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ABSTRACT

As silicon technology scales, modern processors and embedded
systems are rapidly shifting towards complex chip multi-processor
(CMP) and system-on-chip (SoC) designs, comprising several pro-
cessor cores and IP components communicating via a network-on-
chip (NoC). As a side-effect of this trend, ensuring their correctness
has become increasingly problematic. In particular, the network-
on-chip often includes complex features and components to sup-
port the required communication bandwidth among the nodes in
the system. In this landscape, it is no wonder that design errors in
the NoC may go undetected and escape into the final silicon, with
potential detrimental impact on the overall system.

In this work, we propose ForEVeR, a solution that complements
the use of formal methods and runtime verification to ensure func-
tional correctness in NoCs. Formal verification, due to its scala-
bility limitations, is used to verify the smaller modules, such as
individual router components. We complete the protection against
escaped design errors with a runtime technique, a network-level
error detection and recovery solution, which monitors the traffic
in the NoC and protects it against escaped functional bugs that af-
fect the communication paths in the network. To this end, ForEVeR
augments the baseline NoC with a lightweight checker network that
alerts destination nodes of incoming packets ahead of time. If a bug
is detected, flagged by missed packet arrivals, a recovery mech-
anism delivers the in-flight data safely to the intended destination
via the checker network. ForEVeR’s experimental evaluation shows
that it can recover from NoC design errors at only 4.8% area cost
for an 8x8 mesh interconnect, with a recovery performance cost of
less than 30K cycles per functional bug manifestation. Addition-
ally, it incurs no performance overhead in the absence of errors.
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1. INTRODUCTION
Current trends in microprocessor design entail the inclusion of

an increasing number of relatively simple processor cores commu-
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nicating via an interconnect fabric. Correspondingly, embedded
systems deploy system-on-chip architectures, comprising several
IP components in one single chip. As a result, the demands for
high bandwidth inter-core communication have rapidly sidelined
traditional interconnect architectures, such as simple buses, due to
their limited scalability and performance. In contrast, networks-
on-chip (NoCs) are characterized by highly concurrent commu-
nication paths and better scalability, and are thus becoming the
de-facto choice for interconnect architectures. Moreover, to keep
up with the performance of the cores/IPs on-chip, NoC design is
becoming increasingly complex, employing various techniques to
efficiently manage high communication loads. In NoCs, data is
transmitted as ‘packets’, that can further be divided into smaller,
fixed length blocks called ‘flits’ for efficient transfer. Packets in-
jected via network interfaces (NI) are transmitted to their destina-
tions through a network of routers and links, abiding some routing
protocol. The routers themselves often include advanced features,
such as pipelining, speculation, prioritization, complex allocation
schemes, etc., and are organized in a wide range of topologies, im-
plementing complex routing algorithms. With these advanced per-
formance features it is a challenge to ensure correct functionality
under all circumstances for the entire network.

Current methodologies for functional verification in the indus-
try are heavily rooted on simulation-based validation and formal
methods. Simulation techniques are inherently incomplete, since
they cannot check all the possible execution scenarios of the sys-
tem. Formal techniques, although they can theoretically provide
complete guarantees of correctness, are in practice heavily lim-
ited by design complexity, and thus mostly applied only to small
portions of the design. A recent trend in the research community
has started to explore runtime verification solutions where the sys-
tem’s activity is monitored at runtime, after customer deployment,
and checked for correctness. Runtime verification solutions can
sidestep the negative impact of escaped design bugs by detecting
their occurrence and intervening at runtime to prevent the corrup-
tion of network/processor state, loss of data and/or system failure.
Their cost, however, includes i) silicon area dedicated to runtime
monitoring and recovery, ii) dedicated design effort and often iii) a
performance impact on the overall system due to continuous mon-
itoring activities.

ForEVeR’s approach is based on the insight that although for-
mal methods do not scale to the complexity of an entire NoC, yet
they can ensure component-level correctness which, in turn, could
greatly reduce the need for runtime bug detection and recovery.
Thus, ForEVeR proposes a complementary functional verification
solution for networks-on-chip, which leverages formal techniques
for individual network routers and components, and runtime veri-
fication at the network-level. ForEVeR’s runtime modules are de-



signed to protect only those aspects that cannot be formally proven
to work correctly. In this manner, the silicon area and design time
effort dedicated to the runtime verification hardware directly bene-
fits from the designers’ ability to formally verify.

1.1 Contributions
ForEVeR (FormallyEnhancedVerification atRuntime for NoCs)

targets functional bugs in the NoC fabric and it is a solution inde-
pendent from topology, router architecture and routing schemes.
Leveraging the synergy between formal and runtime verification,
ForEVeR can detect and recover from a wide variety of functional
errors in the interconnect and can ensure forward progress in the
execution with no data corruptions. Finally, ForEVeR comes at a
small area cost of 4.8% for an 8x8 mesh interconnect, while incur-
ring a minimal performance impact only when an error manifests.

To the best of our knowledge ForEVeR is the first work to pro-
vide correctness guarantees in NoCs via complementary use of for-
mal verification and runtime validation. Formal methods are em-
ployed to verify basic router functionality, ensuring that packet
integrity is maintained within a router. The complementary run-
time technique ensures correct forward progress in the overall net-
work transfers. The runtime detection and recovery scheme, also
enables designers to deliberately implement aggressive allocation
schemes that might starve packets or complex routing and prioriti-
zation mechanisms that occasionally lead to deadlock or livelock.
If starvation and deadlocks are rare, the overall performance im-
provement over conservative schemes outweighs the recovery over-
head [2]. Together, formal verification and runtime validation guar-
antee that all data is eventually delivered to the correct destinations
without being dropped or corrupted. ForEVeR achieves these goals
by adding simple, verifiable and mostly decoupled hardware to the
baseline interconnect. To enable runtime network-level detection
and recovery, ForEVeR adds a lightweight checker network over
the baseline NoC that can be guaranteed to operate correctly. For
each data packet sent over the primary NoC, an advanced notifica-
tion is transmitted over the checker network to flag a future packet
delivery. Each destination maintains a count of expected packets
and initiates recovery on anomalous behavior in the counters’ val-
ues. During recovery, all packets in-flight in the primary NoC at
the time of bug detection are reliably delivered to their intended
destinations via the checker network.

