
Finding complex disjunctive decompositions of logic functions.

Maurizio Damiani
Synopsys, Inc.

Mountain View, CA 94043
maurizio@synopsys.com

Valeria Bertacco
Computer Systems Lab.

Stanford University
valeria@stanford.edu

Abstract

This paper extends the previous work [1] on simple dis-
junctive decompositions to the important case of complex
disjunctive decompositions. We pinpoint the sources of ad-
ditional complexity of handling this decomposition style,
and relate it to the existence of encoding don’t carecon-
ditions [2]. We define two classes of complex decomposi-
tions, almost- and perfect decompositions, respectively.
For these decompositions, the decomposition problem can
be separated from the encoding problem. From a theoreti-
cal standpoint, we prove that a logic function has a unique
perfect decomposition. For a given function, both types of
decomposition can be found by an efficient decomposition
algorithm, that contains the one presented in [1] as spe-
cial case. Preliminary experimental results are extremely
encouraging.

1 Introduction.
The decomposition of a logic functionF is the process

of passing from a lumped representation ofF (such as a
BDD [3, 4] or a cover) to a multiple-level representation
[5, 6, 7, 8, 9, 10].

A disjunctive decomposition seeks explicitly a tree-like
multiple-level representation, so that no two logic blocks
(the tree nodes) share inputs. Disjunctive decomposi-
tions are desirable because input wires are clustered into
smaller blocks, thereby generally resulting in simpler rout-
ing. Moreover, the designer (or design tools) can focus
optimization on smaller individual blocks. Disjunctive de-
compositions are further classified intosimple andcomplex.
In simple disjunctive decompositions, each logic block ap-
pearing in the tree is a single-output function. In complex
decompositions, instead, each logic block can output multi-
ple functions.

Fig. (1) exemplifies simple and complex decomposition
topologies for a function.k1, k2; � � � km denote bus widths.
The functionsAi are single-output functions for simple de-
composition, and multiple-output blocks for complex de-
compositions.

Because of their importance, procedures for decompos-
ing logic functions have been a central subject of research in
CAD and switching theory. Factorization can be regarded
as a special case of decomposition [11], and it represents
the cornerstone of algebraic multiple-level logic optimiza-
tion techniques [12].

Recently, an algorithm was presented in [1] for deriving
efficiently a simple disjunctive decomposition of a function
from a BDD representation. The exactness and efficiency of
the procedure stem from several desirable properties of the
BDD representation as well as from the uniqueness of the

x

L

. . .

A

A

A

1

2

1

x
2

xn

m

x

L

. . .

A

A

A

1

2

1

x
2

xn

m

k

k

k

1

2

m

(a) (b)

Figure 1. Simple disjunctive decomposition (a) and
complex disjunctive decomposition (b) tree struc-
tures

decomposition. For an-input functionF , the complexity
isO(njV j2), wherejV j denotes the number of nodes in the
BDD representation ofF .

Complex decompositions are clearly more attractive than
simple decompositions. Yet, as will be illustrated later, the
number and nature of the degrees of freedom available for
decomposing a function make it very difficult to find a gen-
eral, efficient, and exact decomposition technique.

In this paper we consider two special classes of com-
plex decompositions, namely,almost-perfect andperfect
. We show that perfect decompositions have all the desir-
able properties of simple decompositions. In particular, we
prove that a function has aunique perfect decomposition.
We show that this decomposition can be found efficiently.
Moreover, it is possible to provide an accurate upper bound
on the complexity of the algorithm, and trade off CPU time
for quality of results.

The rest of the paper is organized as follows. First, we
consider the problem of finding general complex decompo-
sitions, and point out the sources of difficulty. We then in-
troduce the two new decomposition classes, and prove the
uniqueness result. Section (4) contains a description of the
decomposition algorithm. Eventually, we present experi-
mental results.

2 Classification of decompositions.
This section introduces the basic terminology.
We denote byB the Boolean setf0; 1g.

Definition 1. A disjunctive decomposition of a n-input
function F is defined as follows:

1. a root functionR(x1; � � � ; xm); the inputs xi are termed
formal inputsof R;

2. a list of disjoint-support multiple output functions Ai :
Bni ! Bki , termed input functions.. The quantities

1



ki; ni have the property:
X

i

ki = m;
X

i

ni = n (1)

3. a port binding from the outputs of each component of
Ai to the formal inputs of R : Ai ) (xi1 ; � � � ; xiki ).

2

In practice, it is convenient to assume that the inputs of
F are given a total order, for example the BDD order. The
functionsAi can then be listed according to the relative
ranking of their top variable, and a default port binding can
be assumed. A synthetic representation of a decomposition
of F can then be(R;A1; � � � ;Al).

Fig. (1.b) shows pictorially the type of disjunctive de-
compositions considered here. Simple disjunctive decom-
positions are defined byki = 1; i = 1; � � �. A decomposi-
tion is termedcomplex if ki > 1 for somei.

Intuitively, the space of complex decompositions for a
function is much larger than that of simple decompositions,
and probably far less structured. Indeed, the following ex-
ample shows that a function may have many “essentially
different ” complex decompositions:

Example 1. Consider a functionF , with decomposition
R =MAJORITY (x1; x2; x3); (2)

x1 = a� b; (3)
x2 = bc; (4)
x3 = d; (5)

It can be cast in the framework of Definition (1) by taking
R = MAJORITY (x1; x2; x3); A1 = (a � b; bc), and
A2 = d. Sinceb is shared by two outputs, it is a complex
decomposition.

