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Abstract
As silicon process technology scales deeper into the nanometer
regime, hardware defects are becoming more common. Such de-
fects are bound to hinder the correct operation of future processor
systems, unless new online techniques become available to detect
and to tolerate them while preserving the integrity of software
applications running on the system.

This paper proposes a new, software-based, defect detection
and diagnosis technique. We introduce a novel set of instruc-
tions, called Access-Control Extension (ACE), that can access
and control the microprocessor’s internal state. Special firmware
periodically suspends microprocessor execution and uses the ACE
instructions to run directed tests on the hardware. When a hard-
ware defect is present, these tests can diagnose and locate it,
and then activate system repair through resource reconfigura-
tion. The software nature of our framework makes it flexible:
testing techniques can be modified/upgraded in the field to trade
off performance with reliability without requiring any change to
the hardware.

We evaluated our technique on a commercial chip-multiprocessor
based on Sun’s Niagara and found that it can provide very high
coverage, with 99.22% of all silicon defects detected. Moreover,
our results show that the average performance overhead of software-
based testing is only 5.5%. Based on a detailed RTL-level imple-
mentation of our technique, we find its area overhead to be quite
modest, with only a 5.8% increase in total chip area.

1. Introduction
The impressive growth of the semiconductor industry over

the last few decades is fueled by continuous silicon scaling,
which offers smaller, faster, and cheaper transistors with
each new technology generation. However, challenges in pro-
ducing reliable components in these extremely dense tech-
nologies are growing, with many device experts warning that
continued scaling will inevitably lead to future generations
of silicon technology being much less reliable than present
ones [3, 32]. Processors manufactured in future technologies
will likely experience failures in the field due to silicon de-
fects occurring during system operation. In the absence of
any viable alternative technology, the success of the semi-
conductor industry in the future will depend on the creation
of cost-effective mechanisms to tolerate silicon defects in the
field (i.e., during operation).

The Challenge - Tolerating Hardware Defects: To
tolerate permanent hardware faults (i.e., silicon defects) en-
countered during operation, a reliable system requires the
inclusion of three critical capabilities: 1) mechanisms for
detection and diagnosis of defects, 2) recovery techniques to
restore correct system state after a fault is detected, and
3) repair mechanisms to restore correct system functional-
ity for future computation. Fortunately, research in chip-

multiprocessor (CMP) architectures already provides for the
latter two requirements. Researchers have pursued the de-
velopment of global checkpoint and recovery mechanisms,
examples of these include SafetyNet [31] and ReVive [22,
19]. These low-cost checkpointing mechanisms provide the
capabilities necessary to implement system recovery.

Additionally, the highly redundant nature of future CMPs
will allow low-cost repair through the disabling of defective
processing elements [27]. With a sufficient number of pro-
cessing resources, the performance of a future parallel sys-
tem will gracefully degrade as manifested defects increase.
Moreover, the performance impact of each degradation step
is expected to decrease substantially as future CMP systems
scale to larger numbers of processing elements.

Given the existence of low-cost mechanisms for system re-
covery and repair, the remaining major challenge in the de-
sign of a defect-tolerant CMP is the development of low-cost
defect detection techniques. Existing online hardware-based
defect detection and diagnosis techniques can be classified
into two broad categories 1) continuous: those that continu-
ously check for execution errors and 2) periodic: those that
periodically check the processor’s logic.

Existing Defect Tolerance Techniques and their
Shortcomings: Examples of continuous techniques are Dual
Modular Redundancy (DMR) [29] and DIVA [2]. These
techniques detect silicon defects by validating the execution
through independent redundant computation. However, in-
dependent redundant computation requires significant hard-
ware cost in terms of silicon area (100% extra hardware in
the case of DMR). Furthermore, continuous checking con-
sumes significant energy and requires part of the maximum
power envelope to be dedicated to it. In contrast, periodic

techniques check periodically the integrity of the hardware
without requiring redundant execution [28]. These tech-
niques rely on checkpointing and recovery mechanisms that
provide computational epochs and a substrate for specu-
lative unchecked execution. At the end of each computa-
tional epoch, the hardware is checked by on-chip testers. If
the hardware tests succeed, the results produced during the
epoch are committed and execution proceeds to the next
computational epoch. Otherwise, the system is deemed de-
fective and system repair and recovery are required.

The on-chip testers employed by periodic defect tolerance
techniques rely on the same Built-In-Self-Test (BIST) tech-
niques that are used predominantly during manufacturing
testing [6]. BIST techniques use specialized circuitry to gen-
erate test patterns and to validate the responses generated
by the hardware. There are two main ways to generate test



patterns on chip: (1) by using pseudo-random test pattern
generators, (2) by storing on-chip previously generated test
vectors that are based on a specific fault model. Unfortu-
nately, both of these approaches have significant drawbacks.
The first approach does not follow any specific testing strat-
egy (targeted fault model) and therefore requires extended
testing times to achieve good fault coverage [6]. The sec-
ond approach, not only requires significant hardware over-
head [7] to store the test patterns on chip, but also binds
a specific testing approach (i.e., fault model) into silicon.
On the other hand, as the nature of wearout-related silicon
defects and the techniques to detect them are under con-
tinuous exploration [10], binding specific testing approaches
into silicon might be premature and therefore undesirable.

As of today, hardware-based defect tolerance techniques
have one or both of the following two major disadvantages:

1. Cost: They require significant additional hardware to
implement a specific testing strategy,

2. Inflexibility: They bind specific test patterns and a spe-
cific testing approach (e.g., based on a specific fault model)
into silicon. Thus, it is impossible to change the testing
strategy and test patterns after the processor is deployed
in the field. Flexible defect tolerance solutions that can be
modified, upgraded, and tuned in the field are very desir-
able.

Motivation and Basic Idea: Our goal in this paper
is to develop a low-cost, flexible defect tolerance technique
that can be modified and upgraded in the field. To this
end, we propose to implement hardware defect detection and

diagnosis in software. In our approach, the hardware pro-
vides the necessary substrate to facilitate testing and the
software makes use of this substrate to perform the testing.
We introduce specialized Access-Control Extension (ACE)
instructions that are capable of accessing and controlling
virtually any portion of the microprocessor’s internal state.
Special firmware periodically suspends microprocessor exe-
cution and uses the ACE instructions to run directed tests
on the hardware and detect if any component has become
defective. To provide faster and more flexible software access
to different microarchitectural components at low hardware
overhead, our scheme leverages the pre-existing scan-chain
infrastructure [12] that is conventionally integrated in mi-
croprocessor designs today and used during manufacturing
testing.