The ability to formally ensure packet’s integrity within a router
might vary depending on the complexity of the router logic. To
cover scenarios where local router functionality cannot be com-
pletely verified using formal methods, we propose additional router-
level runtime checkers that monitor each router for ‘correct’ be-
havior of the unverified aspects. If these checkers flag an error, our
network-level recovery is triggered and the router pipeline is forced
into a degraded mode of operation. In degraded mode, a router dis-
ables most of its advanced features to a threadbare version with
enough functionality to support the recovery process. Correctness
of the system in this simplistic mode of operation can therefore be
formally verified, guaranteeing complete recovery past the occur-
rence of the bug when running in degraded mode.

2. RELATED WORK
Very few research works have proposed complementary use of

formal and runtime techniques. Among them, Bayazik and Ma-
lik [4] suggested a hybrid verification methodology that leverages
the use of hardware checkers in model checking to avoid state ex-
plosion by validating assumptions and abstractions at runtime. For-
EVeR, on the other hand, uses formal methods and runtime verifi-
cation in a hybrid methodology to provide complementary correct-

ness goals for NoCs. Moreover, [4] is a generic methodology for
verification of complex properties that cannot be directly applied
to NoC correctness. Other works, such as [6], target the formal
verification of an abstracted model of the NoC, and thus cannot
guarantee correctness of the actual implementation.

Ensuring the runtime correctness of NoCs has been the subject of
previous research, focusing on a variety of aspects. Several works
[2,11,12,17] target deadlock, prominent in adaptive routing, while
others target a wider variety of errors through general end-to-end
detection and recovery techniques [14]. Traditionally, the deadlock
problem in NoCs is overcome by deadlock avoidance, or through
detection and recovery, as in DISHA [2]. Other works [11, 12],
propose more sophisticated deadlock detection mechanisms based
on monitoring activity at the router channels. In contrast, ForEVeR
safeguards against all kind of functional bugs, including deadlock
and livelock. In addition, ForEVeR is an end-to-end solution lever-
aging hardware units mostly decoupled from the primary NoC, thus
making minimal changes to the primary NoC design. Other end-to-
end approaches for NoC runtime correctness have been surveyed
in [14]. The most common error recovery scheme for NoCs is
the acknowledgement-based retransmission technique [14], where
error detection codes are transmitted along with data packets, to
check for data corruption at the receiver. An acknowledgement is
sent back after each successful transfer, otherwise the sender times
out and re-transmits the locally-stored packet copy. Apart from
large storage buffers and performance degradation due to the ad-
ditional acknowledgement packets, this approach suffers from the
obvious disadvantage of not being able to overcome errors such as
deadlock and livelock. Moreover, since it uses the same untrusted
network for re-transmission, it cannot guarantee packet delivery.

SafeNoC [1] is an alternative end-to-end runtime solution to de-
tect and recover from functional errors in NoCs. It uses a sec-
ondary verified network to transfer data checksums for error de-
tection. During recovery, in-flight data is collected and send to the
processors that reconstruct the original data packets in software.
Although, ForEVeR also uses a secondary network to transfer no-
tifications and for recovery of data packets, it has several advan-
tages over SafeNoC. ForEVeR leverages complementary formal
and runtime verification to provide a low overhead solution that
guarantees NoC functional correctness under all execution scenar-
ios. SafeNoC, on the other hand, has various points of failure. First,
it provides no protection against dropped packets or flits. Second, it
cannot recover from errors arising from aliasing of signatures and
finally, the reconstruction algorithm is prohibitively expensive and
does not guarantee completion.

Runtime verification solutions have focused so far on micropro-
cessor designs [3, 13, 19]. In general, these solutions add hard-
ware to verify the operation of untrusted components, switching
to a verifiable degraded mode upon detection. Finally, ForEVeR’s
detection mechanism relies on the use of router-level runtime mon-
itors, when formal methods fail to ensure router correctness. The
idea of using runtime checkers has been proposed for various pur-
poses [7, 16]. [7] champions the use of runtime monitors for post-
silicon debug and in-field diagnosis, as a general design methodol-
ogy, while ForEVeR leverages a set of specialized hardware moni-
tors coupled with dedicated network recovery support.

3. METHODOLOGY
ForEVeR addresses the correctness of a NoC by attacking the

problem both at design-time and at runtime. During system devel-
opment, ForEVeR recommends a methodology for providing com-
plete formal verification of the individual network’s routers. In
addition, ForEVeR provides hardware additions to equip the NoC



with a runtime solution to monitor and correct the network execu-
tion at runtime. In the case that even individual network routers
are too complex to be amenable to formal verification, ForEVeR
proposes an additional runtime solution targeting specifically only
those aspects of the routers’ functionality that could not be verified
during system development.

The purpose of formal verification efforts in ForEVeR is to verify
local router properties that do not require any network-wide knowl-
edge. Specifically, they are used to ensure that routers maintain
packet integrity. The runtime components of ForEVeR operate to
monitor the communication paths in the network, and assume cor-
rectness of operation internally to individual routers. In addition,
they provide a mechanism of error recovery and forward progress
once the monitors expose the occurrence of an anomaly. It is also
possible that a NoC deploys complex routers designs that cannot
be completely formally verified. In this scenario, additional local
monitors deployed within each router track the correct operation of
those aspects that could not be verified. Upon detection of a func-
tional error occurrence, these monitors invoke the same network-
level recovery mechanism already available in ForEVeR.

