.2004.1310768
https://en.wikipedia.org/wiki/K-medoids
https://en.wikipedia.org/wiki/K-medoids
https://doi.org/10.1145/1837274.1837278
https://doi.org/10.1145/2663345
https://doi.org/10.1145/2663345
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/ISSCC.2015.7062931
https://doi.org/10.1109/ISSCC.2015.7062931
https://doi.org/10.1109/TCAD.2014.2334301
https://doi.org/10.1109/MICRO.2014.38
https://doi.org/10.1145/2749469.2750378
https://doi.org/10.1145/2749469.2750378
https://doi.org/10.1007/978-3-642-14295-6_26
https://doi.org/10.1007/978-3-642-14295-6_26
https://doi.org/10.1109/TCAD.2015.2402171
https://doi.org/10.1145/2830772.2830782
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://doi.org/10.1109/TDSC.2007.70243
https://doi.org/10.1109/TDSC.2007.70243
https://doi.org/10.1145/1837274.1837280
https://doi.org/10.1109/ICECS.2011.6122332
https://doi.org/10.1007/11817963_46
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1109/MICRO.2008.4771799
https://doi.org/10.1109/MICRO.2008.4771799
https://coq.inria.fr
https://doi.org/10.1109/ICCD.2008.4751878
https://doi.org/10.1109/L-CA.2010.18

	Abstract
	1 Introduction
	2 Background and motivation
	3 Code instrumentation
	3.1 Memory-access interleaving signature
	3.2 Per-thread signature size and decoding

	4 Collective graph checking
	4.1 Similarity among constraint graphs
	4.2 Topological order re-sorting

	5 Experimental setup
	6 Experimental results
	6.1 Non-determinism in memory ordering
	6.2 Validation performance
	6.3 Intrusiveness

	7 Bug-injection case-studies
	7.1 Bug descriptions
	7.2 Bug-detection results

	8 Insights and discussions
	9 Related work
	10 Conclusions
	References