Figure 1 shows how the ACE framework fits in the hard-
ware/software stack below the operating system layer. Our
approach provides particularly wide coverage, as it not only
tests the internal processor control and instruction sequenc-
ing mechanisms through software functional testing, but it
can also check all datapaths, routers, interconnect and mi-
croarchitectural components by issuing ACE instruction test
sequences. We provide a complete defect tolerance solution
by incorporating our defect detection and diagnosis tech-
nique in a coarse-grained checkpointing and recovery envi-
ronment. If an ACE test sequence detects that the under-
lying hardware is defective, the system disables the defec-
tive component and restores correct program state by rolling
back to the last known correct checkpoint.

1.1 Contributions
With this work we propose a novel software-based tech-

nique for online detection of hardware defects. We achieve
this through the following contributions:
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Figure 1: The ACE framework fits in the hard-
ware/software stack below the operating system.

• We provide architectural support to the software layer
that enables it to probe and control the underlying
microarchitectural state with a high degree of accessi-
bility and observability by introducing Access-Control
Extension (ACE) instructions.

• We propose the use of testing firmware that periodi-
cally suspends normal system operation and uses the
ACE instructions to check the integrity of the under-
lying hardware.

• We show that the flexibility of software-based defect
detection allows the testing techniques to be modi-
fied/upgraded in the field without requiring any hard-
ware changes. We also show that our technique can
be used in a flexible way to trade-off performance with
reliability (i.e., defect coverage).

• We propose a complete defect-tolerance solution that
has low hardware cost and performance overhead by
incorporating our software-based defect detection and
diagnosis technique within a checkpointing and recov-
ery environment.

• We extensively evaluate the effectiveness, performance
overhead, and area overhead of our technique on a
commercial CMP based on Sun’s Niagara [33]. Using
commercial ATPG tools and a detailed RTL imple-
mentation of the hardware support required for our
technique, we show that our technique can provide
defect tolerance for 99.2% of the chip area, requiring
only 5.8% area overhead. Through cycle-accurate sim-
ulation of SPEC CPU2000 benchmarks, we show that
the average performance overhead of our technique is
only 5.5%.

2. Software-Based Defect
Detection and Diagnosis

A key challenge in implementing a software-based defect
detection and diagnosis technique is the development of ef-
fective software routines to check the underlying hardware.
Commonly, software routines for this task suffer from the
inherent inability of the software layer to observe and con-
trol the underlying hardware, resulting in either excessively
long test sequences or poor defect coverage. Current micro-
processor designs allow only minimal access to their internal
state by the software layer; often all that software can access
consists of the register file and a few control registers (such
as the program counter (PC), status registers, etc.). Al-
though this separation provides protection from malicious
software, it also largely limits the degree to which stock
hardware can utilize software to test for silicon defects.
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Figure 2: A typical scan flip-flop (adapted from [17])

An example scenario where the lack of observability com-
promises the efficiency of software testing routines is a defec-
tive reorder buffer entry. In this scenario, a software-based
solution can detect such a situation only when the defect has
propagated to an accessible state, such as the register file,
memory, or a primary output. Moreover, without specific
knowledge as to how the architectural state was corrupted,
the diagnosis of the source cause of the erroneous result is
extremely challenging.1

To overcome this limited accessibility, we propose archi-
tectural support through an extension to the processor’s
ISA. Our extension adds a set of special instructions en-
abling full observability and control of the hardware’s inter-
nal state. These Access-Control Extension (ACE) instruc-
tions are capable of reading/writing from/to any part of the
microprocessor’s internal state. ACE instructions make it
possible to probe underlying hardware and systematically
and efficiently assess if any hardware component is defec-
tive.

2.1 An ACE-Enhanced Architecture
A microprocessor’s state can be partitioned into two parts:

accessible from the software layer (e.g., register file, PC,
etc.), or not (e.g., reorder buffer, load/store queues, etc.).
An ACE-enhanced microarchitecture allows the software
layer to access and control (almost) all of the microproces-
sor’s state. This is done by using ACE instructions that
copy a value from an architectural register to any other part
of the microprocessor’s state, and vice versa.

This approach inherently requires the architecture to ac-
cess the underlying microarchitectural state. To provide this
accessibility without a large hardware overhead, we leverage
the existing scan chain infrastructure. Most modern pro-
cessor designs employ full hold-scan techniques to aid and
automate the manufacturing testing process [12, 34]. In a
full scan design, each flip-flop of the processor state is sub-
stituted with a scan flip-flop and connected to form one or
more shift registers (scan chains) [6]. Figure 2 shows a typi-
cal scan flip-flop design [17, 12]. The system flip-flop is used
during the normal operating mode, while the scan portion
is used during testing to load the system with test patterns
and to read out the test responses. Our approach extends
the existing scan-chain using a hierarchical, tree-structured
organization to provide fast software access to different mi-
croarchitectural components.

1
The sole fact that a hardware fault had propagated to an observable

output does not provide information on where the defect originated.

ACE_set $src,<ACE Domain#>,<ACE Segment#> 
Copy src register to the scan state (scan portion)

ACE_get $dst,<ACE Domain#>,<ACE Segment#>
Load scan state to register dst

ACE_swap <ACE Domain#>,<ACE Segment#>
Swap scan state with processor state (system FFs)

ACE_test: Three cycle atomic operation.
Cycle 1: Load test pattern, Cycle 2: Execute for 
one cycle, Cycle 3: Capture test response

ACE_test <ACE Domain#>: Same as ACE_test but local 
to the specified ACE domain

Table 1: The ACE instruction set extensions

ACE Domains and Segments: In our ACE extension
implementation, the microprocessor design is partitioned
into several ACE domains. An ACE domain consists of
the state elements and combinational logic associated with
a specific part of the microprocessor. Each ACE domain
is further subdivided into ACE segments, as shown in Fig-
ure 3(a). Each ACE segment includes only a fixed number
of storage bits, which is the same as the width of an archi-
tectural register (64 bits in our design).

ACE Instructions: Using this hierarchical structure,
the ACE instructions can read or write any part of the mi-
croprocessor’s state. Table 1 shows a description of the ACE
instruction set extensions.
ACE set copies a value from an architectural register to

the scan state (scan portion in Figure 2) of the specified
ACE segment. Similarly, ACE get loads a value from the
scan state of the specified ACE segment to an architectural
register. These two instructions can be used for manipulat-
ing the scan state through software-accessible architectural
state. The ACE swap instruction is used for swapping the
scan state with the processor state (system FFs) of the ACE
segment by asserting both the UPDATE and the CAPTURE
signals (see Figure 2).