As discussed in [6], the functional correctness of a NoC can
be organized along four high-level requirements. Three of them
can be satisfied by guaranteeing their validity locally at each net-
work router: no_packet_drop, requires that no packet is lost while
traversing the network; no_data_corruption states that packets’ pay-
loads should not become corrupted while traveling from source to
destination; finally, no_packet_create requires that no new packet
is generated within the network (packets can only be injected from
network’s source nodes). If each individual router satisfies these
properties, then they hold for the NoC system as a whole, since
network links are simple wires and cannot embed functional bugs
that corrupt, create or drop packets. Finally, the last requirement
(bounded_delivery), specifies that each packet is delivered to its in-
tended destination within a finite amount of time and it ensures that
there is forward progress in the transmission. This last requirement
cannot be validated locally, since it affects the entire network.

To this end, Figure 1 shows a high level overview of the hardware
additions required by ForEVeR and, in particular, it highlights the
components required to enable bounded_delivery. Partially veri-
fied routers are connected together to form a NoC that is completed
by detection and recovery logic. Runtime checkers and recovery
logic are used at the router-level to protect complex router compo-
nents against design flaws (if they cannot be formally verified at
design time). In addition, the primary NoC is augmented with a
lightweight checker network, used to transmit advanced notifica-
tions to the monitors at the destination nodes. During recovery, the
checker network is also used to reliably deliver in-flight data pack-
ets to their respective destinations. Note that each component of a
router can be classified as i) verified at design-time, ii) monitored
at runtime or iii) providing advanced performance features to be
disabled during recovery.

4. ROUTER CORRECTNESS
A correctly functioning router should ensure that packet’s in-

tegrity is maintained while each packet transfers within the router.
This can be achieved by guaranteeing that routers do not drop any
individual packet’s flits and that flit ordering from head to tail is
preserved during the transmission in a wormhole fashion. In this
section we describe our approach to router correctness by leverag-
ing formal verification techniques, possibly augmented with run-
time solutions, depending on the complexity of the router design.
Our solution to provide router-correctness can be generalized to any
router architecture, as discussed is Section 7. We discuss our ideas
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Figure 1: High-level overview of ForEVeR. A combination of
router-level verification/runtime monitoring and network-level de-
tection and recovery ensures correct NoC operation.

for a fairly complex and generic 3-stage pipelined router that is
input-queued and that uses virtual channel (VC) flow control, look-
ahead routing and switch speculation. A high-level schematic of
this router is shown in Figure 2a. The datapath components consist
of input buffers, channels and crossbar, and are controlled by input
VC control (IVC), route computation unit (RC), VC allocator (VA),
switch allocator (SA), output VC control (OVC) and flow control
manager. The control components manage the flow of packets and
flits from input channels to output channels via input buffers and
crossbar. The datapath components are fairly simple and can be
completely verified at design-time. Verification of the control com-
ponents presents a greater challenge and it is discussed in detail be-
low. In the context of an individual router, the interactions between
the virtual channels are handled by RC, VA and SA units. These
units rely on information provided by the flow control mechanism,
used to transmit buffer availability information among neighboring
routers. Other control units, such as IVC and OVC, operate mostly
on local data and hence can often be formally verified using tradi-
tional formal verification tools.

In the rest of this section we discuss how to organize the for-
mal verification of the router at design time. In the case that some
aspects of the router cannot be proven correct, we provide a run-
time solution to monitor and correct any functional bug that may
manifest in the incompletely verified functionality.

4.1 Formal Verification
The verification process can be efficiently partitioned into three

sub-goals: i) ensuring that no flit is dropped (no_packet_drop), ii)
showing that no flit is created or duplicated (no_packet_create), and
iii) ensuring that packets maintain integrity as they travel through
the router (no_data_corruption). For the first sub-goal, we must
verify that all valid flits received at input channels are written into
valid buffer entries, that the buffers operate in a FIFO manner, and
that each flit after gaining access to the output channel moves from
input buffer to the output channel in a fixed number of clock cycles
(depending on the router pipeline depth). To accomplish the sec-
ond sub-goal, we verify that flits are not duplicated as they travel
through the various stages of router pipeline (IVC, crossbar and
OVC). We also verify that these stages do not create flits out of thin
air. The third sub-goal encompasses the behavior of entire packets,
rather than individual flits, ensuring that all body flits belonging
to any particular packet should follow that packet’s head flit in a
wormhole order, as the packet traverses through the router’s datap-
ath. We pursued the formal verification of the router design that we
used in our experimental evaluation, using the structure described
above and Synopsys Magellan [18], a commercial formal verifica-
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undelivered packets at the network-level. (c) Checker router: A packet-switched router designed with simple muxes and flow control is used
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Correctness goal Property to be verified Sub-properties time(s)

no_packet_drop * incoming valid flit written to buffer 4 90
(datapath and router activity control) * buffer operates as FIFO 20 660

* all flits are transferred from input to output channel 17 170

no_packet_create * no flit/packet duplication at IVC 4 30
(control components) * no flit/packet duplication at crossbar 1 10

* no flit/packet duplication at OVC 2 10

no_data_corruption * valid body flits follow valid head flit in order (leaving IVC) 25 1,800
(complex interactions of concurrent components) * valid body flits follow valid head flit in order (leaving crossbar) 5 350

* valid body flits follow valid head flit in order (leaving OVC) 5 200

Table 1: Organization of router’s formal verification.
.

tion tool. Table 1 summarizes our sub-goals, how many properties
were proven for each of them and how much computation time they
required. Properties were described as System Verilog Assertions
and verification executed on an Intel Xeon running at 2.27 GHz and
equipped with 4GB of memory. For instance, the property ‘incom-
ing valid flits written to IP buffer’ holds if i) all incoming flits have
always a valid VC tag, ii) the corresponding VC buffer has a free
slot (no overflow), iii) the flit contents should only be written to the
specified slot of the requested VC buffer, and iv) invalid flits should
not be written to any VC buffer. Note that we do not need to verify
the route computation module, as our network-level detection and
recovery scheme handles possible escaped bugs in this module.

4.2 Runtime Verification
When not all router-specific properties can be verified, ForEVeR

provides a runtime solution to complement the design-time effort
and still guarantee router-level correct functionality. Components
that are more likely to be too complex for design-time verification
and thus may need to be protected by runtime techniques, when
necessary, are those that control the interaction between multiple
router activities [9]: VC allocator, switch allocator and flow con-
trol (as indicated in Figure 2a). We labeled these components sep-
arately in the Figure, because escaped bugs in these units may lead
to critical functionality flaws, instead of just performance penalties.
Note that the route control unit does not need to be protected, be-
cause its activity is monitored as part of our network-level solution.

If any of the router-level monitors detects the occurrence of a
bug, we reconfigure the router to a barebone mode of operation

that can be completely formally verified and performs recovery by
transferring the packets while in this mode of operation, which can
be guaranteed to be correct. After router-level recovery, a network-
level recovery step, as discussed in section 5.2, is also performed.

4.2.1 Detection and Recovery

VC and switch allocator. A design flaw in a VC allocator may
give rise to various erroneous conditions, some of which are be-
nign, as they either do not violate router correctness rules, or are
effectively detected and recovered by the network-level correctness
scheme. Assignment of an unreserved but erroneous output VC to
an input VC is an example of such a benign error as, in the worst
case, it may only lead to misrouting or deadlock. Starvation is an-
other example that needs no detection or remedy at the router level.
Critical errors arise when an unreserved output VC is assigned to
two input VCs, or an already reserved output VC is assigned to a
requesting input VC. This situation will lead to flit mixing and/or
packet/flit loss. Similar to the VC allocator situation, a design flaw
in a switch allocator may or may not have an adverse affect on For-
EVeR’s operation. To monitor VCs and switch allocators at run-
time, we propose the use of an Allocation Comparator (AC) unit,
a simplified version of a unit proposed in [16] for soft error pro-
tection. The AC unit is purely combinational and it performs all
comparisons within one clock cycle. It simultaneously analyzes
the state of VC and switch allocators for duplicate and/or invalid
assignments. If an error is flagged, all VC and switch allocations
from the previous clock cycle are invalidated. Flits in flight in the
crossbar are discarded at the output. To avoid dropping flits dur-



ing the invalidation/discard operation, an extra flit storage slot per
input port is reserved for use during such emergencies. To imple-
ment this runtime monitor, VA, SA and crossbar units are modified
to accept invalidation commands from the AC.
Flow control. Flow control used to manage buffer availability can
lead to either buffer underflow or overflow errors. Input buffers can
be easily modified to detect and refuse communication during an
underflow, thus not loosing or corrupting any data. On the other
hand, a hardware checker is used to detect buffer overflow errors.
Additionally, each input port is equipped with two emergency flit
storage slots. Upon receiving a flit when the corresponding buffer
is full, the communicating routers switch to a NACK-free variant
of ACK-NACK flow control, that guarantees freedom from buffer
overflows using a simple scheme. The emergency slots are reserved
for flits in flight during this event. During this NACK-free flow con-
trol operation, a flit awaiting acknowledgement is re-transmitted
every two cycles (round trip latency of the links). This scheme,
though detrimental for performance, is extremely simple and can
be implemented with little modification to the existing flow con-
trol mechanism. In addition, the router operates in this simple and
verified mode only during recovery, switching back to its high per-
formance mode after recovery is complete. Note that, to safeguard
against all errors, at most two emergency slots per input port are
required and this storage can be implemented as a simple shift reg-
ister. In addition, the cost of this extra storage is amortized across
multiple VC buffers in a single input port.

4.2.2 Degraded Mode

When a bug is detected by hardware monitors, the router switches
to a degraded mode with formally verified execution semantics, by
either disabling complex units or replacing vital ones with simpler
counterparts. This mode is equipped with bare-minimum features
to support the network level recovery, initiated immediately after
discovering a bug. To prevent the NoC routers from servicing new
packets during recovery, all packet-level operations, such as route
computation and VC allocation are disabled during recovery, as dis-
cussed in section 5.2. In addition, advanced “performance only”
features, such as switch speculation and prioritizing mechanisms
are disabled. Switch allocator and flow control manager must still
work properly to drain packets affected by the bug occurrence. To
this end, the SA is replaced by a simple spare arbiter that allocates
only a single output port to a single input port at each cycle, elim-
inating concurrent interactions. Similarly, flow control is replaced
by an acknowledgement-based control to prevent flit loss, as dis-
cussed in section 4.2.1. The resulting degraded router has signifi-
cantly less concurrency, making it amenable to formal verification.

5. NETWORK CORRECTNESS
As discussed in Section 3, at the network level we must guaran-

tee that all packets are delivered to their intended destination within
a bounded amount of time. Specifically, our network-level solu-
tion must detect and recover from design errors that inhibit forward
progress in the network (deadlock, livelock and starvation) or cause
misrouting of packets. To achieve this, ForEVeR augments the de-
sign with a lightweight and verifiable checker network that oper-
ates concurrently with the original NoC, providing a reliable fabric
to transfer notifications and packets to be recovered. Our checker
network is extremely simple: organized in a ring topology and com-
prising single-cycle latency, packet-switched routers, as shown in
Figure 2c. The router architecture we use is identical to the one pro-
posed in [10]. In particular, we leverage its low latency property to
consistently deliver notifications before the corresponding packets
arrive through the primary network. Note that a notification carries

no information other than the destination address, enabling us to
design a lightweight checker network.