Finally, ACE test is a test-specific instruction that per-
forms a three-cycle atomic operation for orchestrating the
actual testing of the underlying hardware (see Section 2.2
for an example). ACE test is used after the scan state is
loaded with a test vector using the ACE set instruction. In
the first cycle, the scan state is swapped with the processor
state. The second cycle is the actual test cycle in which the
processor executes for one clock cycle.2 In the third cycle,
the processor state is swapped again with the scan state.
The last swap restores the processor state in order to con-
tinue normal execution and moves the test response back to
the scan state where it can be validated using the ACE get in-
struction. We also provide a version of ACE test that takes
as argument an ACE domain index, which allows testing to
be performed locally only in the specified domain.3

ACE Tree: During the execution of an ACE instruction,
data needs to be transferred from the register file4 to any
part of the chip that contains microarchitectural state. In
order to avoid long interconnect, which would require extra
repeaters and buffering circuitry, the data transfer between

2
Note that this is analogous to single-stepping in software debugging.

3
ACE test is logically the same as an atomic combination of ACE swap,

followed by a single test cycle, followed by another ACE swap.
4
Either from general-purpose architectural registers or from special-

purpose architectural registers.
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the register file and the ACE segments is pipelined through
the ACE tree, as shown in Figure 3(b). At the root of the
ACE tree is the register file while the ACE segments are its
leaves. At each intermediate tree level there is an ACE node

that is responsible for buffering and routing the data based
on the executed operation. The ACE tree is a bidirectional
tree allowing data transfers from the register file to the ACE
segments and back. By designing the ACE tree as a balanced
tree (all paths have the same length), each ACE instruction
that reads/writes any segment of the microprocessor state
takes the same number of clock cycles (i.e., the tree’s depth).
Note that ACE instructions can be executed in a pipelined
fashion over the ACE tree.

In a uniprocessor system the ACE topology is the simplest
possible, since it consists of a single ACE tree rooted at the
processor’s register file. However, CMP systems consist-
ing of several cores, on-chip caches, and supporting modules
such as memory controllers and cross-bars (i.e., non-core

modules) that might require more complex ACE topologies.
In CMP systems it is possible to design multiple ACE trees,
each originating from a distinct register file of the multiple
cores in the system. Since non-core modules usually do not
have instruction execution capabilities, they cannot include
an ACE tree of their own. Therefore, in our implementa-
tion, each core’s ACE tree spans over the core’s resources as
well as over non-core modules.

In order to avoid any malicious use of the ACE infras-
tructure, ACE instructions are privileged instructions that
can be used only by ACE firmware. ACE firmware routines
are special applications running between the operating sys-
tem layer and the hardware in a trusted mode, similarly to
other firmware, such as device drivers. Each microprocessor
vendor can keep the specific mapping between the micropro-
cessor’s state and the ACE domains/segments as classified
information for security reasons. Therefore, we expect that
ACE firmware will be developed by microprocessor vendors
and distributed to the customers.

2.2 ACE-Based Online Testing
ACE instruction set extensions make it possible to craft

programs that can efficiently and accurately detect underly-

ing hardware defects. The approach taken in building test
programs, however, must have high-coverage, even in the
presence of defects that might affect the correctness of ACE
instruction execution and test programs. This section de-
scribes how test programs are designed.

ACE Testing and Diagnosis: Special firmware peri-
odically suspends normal processor execution and uses the
ACE infrastructure to perform high-quality testing of the
underlying hardware. A test program exercises the under-
lying hardware with previously generated test patterns and
validates the test responses. Both the test patterns and the
associated test responses are stored in physical memory. The
pseudo-code of a firmware code segment that applies a test
pattern and validates the test response is shown in Figure 4.
First, the test program stops normal execution and uses the
ACE set instruction to load the scan state with a test pattern
(Step 1). Once the test pattern is loaded into the scan state,
a three-cycle atomic ACE test instruction is executed (Step
2). In the first cycle, the processor state is loaded with the
test pattern by swapping the processor state with the scan
state (as described in the previous section). The next cycle
is the actual test cycle where the combinational logic gener-
ates the test response. In the third cycle, by swapping again
the processor state with the scan state, the processor state
is restored while the test response is copied to the scan state
for further validation. The final phase (Step 3) of the test
routine uses the ACE get instruction to read and validate the
test response from the scan state. If a test pattern fails to
produce the correct response at the end of Step 3, the test
program indicates which part of the hardware is defective5

and disables it through system reconfiguration [27, 8]. If
necessary, the test program can run additional test patterns
to narrow down the defective part to a finer granularity.

Given this software-based testing approach, the firmware
designer can easily change the level of defect coverage by
varying the number of test patterns. As a test program ex-
ecutes more patterns, coverage increases. To generate com-
pact test pattern sets adhering to specific fault models we
use automatic test pattern generation (ATPG) tools [6].

5
By interpreting the correspondence between erroneous response bits

and ACE domains.



Step 1: Test Pattern Loading

// load test pattern to scan state
for(i=0;i<#_of_ACE_Domains;i++){
for(j=0;j<#_of_ACE_Segments;j++){
load    $r1,pattern_mem_loc
ACE_set $r1, i, j
pattern_mem_loc++

}

Step 2: Testing

// Three cycle operation
// 1)load test pattern 
// to processor state
// 2)execute for one cycle
// 3)capture test response &
// restore processor state
ACE_test

Step 3: Test Response Validation

// validate test response
for(i=0;i<#_of_ACE_Domains;i++){
for(j=0;j<#_of_ACE_Segments;j++){
load    $r1,test_resp_mem_loc
ACE_get $r2, i, j
if ($r1!=$r2) then ERROR else
test_resp_mem_loc++

}

Figure 4: ACE firmware: Pseudo-code for 1) loading a test pattern, 2) testing, and 3) validating the response.

Basic Core Functional Testing: When performing
ACE-based testing, there is one initial challenge to over-
come: ACE-based testing firmware relies on the correctness
of a set of basic core functionalities which load test patterns,
execute ACE instructions, and validate the test response. If
the core has a defect that prevents the correct execution of
the ACE firmware, then ACE testing cannot be performed
reliably. To bypass this problem, we craft specific programs
to test the basic functionalities of a core before running any
ACE testing firmware. If these programs do not report suc-
cess in a timely manner to an independent auditor (e.g., the
operating system running on the other cores), then we as-
sume that an irrecoverable defect has occurred on the core
and we permanently disable it. If the basic core functionali-
ties are found to be intact, finer-grained ACE-based testing
can begin. Although these basic functionality tests do not
provide high-quality testing coverage, they provide enough
coverage to determine if the core can execute the targeted
ACE testing firmware with a very high probability. A sim-
ilar technique employing software-based functional testing
was used for the manufacturing testing of Pentium 4 [21].

Testing Frequency: Device experts suggest that the
majority of wearout-related defects manifest themselves as
progressively slow devices before eventually leading to a per-
manent breakdown [3, 13]. Therefore, the initial observable
symptoms of most wearout-related defects are timing vio-
lations. To detect such wearout-related defects early, we
employ a test clock frequency that is slightly faster than
the operating frequency. We extend the existing dynamic
voltage/frequency scaling mechanisms employed in modern
processors [15] to support a frequency that is slightly higher
than the fastest used during normal operation.6

2.3 ACE Testing in a Checkpointing
and Recovery Environment

We incorporate the ACE testing framework within a mul-
tiprocessor checkpointing and recovery mechanism (e.g.,
SafetyNet [31] or ReVive [22]) to provide support for system-
level recovery. When a defect is detected, the system state
is recovered to the last checkpoint (i.e., correct state) after
the system is repaired.

In a checkpoint/recovery system, the release of a check-
point is an irreversible action. Therefore, the system must
execute the ACE testing firmware at the end of each check-
point interval to test the integrity of the whole chip. A
checkpoint is released only if ACE testing finds no defects.
With this policy, the performance overhead induced by run-

6
The safeguard margins used in modern microprocessors (to tolerate

process variation) allow the use of a slightly faster testing frequency

with a negligible number of false positives [9].

ning the ACE testing firmware depends directly on the
length of the checkpoint interval, that is, longer intervals
lead to lower performance overhead. We explore the trade-
off between checkpoint interval size and ACE testing perfor-
mance overhead in Section 4.5.

To achieve long checkpoint intervals, I/O operations need
to be handled carefully. I/O operations such as filesys-
tem/monitor writes or network packet transmissions are ir-
reversible actions and can force an early checkpoint termi-
nation. To avoid premature terminations, we buffer I/O
operations as proposed in [19]. Alternatively, the operating
system can be modified to allow speculative I/O operations
as described in [20], an option we have not explored.

2.4 Flexibility of ACE Testing
The software nature of ACE-based testing inherently pro-

vides a more flexible solution than hardwired solutions. The
major advantages offered by this flexibility are:

Dynamic tuning of the performance-reliability
trade-off: The software nature of ACE testing provides
the ability to dynamically trade-off performance with reli-
ability (defect coverage). For example, when the system is
running a critical application demanding high system reli-
ability, ACE testing firmware can be run more frequently
with higher quality and higher coverage targets (i.e., use
of different fault models and more test patterns). On the
other hand, when running a performance critical applica-
tion with relatively low reliability requirements (e.g., mpeg
decompression), the ACE testing frequency can be reduced.

Utilization-oriented testing: ACE testing allows the
system to selectively test only those resources utilized by the
running applications. For example, if the system is running
integer-intensive applications, there might be no need to test
unutilized FPU resources.

Upgradability: Both fault models and ATPG tools are
active research areas. Researchers continuously improve the
quality and coverage of the generated test patterns. There-
fore, during the lifetime of a processor, numerous advances
will improve the quality and test coverage of the ATPG pat-
terns. The software nature of ACE testing allows processor
vendors to periodically issue ACE firmware updates that can
incorporate these advances, and thus improve the defect de-
tection quality during the processor’s lifetime.

Adaptability: ACE testing allows vendors to adapt the
testing method based on in-the-field analysis of likely defect
scenarios. For example, if a vendor observes that the failure
of a specific processor is usually originating from a partic-
ular module, they can adapt the ACE testing firmware to
prioritize efforts on that particular module.
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Figure 5: ACE coverage of the OpenSPARC T1

processor: Modules that are dominated by SRAM
structures, such as on-chip caches, are not covered
by ACE testing since they are already protected by
ECC.

3. Experimental Methodology
To evaluate our software-based defect detection technique

we used the OpenSPARC T1 architecture, the open source
version of the commercial UltraSPARC T1 (Niagara) pro-
cessor from Sun [33], as our experimental testbed.

The OpenSPARC T1 processor implements the 64-bit
SPARC V9 architecture and targets commercial applications
such as application servers and database servers. It contains
eight SPARC processor cores, each with full hardware sup-
port for four threads. The eight cores are connected through
a crossbar to a unified L2 cache (3MB). The chip also in-
cludes four memory controllers and a shared FPU unit [33].

First, using the processor’s RTL code, we divided the pro-
cessor into ACE domains. We made this partition based on
functionality, where each domain comprises a basic function-
ality module in the RTL code. When dividing the processor
into ACE domains we excluded modules that are dominated
by SRAM structures (such as caches) because such modules
are already protected with error-coding techniques such as
ECC. Figure 5 shows the processor modules covered by the
ACE framework (note that the L1 caches within each core
are also excluded). Overall, our RTL implementation of the
ACE framework consists of 79 ACE domains, each domain
including on average 45 64-bit ACE segments. The whole
chip comprises roughly 235K ACE-accessible bits.

Next, we used the Synopsys Design Compiler to synthesize
each ACE domain using the Artisan IBM 0.13um standard
cell library. We used the Synopsys TetraMAX ATPG tool
to generate the test patterns. TetraMAX takes as input
the gate-level synthesized design, a fault model, and a test
coverage target and tries to generate the minimum set of
test patterns that meet the test coverage target.

Fault Models: In our studies we explored several single-
fault models: stuck-at, N-detect and path-delay. The stuck-
at fault model is the industry standard model for test pat-
tern generation. It assumes that a circuit defect behaves as a
node stuck at 0 or 1. However, previous research has shown
that the test pattern sets generated using the N-detect fault
model are more effective for both timing and hard failures,

and present higher correlation to actual circuit defects [16,
10]. In the N-detect test pattern sets, each single stuck-
at fault is detected by at least N different test patterns.
As expected, the benefit of more effective testing by using
the N-detect model comes with the overhead of larger test
pattern set sizes and longer testing times. To provide the
flexibility of dynamically trading off between reliability and
performance, we generate test pattern sets using both fault
models.

In addition to the stuck-at and N-detect fault models, we
also generate test pattern sets using the path-delay fault
model [6]. This fault model tests the design for delay faults
that can cause timing violations. The test patterns gener-
ated using the path-delay fault model exercise the circuit’s
paths at-speed to detect whether a path is too slow due to
manufacturing defects, wearout-related defects, or process
variation.