During normal operation, each packet transmitted on the primary
network generates a corresponding notification over the checker
network, directed to the same destination. Each destination main-
tains a count of outstanding packets expected via the primary net-
work, decrementing the count upon each packet reception. Opera-
tion is organized into ‘check epochs’, time intervals of fixed length:
a distributed detection scheme monitors that, during each check

epoch, a value zero is observed at least once at each counter. If that
is not the case, recovery is initiated, extracting all in-flight packets
from the primary network and delivering them reliably through the
checker network. Figure 1 shows how the checker network inter-
faces with the primary network via the network interface units, that
also include the logic for detection and recovery initiation.

5.1 Detection
All design errors preventing forward progress result in packet(s)

trapped within the network, consequently, the detection mechanism
should be capable of detecting such scenarios. Moreover, it should
entail minimal area overhead and design modifications. Our noti-
fication message architecture satisfies both these requirements and
it allows detection of a bug occurrence because any unaccounted
packet at destination will lead to a counter with an always positive
value. Figure 3a illustrates the hardware implementation and exe-
cution flow of our detection scheme and Figure 3b outlines the cor-
responding detection algorithm. The detection algorithm increases
the counter at the local destination node for each notification re-
ceived, and decreases it for each packet received. In addition it
stores in a separate register, reset at the beginning of each check

epoch, whether a zero has been observed. If, at the end of a check
epoch, any network node has not yet observed a zero, then recov-
ery is initiated. The implementation requires a counter connected to
both the primary and the checker network, a timer to track epochs
and a zero-observed storage bit. We show in Section 6.2 how epoch
length affects the accuracy of detection. Finally, note that design er-
rors leading to misrouting of packets can be detected by analyzing
the routing information in the header flit at the destination nodes.

5.2 Recovery
When an error is reported either by the router-level runtime mon-

itors or by the network-level detection scheme, the NoC enters a
recovery phase, consisting of a network drain step followed by a
packet recovery step, as illustrated in Figure 4b. During network

drain, the network is allowed to operate normally to drain its in-
flight packets, while no new packets are injected. If recovery was
initiated by a router-level checker, then that router operates in de-
graded mode during this phase. At the end of this phase, which runs
for a fixed time length, recovery terminates if all destinations have
received all their outstanding packets. This situation indicates that
recovery was triggered by a false positive detection, which can be
caused, for instance, by a counter that does not reach zero within an
check epoch because of high traffic. Note that false positives only
impact the performance, not affecting system’s correctness.

The subsequent phase, packet recovery, recovers all remaining
outstanding packets. To this end, a token is circulated through all
routers in the NoC via the checker network, and NoC routers can
only operate when they hold this token. In addition, all VC alloca-
tors are disabled to prevent processing new packets. When a router
receives the token, it examines all its VC buffers sequentially to
find packet headers. If a header is found, the corresponding packet
is extracted and transmitted over the checker network, as shown in
Figure 4b. Since key router functionalities are still active in the
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at each destination, at each cycle

If (received_notification_packet) then {counter++};

If (received_data_packet) then {counter--};

If (counter == 0) then {set zero.observed};

If (end_check_epoch) then {

If (zero.observed) then {continue};

else {trigger_recovery};

}

time++; next cycle;

Figure 3: ForEVeR’s network-level detection. (a)Detection hardware: Each destination uses a counter and a timer, if any of the destinations
do not observe a zero in the counter at least once during a check epoch, then recovery is initiated. (b)Detection algorithm: The counter is
incremented or decremented upon notifications and packets arrivals, and monitored for the occurrence of a zero.

degraded mode, the packet can be safely delivered to its destina-
tion through the checker network. The token circulates through all
routers retrieving packets from one router at a time. Retrieving all
packets may require repeating the token loop through all routers,
as certain packets may still remain in their respective buffers. Note
that we do not drain a packet when its head flit is not at the front
of the buffer on arrival of the token. Figure 4a shows the execution
flow of the recovery phase, indicating how packet recovery (corre-
sponding to one complete token loop) may be repeated if packets
are still outstanding. The hardware components required to provide
recovery are shown in Figure 2a and include: a token manager, vir-
tual channel allocation disabler (VC-DIS) and switch speculation

disabler (SPEC-DIS) for each router, to prevent the processing of
new packets during recovery.

Due to the limited bandwidth of the checker network, each pri-
mary network flit is transmitted as several checker packets. Dur-
ing recovery, only one router can be transmitting packets to a sin-
gle destination at a time, greatly simplifying the dis-assembling/re-
assembling process. To manage this, the checker network’s chan-
nels include dedicated wires for head and tail indicators. The flit
with head indicator carries the destination address and reserves an
exclusive path between the source and the destination. All interme-
diate valid flits traversing the ring network are ejected at the same
destination till a flit is received with a tail indicator. Moreover, all
transmissions on the checker network during recovery occur in the
same (clockwise) direction to avoid wormhole overlap of two pack-
ets. In our evaluation system with 64 nodes, the checker network
channel is 8 bits wide (6-bit address, 2-bit head-tail indicators).
Thus each 64-bit primary network flit takes 12 checker networks
packets (1 head, 11 body/tail) to transfer.

5.3 Verification of ForEVeR’s Recovery
All components involved in the detection and recovery processes

must be formally verified to guarantee correct functionality. Detec-
tion leverages the checker network and the counting and timing
logic in the network interfaces. Recovery uses again the checker
network and the interface between primary and checker routers for
packet draining.