Benchmarks: We used a set of benchmarks from the
SPEC CPU2000 suite to evaluate the performance over-
head and memory logging requirements of ACE testing. All
benchmarks were run with the reference input set.

Microarchitectural Simulation: To evaluate the per-
formance overhead of ACE testing, we modified the SESC
simulator [25] to simulate a SPARC core enhanced with the
ACE framework. The simulated SPARC core is a 6-stage,
in-order core (with 16KB IL1 and 8KB DL1 caches) running
at 1GHz [33].7 For each simulation run, we skipped the first
billion instructions and then performed cycle-accurate sim-
ulation for different checkpoint interval lengths (10M, 100M
and 1B dynamic instructions). To obtain the number of
clock cycles needed for ACE testing, we simulated a process
that was emulating the ACE testing functionality.

Experiments to Determine Memory Logging Re-
quirements: To evaluate the memory logging storage re-
quirements of coarse-grained checkpointing, we used the Pin
x86 binary instrumentation tool [14]. We wrote a Pin tool
that measures the storage needed to buffer the cache lines
written back from the L2 cache to main memory during
a checkpoint interval, based on the ReVive checkpointing
scheme [22]. Note that only the first L2 writeback to a
memory address during the checkpoint interval causes the
old value of the cache line to be logged in the buffer. 64
bytes (same as our cache line size) are logged for each L2
writeback. Benchmarks were run to completion for these
experiments.

RTL Implementation: We implemented the ACE tree
structure in RTL using Verilog in order to obtain a de-
tailed and accurate estimate of the area overhead of the
ACE framework. We synthesized our design of the ACE
tree using the same tools, cell library and methodology that
we used for synthesizing the OpenSPARC T1 modules, as
described earlier in this section.

4. Experimental Evaluation
4.1 Basic Core Functional Testing

Before running the ACE testing firmware, we first run a
software functional test to check the core for defects that
would prevent the correct execution of the testing firmware.
If this test does not report success in a timely manner to an
independent auditor (i.e., the OS running on other cores),

7
SESC provides a configuration file for the OpenSPARC T1 proces-

sor, which we used in our experiments.



Memory Error 
(6.49%)

Illegal 
Execution 
(1.40%)

Early 
Termination 

(0.49%)

Execution 
Timeout 
(1.57%)

Control Flow 
Assertion 
(7.45%)

Register 
Access 

Assertion 
(23.36%)

Incorrect 
Execution 
Assertion 
(21.38%)

Undetected 
Faults 

(37.86%)

Control Flow Assertion Incorrect execution during the control flow test.

Register Access Assertion Incorrect execution during the register access test.

Incorrect Execution Assertion The final result of the test is incorrect.

Early Termination The execution terminated without executing all the 
instructions (wrong control flow)

Execution Timeout The test executed for more than the required clock cycles 
(wrong control flow, e.g., infinite loop)

Illegal Execution The test executed an illegal instruction (e.g., an
instruction with an invalid opcode)

Memory Error Memory request for an invalid memory address

Undetected Fault The test executed correctly

Figure 6: Fault coverage of basic core functional testing: The pie chart on the right shows the distribution
of the outcomes of a fault injection campaign on a 5-stage in-order core running the purely software-based
preliminary functional tests.

the test is repeated to verify that the failing cause was not
transient. If the test fails again then an irrecoverable core
defect is assumed, the core is disabled, and the targeted tests
are canceled.

The software functional test we used to check the core con-
sists of three self-validating phases. The first phase runs a
basic control flow check where 64 basic blocks are executed
in a non-sequential control flow and each of the 64 basic
blocks sets the value of a bit in a 64-bit architectural regis-
ter. At the end of the phase, a control flow assertion checks
the value of the register to determine whether or not the
execution was correct. The second phase checks the core’s
capability to access the register file. This phase consists of
a sequence of data-dependent ALU instructions that even-
tually read and write all architectural registers. At the end
of this phase, the final result of this chain of computation is
checked by an assertion. The final phase of the basic core
test consists of a sequence of dependent instructions that
uses each of the instructions in the ISA at least once. The
final result of the functional test is checked by an assertion
that validates the last generated value. The total size of the
software functional test is about 700 dynamic instructions.

To evaluate the effectiveness of the basic core test, we per-
formed a stuck-at fault injection campaign on the gate-level
netlist of a synthesized 5-stage in-order core (similar to the
SPARC core with the exception of multithreading support).
Figure 6 shows the distribution of the outcomes of the fault
injection campaign. Overall, basic core test successfully de-
tected 62.14% of the injected faults. The remaining 37.86%
of the injected faults lied in parts of the core’s logic that do
not affect the core’s capability of executing simple programs
such as the basic core test and the ACE testing firmware.
ACE testing firmware will subsequently test these untested
areas of the design to provide full core coverage.

These results also demonstrate that software-based func-
tional tests that, unlike the ACE testing firmware, do not
have access/control on the core’s internal state, are inade-
quate to provide a high-quality, high-coverage test of the
underlying hardware. Similar software functional testing
techniques were used for the manufacturing testing of the
Intel Pentium 4 [21]. The coverage of these tests as reported
in [21] is in the range of 70% which corroborates the results
we observed from our fault-injection campaign on a simpler
Niagara-based core.

4.2 ACE Testing Latency and Coverage
An important metric for measuring the efficiency of our

technique is how long it takes to fully check the underly-
ing hardware for defects. The latency of testing an ACE
domain depends on (1) the number of ACE segments it con-
sists of and (2) the number of test patterns that need to
be applied. In this experiment, we generate test patterns
for each individual ACE domain in the design using three
different fault models (stuck-at, path-delay and N-detect)
and the methodology described in Section 3. Table 2 lists
the number of test instructions needed to test each of the
major modules in the design (based on the ACE firmware
code shown in Figure 4).

For the stuck-at fault model, the most demanding mod-
ule is the SPARC core, requiring about 150K dynamic test
instructions to complete the test. Modules dominated by
combinational logic, such as the SPARC core, the DRAM
controller, the FPU, and the I/O bridge are more demand-
ing in terms of test instructions. On the other hand, the
CPU-cache crossbar that consists mainly of buffer queues
and interconnect requires much fewer instructions to com-
plete the tests.

For the path-delay fault model, we generate test pattern
sets for the critical paths that are within 5% of the clock pe-
riod. The required number of test instructions to complete
the path-delay tests is usually less than or similar to that
required by the stuck-at model. Note that, with these path-
delay test patterns, a defective device can cause undetected
timing violations only if it is not in any of the selected crit-
ical paths and it causes extra delays greater than 5% of the
clock period. We believe that this probability is extremely
low, however, stricter path selection strategies can provide
higher coverage if deemed necessary (with a higher testing
latency). In our design we found that our path selection
strategy does not lead to a large number of selected paths.
However, in designs where delays of the majority of paths
are within 5% of the clock period, more sophisticated path
selection strategies can keep the number of selected paths
low while maintaining high test coverage [18].

For the N-detect fault model, the number of test instruc-
tions is significantly more than that needed for the stuck-at
model. This is because many more test patterns are needed
to satisfy the N-detect requirement. For values of N higher
than four, we observed that the number of test patterns gen-



Module Area (mm2) ACE Accessible 
Bits 

Stuck-at 
Test Insts 

Test  
Coverage (%) 

Path-Delay 
Test Insts 

N-detect Test Insts 
N = 2 N = 4 

SPARC CPU Core  (sparc) 8x17=136 8x19772=158176 152370 100.00 110985 234900 434382 
CPU-Cache Crossbar (ccx) 14.0 27645 67788 100.00 10122 117648 200664 
Floating Point Unit (fpu) 4.6 4620 88530 99.95 31374 126222 212160 
e-Fuse Cluster (efc) 0.2 292 11460 94.70 4305 33000 68160 
Clock and Test Unit (ctu) 2.3 4205 68904 92.88 10626 126720 240768 
I/O Bridge (iobdg) 4.9 10775 110274 100.00 31479 171528 316194 
DRAM controller (dram_ctl) 2x6.95=13.9 2x14201=28402 122760 91.44 126238 204312 365364 
Total 175.9 234115  99.22    
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Table 2: Number of test instructions needed to test each of the major modules in the design.
�

Module Cores [0,1] Test Insts Cores [2,4] Test Insts Cores [3,5] Test Insts Cores [6,7] Test Insts 
Stuck-at Path-delay Stuck-at Path-delay Stuck-at Path-delay Stuck-at Path-delay 

1 x SPARC CPU Core 152370 110985 152370 110985 152370 110985 152370 110985 
1/8 x CPU-Cache Crossbar 8474 1265 8474 1265 8474 1265 8474 1265 
1/2 x Floating Point Unit       44265 15687 
1/2 x e-Fuse Cluster     5730 2153   
1/2 x Clock and Test Unit 34452 5313       
1/2 x I/O Bridge   55137 15740     
1/2 x DRAM controller (pair)   61380 63119 61380 63119   
Total 195296 117563 277361 191109 227954 177522 205109 127937 
Stuck-at + Path-delay total 312859 468470 405476 333046 

�

�

 

�

�

�

Table 3: Number of test instructions needed by each core pair in full-chip distributed testing: The testing
process is distributed over the chip’s eight SPARC cores. Each core is assigned to test its resources and some
parts of the surrounding non-core modules as shown in this table.

erated increases almost linearly with N, an observation that
is aligned with previous studies [16, 10].

Full Test Coverage: The overall chip test coverage for
the stuck-at fault model is 99.22% (shown in Table 2). The
only modules that exhibit test coverage lower than 99.9% are
the e-Fuse cluster, the clock and test unit, and the DRAM
controllers, which exhibit the lowest test coverage at 91.44%.
The relatively low test coverage in these modules is due to
ATPG untestability of some portions of the combinational
logic. In other words, no test patterns exist that can set
a combinational node to a specific value (lack of controlla-
bility), or propagate a combinational node’s value to an ob-
servable node (lack of observability). If necessary, a designer
can eliminate this shortcoming by adding dummy intermedi-
ate state elements in the circuit to enable controllability and
observability of the ATPG untestable nodes. The test cov-
erage for the two considered N-detect fault models is slightly
less than that of the stuck-at model, at 98.88% and 98.65%,
respectively (not shown in Table 2 for simplicity).

4.3 Full-Chip Distributed Testing
In the OpenSPARC T1 architecture, the hardware test-

ing process can be distributed over the chip’s eight SPARC
cores. Each core has an ACE tree that spans over the core’s
resources and over parts of the surrounding non-core mod-
ules (e.g., the CPU-cache crossbar, the DRAM controllers
etc.). Therefore, each core is assigned to test its resources
and some parts of the surrounding non-core modules.

We distributed the testing responsibilities of the non-core
modules to the eight SPARC cores based on the physical
location of the modules on the chip (shown in Figure 5).
Table 3 shows the resulting distribution. For example, each
of the cores zero and one are responsible for testing a full
SPARC core, one eighth of the CPU-cache crossbar and one
half of the clock and test unit. Therefore, cores zero and

one need 195K dynamic test instructions to test for stuck-
at faults and 117K instructions to test for path-delay faults
in the parts of the chip they are responsible for. Note that
the ACE tree of a core is designed such that it covers all the
non-core areas that the core is responsible for testing.

The most heavily loaded pair of cores are cores two and
four. Each of these two cores is responsible for testing its
own resources, one eighth of the CPU-cache crossbar, one
half of the DRAM controller and one half of the I/O bridge,
for a total of 468K dynamic test instructions (for both stuck-
at and path-delay testing). The overall latency required to
complete the testing of the entire chip is driven by these
468K dynamic test instructions, since all the other cores
have shorter test sequences and will therefore complete their
tests sooner.

4.4 Memory Logging Requirements of
Coarse-grained Checkpointing

The performance overhead induced by running the ACE
testing firmware depends on the testing firmware’s execu-
tion time and execution frequency. When ACE testing is
coupled with a checkpointing and recovery mechanism, in
order to reduce its execution frequency, and therefore its
performance overhead, coarse-grained checkpointing inter-
vals are required.

Figure 7 explores the memory logging storage require-
ments for such coarse-grained checkpointing intervals on the
examined SPEC CPU2000 benchmarks. The memory log
size requirements are shown for a system with a 2MB L2
data cache (recall that memory logging is performed only
for the first L2 writeback of a cacheline to main memory in a
checkpoint interval [22]). For each benchmark, we show the
average and maximum required memory log size for intervals
of 10 million, 100 million and 1 billion executed instructions.
The maximum metric keeps track of the maximum memory
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Figure 8: Performance overhead of ACE testing for a 100M instructions checkpoint interval.

log size required in any of the checkpoint intervals during
the benchmark’s execution, while the average metric aver-
ages the memory log size requirement over all the checkpoint
intervals (note that the benchmarks were ran to completion
with the reference inputs).