To verify the correctness of the checker network, we need to
show that it delivers all packets to their intended destination in a
bounded amount of time, as discussed in Section 3. We partition
this goal into four properties: injection, guaranteeing correct in-
jection of packets into the network; progress, ensuring packets ad-
vance towards their intended destinations; ejection, proving timely
ejection of packets; and data_integrity, ensuring that data remains
uncorrupted throughout.

As discussed in Section 4.2.2, during recovery, the NoC routers

operate in a barebone mode with all complex hardware units dis-
abled, thus making the verification task much less challenging. To
ensure correct recovery, we have to verify that routers fairly take
turns in retrieving valid packets from their respective buffers. To
this end, we check the following aspects: i) fairness and exclusiv-
ity during extraction (fairness) to guarantee that routers take turns
in transmitting packets on the checker network. ii) We also verify
that complete packets are extracted (complete_packet), emptying
the buffer completely (buffer_empty). We also check that iii) only
valid packets are recovered (valid_packet). Table 2 reports the time
required to prove these verification goals using the same formal
verification setup as described in Section 4.1.

checker network correctness recovery operation correctness

verified property time(sec) verified property time(sec)

injection 8 fairness 15
progress 156 complete_packet 10
ejection 86 buffer_empty 46
data_integrity 10 valid_packet 29

Table 2: Formal verification of ForEVeR’s network-level recov-

ery operation.

6. EXPERIMENTAL RESULTS
We evaluated ForEVeR by modeling a NoC system in Verilog

HDL, as well as a cycle-accurate C++ simulator, both based on [8].
The baseline system is an 8x8 XY-routed mesh network, routers
have 2 VCs and 8-entry buffers per VC, similar to the router de-
sign described in Section 4. In addition, the NoC is augmented
with a checker network and the detection and recovery capabili-
ties described in the previous sections. The Verilog implementa-
tion was used to formally verify the NoC routers and the recovery
components. To this end, we specified properties as System Ver-
ilog Assertions and verified them with Synopsys’ Magellan [18], a
commercial formal verification tool. ForEVeR’s area overhead was
estimated using synthesis results from Synopsys’ Design Compiler
targeting the Artisan 45nm library. The C++ simulator was used
to assess the accuracy of the network-level detection scheme and
to evaluate the performance impact of recovering from functional
bugs that we inserted in the baseline model to evaluate our solution.
The framework was analyzed with two different types of work-
loads: directed random traffic (uniform), as well as applications
from the PARSEC suite [5].

6.1 ForEVeR Operation
To analyze ForEVeR’s performance impact and its ability to re-

cover from various types of design errors, we injected 9 different
design bugs into the C++ implementation of ForEVeR, described in
Table 3. Bugs 1-6 are errors that inhibit forward progress, bugs 7-8
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Figure 4: ForEVeR recovery process. (a) Recovery flow: Network drain is followed by packet recovery until all primary network packets
are recovered. (b) Recovery steps: All packet injections are suspended during the network drain phase, while in-flight packets are recovered
during the packet recovery phase.

are misrouting errors, whereas bug 9 is an error that affects router
operation while it is servicing a packet. We ran PARSECworkloads
while triggering one distinct bug during each entire execution and
varying the trigger time (5 trigger points, 10,000 cycles apart), the
location of bug injection (10 random locations) and packet size (4,
6 and 8 flits). ForEVeR was able to detect all design errors with
no false positives or negatives and correctly recover from them,
executing all workloads to completion and delivering all packets
correctly to their destinations. Each recovery entailed an execu-
tion overhead, due to network drain and packet recovery. During
network drain the primary NoC was allowed to drain for a fixed
period of 500 cycles, a parametric value that we set by simulating
the draining of a congested network. In the rare case of network not
draining completely within this time interval, an unnecessary initi-
ation of packet recovery will occur, incurring a performance impact
without affecting correctness. Table 3 reports the additional aver-
age packet recovery time incurred for each bug, averaged over all
benchmarks, packet sizes, activation times and locations. It should
be noted that, apart from forward progress errors that are detected
at the network level, routing errors are quickly detected at erro-
neous destinations, whereas errors that affect router operation are
detected immediately by the router’s hardware monitors.

Bug name Bug description recovery time

deadlock some packets deadlocked in the network 4,821 cycles

livelock some packets in a livelock cycle 3,084 cycles

VA_vc_strv input VC never granted an output VC 2,827 cycles

VA_port_strv no input VC in a port granted output VC 3,055 cycles

SW_vc_strv one input VC never granted switch access 2,123 cycles

SW_port_strv no input VC in a port granted switch access 2,490 cycles

misroute1 one packet routed to a random destination 1,724 cycles

misroute2 two packets routed to random destinations 1,810 cycles

router_bug hardware monitors in routers detect a bug 1,764 cycles

average 2,633 cycles

Table 3: Functional bugs injected in ForEVeR and average

packet recovery time.

On average, ForEVeR spends approximately 2,633 cycles in pac-
ket recovery for each bug occurrence. This value is primarily af-
fected by number of packets that must be recovered; thus, bugs
affecting a large portion of the network, such as an entire port
(VA_port_strv), take more time to recover than bugs that influence
smaller portions, such as only one VC (VA_vc_strv). Similarly,
deadlock errors that may affect many packets, require the largest
recovery time. For a network operating at 1 GHz, and exhibiting an
error rate of one error every 5 minutes, this translates to a negligible

performance penalty, less than one hundred millionth (10−8). In
practice, design errors that escape pre-silicon verification are quite
infrequent.
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Figure 5: ForEVeR’s packet recovery time. ForEVeR’s recovery
overhead increases almost linearly with the number of flits stuck
in the primary NoC that must be transmitted reliably through the
checker network.