We observe that when considering checkpoint intervals
that are in the order of 100 million executed instructions,
the average memory log size requirements are in the range
of a few kilobytes to 10MB. The most demanding bench-
mark is swim: on average it requires 1.8MB, 10MB and
91.4MB respectively for checkpoint intervals of 10M, 100M
and 1B instructions. Since the memory log will be main-
tained at the system’s physical memory, the results of this
experiment suggest that checkpoint intervals of hundreds
of millions of executed instructions are sustainable with in-
significant memory storage overhead.8

4.5 Performance Overhead of ACE Testing
Figure 8 shows the performance overhead of ACE testing

when the checkpoint interval is set to 100M instructions.
At the end of each checkpoint interval, normal execution is
suspended and ACE testing is performed. In these exper-

8
Note that most current systems are equipped with at least 2GB of

physical memory.

iments, the ACE testing firmware executes until it reaches
the maximum test coverage. The four bars show the perfor-
mance overhead when the fault model used in ACE testing is
i) stuck-at, ii) stuck-at and path-delay, iii) N-detect (N=2)
and path-delay, and iv) N-detect (N=4) and path-delay.

The minimum average performance overhead of ACE test-
ing is 5.5% and is observed when only the industry-standard
stuck-at fault model is used. When the stuck-at fault model
is combined with the path-delay fault model to achieve
higher testing quality, the average performance overhead in-
creases to 9.8%. When test pattern sets are generated using
the N-detect fault model, the average performance overhead
is 15.2% and 25.4%, for N=2 and N=4 respectively.

Table 4 shows the trade-off between memory logging stor-
age requirements and performance overhead for checkpoint
intervals of 10M, 100M and 1B dynamic instructions. Both
log size and performance overhead are averaged over all eval-
uated benchmarks. As the checkpoint interval size increases,
the required log size increases, but the performance overhead
of ACE testing decreases. We conclude that checkpoint in-

tervals in the order of hundreds of millions of instructions

are sustainable with reasonable storage overhead, while pro-

viding an efficient substrate to perform ACE testing with low

performance overhead.
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Checkpoint 
Interval

Average Memory 
Log Size (MB)

Perf. Overhead (%)  
(Stuck-at)

Perf. Overhead (%)  
(Stuck-at + Path Delay)

10M Instr. 0.48 53.74 96.91
100M Instr. 2.59 5.46 9.85
1B Instr. 14.94 0.55 0.99

Table 4: Memory log size and ACE testing perfor-
mance overhead for different checkpoint intervals.

4.6 Performance-Reliability Trade-off
The test coverage achieved by the testing firmware in-

creases as more test instructions are executed (and there-
fore more test patterns are applied). However, the relation
between the number of executed test instructions and the
test coverage level is not linear. Figure 9(a) shows the num-
ber of executed test instructions versus the test coverage
obtained for each of the major modules (using the stuck-
at fault model). We observe that for some of the modules
there is an exponential increase in the number of instructions
needed to earn the last few percentage points of coverage.
For example, the number of dynamic instructions required
to achieve 100% test coverage for the SPARC core is ap-
proximately 152K, almost twice the number of instructions
required to achieve 93% coverage.

This observation suggests that there is plenty of opportu-
nity to dynamically tune the performance-reliability trade-
off in our ACE testing framework. Figure 9(b) shows the test
coverage (for the stuck-at model) versus the performance
overhead for each core pair (based on the testing partition
described in Section 4.3). The results demonstrate that we
can dynamically trade-off test coverage for reductions in the
performance overhead of testing. For example, the perfor-
mance overhead for cores two and four to reach 89% test
coverage is only 3%. This is a 46% reduction from the per-
formance overhead of 5.5% to reach 98.7% test coverage. We
conclude that the software-based nature of the ACE testing
provides a flexible framework to trade-off between test cov-
erage, test quality, and performance overhead.

4.7 ACE Tree Implementation and Area Overhead
The area overhead of the ACE framework is dominated

by the ACE tree. In order to evaluate this overhead, we
implemented the ACE tree for the OpenSPARC T1 archi-
tecture in Verilog and synthesized it with the Synopsys De-

sign Compiler. Our ACE tree implementation consists of
data movement nodes that transfer data from the tree root
(the register file) to the tree leaves (ACE segments) and vice

versa. In our implementation, each node has four children
and therefore in an ACE tree that accesses 32K bits (about
1/8 of the OpenSPARC T1 architecture), there are 42 inter-
nal tree nodes and 128 leaf nodes, where each leaf node has
four 64-bit ACE segments as children. Figure 10(a) shows
the topology of this ACE tree configuration, which has the
ability to directly access any of the 32K bits. To cover the
whole OpenSPARC T1 chip with the ACE framework we
used eight such ACE trees, one for each SPARC core. The
overall area overhead of this ACE framework configuration
(for all eight trees) is 18.7% of the chip area.

In order to contain the area overhead of the ACE frame-
work, we propose a hybrid ACE tree implementation that
combines the direct processor state accessibility of the previ-
ous implementation with the existing scan-chain structure.
In this hybrid approach, we divide the 32K ACE-accessible
bits into 64 512-bit scan chains. Each scan chain has 64 bits
that can be directly accessed through the ACE tree. The
reading/writing to the rest of the bits in the scan chain is
done by shifting the bits to/from the 64 directly accessible
bits. Figure 10(b) shows the topology of the hybrid ACE
tree configuration. The overall area overhead of the ACE
framework when using the hybrid ACE tree configuration is
5.8% of the chip area.

Notice that although the hybrid ACE tree is a less flexible
ACE tree configuration, it does not affect the latency of the
ACE testing firmware. The ACE testing firmware accesses
the 64 scan chains sequentially. Since there is an interval
of at least 64 cycles between two consecutive accesses to
the same scan chain, data can be shifted from/to the direct
access portion of the chain to/from the rest of the scan chain
without producing any stall cycles. For example, during test
pattern loading, each 64-bit parallel load to a scan chain
is followed by 64 cycles of scan chain shifting. While the
parallel loaded data is shifted into the rest of the scan chain
in an ACE segment, the testing firmware loads the rest of
the scan chains in the other 63 ACE segments. By the time
the testing firmware loads the next 64 bits to the scan chain,
the previous 64 bits have already been shifted into the scan
chain. Similarly, during test response reading, each parallel
64-bit data read is followed by shifting cycles that move the
next 64 bits from the scan chain to the direct access portion.
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5. Related Work
Hardware-based Reliability Techniques: The previ-

ous work most closely related to ours is [28]. [28] proposed
a hardware-based technique that utilizes microarchitectural
checkpointing to create epochs of execution, during which
on-chip distributed BIST-like testers validate the integrity
of the underlying hardware. To lower silicon cost, the testers
were customized to the tested modules. However, this leads
to increased design complexity because a specialized tester
needs to be designed for each module.

A traditional defect detection technique that is predom-
inantly used for manufacturing testing is logic BIST [6].
Logic BIST incorporates pseudo-random pattern generation
and response validation circuitry on the chip. Although on-
chip pseudo-random pattern generation removes any need
for pattern storage, such designs require a large number of
random patterns and often provide lower fault coverage than
ATPG patterns [6].

Our work improves on these previous works due to the fol-
lowing major reasons: 1) it effectively removes the need for
on-chip test pattern generation and validation circuitry and
moves this functionality to software, 2) it is not hardwired
in the design and therefore has ample flexibility to be modi-
fied/upgraded in the field (as described in Section 2.4), 3) it
has higher test coverage and shorter testing time because it
uses ATPG instead of pseudo-randomly generated patterns;
and compared to [28] 4) it can be uniformly applied to any
microprocessor module with low design complexity because
it does not require module-specific customizations, and 5)
it provides wider coverage across the whole chip, including
non-core modules.

Previous works proposed the creation of external circuitry
fabricated from reliable devices to periodically test the hard-
ware design and to reconfigure faulty parts [1, 11]. In con-
trast to these works, we propose that the periodic tests be
performed by software instead (assisted by ISA extensions)
in order to minimize the area cost of testing and to allow
more flexibility and adaptability.

Numerous other previous works proposed hardware-based
defect tolerance techniques, such as [2, 4, 5]. However, these
works focused on providing hardware-based reliability solu-
tions that are limited to processing cores in uniprocessor sys-
tems and do not address the testability of non-core modules
that are abundant especially in chip-multiprocessor designs.

More recently, Smolens et al. [30] proposed a detection
technique for emerging wearout defects that periodically

runs functional tests that check the hardware under reduced
frequency guardbands. Their technique leverages the exist-
ing scan chain hardware for generating hashed signatures
of the processor’s microarchitectural state summarizing the
hardware’s response to periodic functional tests. This tech-
nique allows the software to observe a signature of the mi-
croarchitectural state, but it does not allow the software to
directly control (i.e., modify) the microarchitectural state.
In contrast, our approach provides the software with direct
and fast access and control of the scan state using the ACE
infrastructure. This direct access and control capability al-
lows the software to run online directed hardware tests on
any part of the microarchitectural state using high-quality
test vectors (as opposed to functional tests that do not di-
rectly control the microarchitectural state and do not adhere
to any fault model). Furthermore, the proposed direct fast
access to the scan state enables the validation of each test re-
sponse separately (instead of hashing and validating all the
test responses together), thereby providing finer-grained de-
fect diagnosis capabilities and higher flexibility for dynamic
tuning between performance overhead (i.e., test length) and
test coverage.

Software-based Reliability Techniques: To our
knowledge, this is the first work that proposes a software-
based technique for online hardware defect detection and
diagnosis. Only one previous work we are aware of [21] em-
ployed purely software-based functional testing techniques
during the manufacturing testing of the Intel Pentium 4 pro-
cessor (see Section 2.2 for a discussion of this work). In our
approach, we use a similar functional testing technique (our
“basic core functional test” program) to check the basic core
functionality before running the ACE firmware to perform
directed, high-quality testing.

There are numerous previous works, such as [24, 26], that
proposed the use of software-based techniques for online de-
tection of soft errors. However, none of them addresses the
problem of online defect detection.

Checkpointing Mechanisms: There is also a large
body of work proposing various versions of checkpointing
and recovery techniques [31, 22, 19]. Both SafetyNet [31]
and ReVive [22] provide general-purpose checkpointing and
recovery mechanisms for shared memory multiprocessors.
Our defect detection and diagnosis technique is closely cou-
pled with such techniques in providing a substrate of coarse-
grained checkpoint intervals that enable efficient ACE test-
ing with low performance overhead.



6. Summary & Conclusions
We introduced a novel, flexible software-based technique,

ISA extensions, and microarchitecture support to detect and
diagnose hardware defects during online operation of a chip-
multiprocessor. Our technique uses the Access-Control Ex-
tension (ACE) framework that allows special ISA instruc-
tions to access and control virtually any part of the proces-
sor’s internal state. Based on this framework, we proposed
the use of special firmware that periodically suspends the
processor’s execution and performs high-quality testing of
the underlying hardware to detect defects.

Using a commercial ATPG tool and three different fault
models, we experimentally evaluated our ACE testing tech-
nique on a commercial chip-multiprocessor design based on
Sun’s Niagara. Our experimental results showed that ACE
testing is capable of performing high-quality hardware test-
ing for 99.22% of the chip area, while itself requiring an area
overhead of only 5.8% of the chip area based on our detailed
RTL-level implementation.

We demonstrated how ACE testing can be coupled seam-
lessly with a coarse-grained checkpointing and recovery
mechanism to provide a complete defect tolerance solution.
Our evaluation shows that, with coarse-grained checkpoint
intervals, the average performance overhead of ACE testing
is only 5.5%. Our results also show that the software-based
nature of ACE testing provides ample flexibility to dynam-
ically tune the performance-reliability trade-off at runtime
based on system requirements.

7. Future Directions
Looking forward, we believe that the ACE framework is a

very general framework that can be helpful in several other
applications to amortize its cost. Here, we briefly list two
of the possible applications of the ACE framework we are
currently investigating:

Post-silicon Debugging: With device scaling enter-
ing the nanometer regime, traditional techniques used for
post-silicon debugging are becoming less viable. Recently
proposed solutions have considerable area overheads and
still do not provide complete accessibility to the processor’s
state [23]. We believe the ACE framework can be an attrac-
tive low-overhead framework that provides the post-silicon
debug engineers with full accessibility and controllability of
the processor’s internal state at runtime.

Manufacturing Testing: Today, the processor manu-
facturing testing process uses automatic test equipment and
scan chains for testing the manufactured parts. However,
the testers are costly, and they have a limited number of
channels designed to drive the scan chains and the pattern
loading speed is limited by the maximum scan frequency.
We believe that the use of the ACE infrastructure for ap-
plying test patterns to the design under test can improve
both the speed and the cost of the manufacturing testing
process.
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