To closely study the relationship between recovery time and num-
ber of flits recovered via the checker network, we injected a varying
number of packets in the NoC, and prevented them to eject at the
network interfaces. The network-level detection scheme flags an
error due to un-accounted primary network packets at destinations,
thus triggering packet recovery. Concurrently, we noted the time
required to drain all stuck packets through the checker network.
Figure 5 plots our results for varying packet sizes, reporting packet
recovery time vs. number of extracted flits. Note that packet re-
covery time varies almost linearly with the number of stuck flits,
requiring less than 45,000 cycles, even in the worst case.

6.2 Network-level Detection Accuracy
ForEVeR’s runtime performance overhead is affected by the ac-

curacy of its detection scheme.
False positives. False positives occur when an unnecessary recov-
ery is triggered in absence of a bug occurrence, and they are due
to inaccuracies in the runtime monitors. The corresponding recov-
ery consists of the execution of a network drain phase, where all
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Figure 6: ForEVeR’s detection scheme under uniform random

traffic. The Figure plots the false positive rate vs. check epoch

size, for various packet sizes. The false positive rate drops rapidly
with larger check epochs and decreasing network load.
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in-flight packets are delivered to their correct destination nodes. At
that point no packets remain in flight, thus there is no packet recov-
ery phase. Note that, a false positive in the detection mechanism
does not affects the network’s correctness but only its performance.
The false positive rate of the detection scheme depends on the dura-
tion of the check epoch, relative to traffic conditions. Note that false
positives are triggered when the destination counter is non-zero for
an entire check epoch; hence a heavily loaded network will trig-
ger more false recoveries as unaccounted notifications accumulate
at destinations while their corresponding packets are being delayed
due to congestion in the network. Intuitively, a longer check epoch
will reduce the false positive rate by allowing more time for pack-
ets to reach their destinations. Figure 6 shows the decrease in false
positive rate with increasing check epoch size. The false positive
rate drops to a negligible value beyond a certain check epoch size
(Epochmin), whose value depends on network load. Additionally,
a heavily loaded network exhibits a higher false positive rate than
a moderately loaded network, and hence a heavily loaded network
requires a larger Epochmin to practically eliminate all false posi-
tives. Extensive simulations indicate that Epochmin rises to intol-
erable values only when the network is operated at loads well past

its saturation. However, NoC workloads are characterized by the
self-throttling nature of the applications, which prevents them from
operating past saturation loads [15].
False negatives. False negatives might cause an error to go un-
detected for a few epochs. But, since we guarantee no loss of
flits/packets, the data would eventually be delivered in an uncor-
rupted state to the correct destinations upon error detection. Hence,
such a scenario will only increase detection latency without affect-
ing correctness. However, to avoid false negatives in the detection
scheme altogether, the checker network is constrained to deliver no-
tifications before the corresponding data packets arrive via the pri-
mary network. If this is not the case for a baseline checker network
design, this goal can still be achieved by considering design alterna-
tives, such as bundling together multiple notifications before trans-
mission, or using multiple checker networks, etc. In ForEVeR’s
evaluation system, our checker network almost always delivers no-
tifications ahead of data packets, except for very low latency situ-
ations, where primary network packets take shorter routes through
the primary NoC, while notifications travel longer routes in the
ring-based checker network. To counter these cases, the updating
of the monitor counters can be delayed by an amount determined
by the maximum latency difference between primary and checker
network at zero load (we call this value counter_update_delay).
We ran low latency simulations using uniform traffic with a small
packet size (4 flits) and a check epoch of 300 cycles. With this
setup the primary network is only lightly loaded, and hence, has a
greater chance of creating false negatives. Figure 7 plots the maxi-
mum number of false negatives observed over 10 different seeds for
different counter_update_delay values. Note that the rate of false
negatives falls quickly and are completely eliminated at a delay of
20 cycles or greater. It should be noted that the maximum latency
difference between primary and checker network at zero-load was
found via simulations to be 18 cycles.
Optimal epoch length. To calibrate the check epoch, we ran rig-
orous simulations using both uniform random traffic and PARSEC
benchmarks. After operating ForEVeR normally for a preset length
of time, a random primary network packet is dropped to emulate
the impact of an error in the primary network; we then calculate
the false positive and negative rate for a range of check epochs.
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Figure 8: ForEVeR’s detection scheme under uniform traffic.

The Figure shows the variation of Epochmin and latency with in-
creasing network load. Epochmin is within tolerable limits for all
but deeply saturated networks.

Figure 8 plots Epochmin (necessary to minimize the false posi-
tive rate) and the average network latency as network load is varied,
under uniform network traffic. Epochmin exhibits a slow increase
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with rising injection rate up to network saturation, and a steep rise
afterwards. From the plot, a worst case Epochmin of 7K cycles
is sufficient to eliminate all false positives when the network is in
deep saturation, operating at an average latency of about 4 times
the zero-load latency. Figure 9 presents a similar study plotting
Epochmin at low, moderate and high injection rates for four differ-
ent packet sizes. The plot indicates that Epochmin decreases with
increasing packet size. For similar loads, a network using larger
packet sizes has fewer in-flight packets causing fewer notifications
to accumulate at destinations, and hence lower Epochmin values.
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Figure 10: Minimum required epoch length for varying packet

sizes with PARSEC benchmarks. The Figure plots Epochmin

for different packet sizes for 9 PARSEC benchmarks. Epochmin

is within 1,500 cycles for packets up to 8 flits (corresponding to an
average network latency of 800 cycles).

PARSEC benchmark traces for evaluation of our detection and
recovery scheme were extracted from a 64 core CMP system run-
ning PARSEC workloads, with our baseline NoC using 4-flit data
packets. The average network latency across all benchmarks for
these traces was 26 cycles. However, to examine our scheme un-
der more demanding conditions, we decreased the channel width of
our baseline NoC, effectively increasing the network load. Using
the same traces, NoCs with longer data packets (due to decreased
channel width) are used to unrealistically stress the network during
simulation. It should be noted that such high load scenarios (aver-

age network latency up to 1,600 cycles) should never arise in prac-
tice because of the self-throttling nature of the applications. Figure
10 plots Epochmin with different packet sizes for the PARSEC
benchmarks, demonstrating that a zero false positives rate can be
achieved with small check epoch sizes, even at high network loads.

6.3 Area Results
A central goal in designing ForEVeR is to keep silicon area at a

minimum. The amount of hardware required to implement router-
level correctness varies with the designer’s ability to verify different
router components, as formally verified functionalities need no pro-
tection at runtime. Thus, we present the area overhead for network-
level and router-level correctness separately. The bottom part of
Table 4 reports additions for network-level correctness, indicating
a 4.8% area overhead over a primary network router. The over-
head is due to additions in each router, contributing 1.7%, and to
each network interface and checker router, which, combined, are
responsible for the remaining 3.1%.

The top part of Table 4 also reports the overhead for ForEVeR’s
router-level hardware monitors and reconfiguration hardware, ac-
counting for 9.2% additional area over the baseline router. Flow
control reconfiguration and extra storage required to avoid dropped
flits costs 7.8%, whereas VA and SA checkers, along with a spare
arbiter (Section 4.2.2) and other reconfiguration support, result in
1.4% overhead. In our framework, we were able to formally ver-
ify the baseline router completely, and hence we only incurred the
network-level area cost (4.8%).

level design area (µm2) %

ro
u
te
r baseline router 77,723 100.00

flow ctrl & extra storage 6,071 7.81
VA & SA checker/reconfiguration 1,053 1.35
router-level correctness overhead 7,124 9.16

n
et
w
o
rk

token mgr & recovery support 1,300 1.67
NI additions 1,550 1.99
checker router 845 1.09
network-level correctness overhead 3,695 4.75

Table 4: ForEVeR area overhead.

ForEVeR leverages formally verified components within the rou-
ter to recover from design errors to keep the overhead low when
compared to purely runtime verification techniques [1, 14]. With-
out these verified components there would be a need for a lot of
extra hardware and added complexity. Specifically, in case of an
error, a full runtime solution would require storage to duplicate all
the in-flight data and retransmit that using the same unreliable net-
work or transfer that over a secondary network that is guaranteed to
be correct. For example, the popular re-transmission based runtime
scheme uses the same untrusted network to re-send packets that
have been dropped or corrupted. Experimental evaluations show
that large duplicate-storage buffers alone result in 66% area over-
head over the baseline network. In addition, this solution suffers
from slowdown due to additional acknowledgement traffic.

7. GENERALIZATION
In this section, we discuss how ForEVeR’s approach of comple-

mentary verification enables it to generalize to various current and
future NoC and router designs.
Other NoC designs. Both detection and recovery schemes of For-
EVeR can be generalized to any NoC design/architecture. ForEVeR
is agnostic to NoC topology and the routing algorithm employed, as
long as the checker network, used both during detection and recov-
ery, can adapt to consistently deliver notifications ahead of time. To
this end, checker network’s performance can be tuned to the needs



of the baseline network by various mechanisms, such as increasing
bandwidth or bundling notifications together before transmission.
For our baseline design, a low bandwidth checker network sufficed
to deliver notifications as required.
Other router designs. ForEVeR can be generalized to all main-
stream router designs, as they have similar underlying structure,
where control components manage the flow of data through the
data-path components (channels, buffers, crossbars). All main-
stream router micro-architectures involve buffering of data either
at router inputs (input-queued) or outputs (output-queued). Buffers
are managed by the flow control unit and can be allocated per flit or
per packet. Similarly, access to resources like channels or crossbar
links, is always determined by arbitration or allocation logic.

ForEVeR’s hardware monitors for router-level detection provide
protection to router components that handle complex interactions
such as flow control and resource allocators. Although our base-
line router implementation is completely formally verified, we de-
signed these generalized hardware monitors (flow control checkers
and allocation comparators) to be able to extend ForEVeR’s detec-
tion scheme to more complex router designs that may be outside
the scope of formal verification. These also enable designers to ar-
chitect aggressive that are not guaranteed to be completely correct.

As for ForEVeR’s recovery scheme, we need to guarantee ba-
sic router functionality to safely salvage packets from the routers.
To ensure this, basic router components (input ports, buffers, ar-
biters, crossbar) required for bare-bone functionality are formally
verified. These components are common to all router architectures,
while many of the features that are design specific tend to be perfor-
mance oriented: these type of features are disabled during recovery.
Thus, our verification flow could be used to ensure bare-bone func-
tionality for any router.

8. CONCLUSIONS
In this work, we presented ForEVeR, a complete verification so-

lution that complements the use of formal methods and runtime
verification to ensure functional correctness in NoCs. Formal ver-
ification is used to verify simple router functionality, leveraging
a network-level detection and recovery scheme to provide NoC
correctness guarantees. ForEVeR augments the NoC with a sim-
ple checker network used to communicate notifications of future
packet deliveries to corresponding destinations. A runtime detec-
tion mechanism keeps a count of expected packets, triggering re-
covery upon unusual behavior of the counter values. Following
error detection, all in-flight packets in the primary NoC are safely
drained to their intended destinations via the checker network. For-
EVeR’s detection scheme is highly accurate and can detect all types
of design errors. The complete scheme incurs only 4.8% area cost
for an 8x8 mesh NoC, requiring only up to 30K cycles to recover
from errors.
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