The functionA1 can assert all four possible combina-
tions00; 01; 10; 11. On the other hand, because of the sym-
metries ofMAJORITY , for A1 the output combination
01 is equivalent to10. Therefore,A1 could be replaced by
a different functionAA1, for instance producing only com-
binations00; 01; 11. 2

In the above example, we were able to change “signifi-
cantly” the behavior ofA1 because of the equivalences of
the functionMAJORITY . The functionMAJORITY ,
however, may now be modified as well:

Example 2. Consider the new decomposition, obtained af-
ter replacingA1 withAA1. The new functionAA1 cannot
assert the output combination10. Therefore, the input com-
binations10� are impossible at the input ofMAJORITY ,
and correspond to input don’t cares for it. The function
MAJORITY (x1; x2; x3) could then be replaced by a dif-
ferent function. For instance, if the output corresponding to
the don’t care entries is set to 1, thenMAJORITY can be
replaced byAO(x1; x2; x3) = x1 + x2x3. 2

A root of the multiplicity of decompositions in the above
examples can be traced to the fact thatMAJORITY is a
“lossy” function. We now showwhy this multiplicity makes
it difficult to decompose a function from its BDD represen-
tation.

Example 3. Consider the functionF , decomposed as :
R =MAJORITY (x1; x2; x3); (6)

(x1; x2) = (a� b; b� c); (7)
x3 = d; (8)

Suppose the root variable ofF is a. The two cofactors ofA
would have decomposition :

R =MAJORITY (x1; x2; x3); (9)
(x1; x2) = (b; b� c); (10)

x3 = d; (11)
and

R =MAJORITY (x1; x2; x3); (12)

(x1; x2) = (b0; b� c); (13)
x3 = d; (14)

respectively. A local search algorithm could recognize the
topological similarities of the two cofactors and infer a de-
composition fromF from these similarities. This is pre-
cisely what happens in the case of simple decompositions
[1]. In this case, however,MAJORITY may be replaced
byAO in one of the cofactors, or the input functions some-
how altered. This makes comparisons substantially more
difficult. 2

3 (Almost) Perfect decompositions.
We now introduce perfect functions and decompositions,

and show their univocity.

3.1 Almost perfect (AP) decompositions.
The notion of AP decompositions stems directly from

the examples in Section (2). We want to avoid decomposi-
tions where the root function has “equivalences” and where
the input functions are allowed not to assert all possible out-
put values. We formalize this notion of “equivalences” as
follows.

Definition 2. Consider a decomposition R;H1; � � � ;Hh.
Let x1; � � � ; xm denote the formal inputs linked to, say,H1.
We say that the root function R is a perfect root if each
of the 2m partial assignments (x�1; � � � ; x

�

m) of x1; � � � ; xm,
results in a distinct cofactor R(x�1; x

�

2; � � � :x
�

m; xm+1; � � �).
2

Definition 3. A n-input, k-output functionA is termed full-
range (FR) if it asserts all possible 2k output configura-
tions. 2

Definition 4. A decomposition R;H1; � � � ;Hh is termed
almost-perfect if R is perfect and all functionsHi are FR.
2

Notice that the decompositions of Examples (1-2) are not
almost perfect, because the root functionMAJORITY is
not a perfect root. This resulted in us being able to replace
a FR function(A1) with a non-FR function(AA1).

Although almost-perfect decompositions allow us to get
rid of most of the ambiguities, it may be difficult to obtain
them by “local” algorithms. The reason is exemplified be-
low:

Example 4. Consider the functionF = (xy+ z)w0 + (x+
yz)w. It can be decomposed asF = MUX(a0; a1; w);
a0 = xy + z; a1 = x + yz. Fig. (2.a) shows the circuit
and the underlying decomposition. The BDD of the func-
tion MUX is shown in Fig. (2.b). It indicates that the four

2



0 0

0

11

1

1 0w w’

0

1

0
a

a

a
2-BL. INV.

2-BL.

B

X

A
2

y

x

z

1

0

w

21

0

w

2

A

z

y

x

(a)
(b) (c)

Figure 2. BDD and decomposition for the function
of Example (4)

cofactors with respect to a0; a1 are distinct,hence the root
is perfect. Moreover, the two functions a0; a1 can assert all
possible output combinations, and therefore the decompo-
sition is AP . Suppose, however, that x is the top variable
of the BDD of F , and consider F (x = 0). It can be de-
composed as MUX(z; yz; w). On the other hand, the two-
output function (z; yz) is not full-range. Hence the decom-
position could not have been found on a local paradigm. 2

The example indicates that a AP decomposition may be
derived by non-AP decompositions at the cofactors. If we
discard non-AP decompositions at the cofactors, we will be
unable to discover the AP one at the root. This motivates
the following definitions.

3.2 Perfect functions.

The definition of perfect functions is recursive:

Definition 5.

1. a k-bit constant is a perfect function;

2. A n-input, k-output functionP is perfect if :

(a) it can assert exactly 2m output combinations, for some
m; 1 � m � k;

(b) for each input variable xi, both cofactors P(xi =
0);P(xi = 1) are perfect functions.

2

Example 5. Consider the two-output function A =
(A1; A0) = (xy + z; x + yz). It can assert all 22 out-
put combinations. Consider its cofactors with respect to
x: for x = 1, one of the outputs is constant, and there-
fore A(x = 0) asserts 21 outputs. On the other hand,
A(x = 1) = (z; yz), which can assert 3 output combi-
nations. Therefore,A is not perfect.

Consider now the functionB = (B1; B0) = (x� a; x�
b). Both cofactors with respect to x are trivially perfect. It
can similarly be verified that the cofactors with respect to
any of a; b are perfect functions. Therefore,B is perfect. 2

Definition 6. A decomposition is termed perfect if :

1. The root is a perfect root;

2. the input functions are full-range and perfect;

3. The root does not have any perfect decomposition.

In this case, we also say that R is a prime function. 2

Hn

R
H2

H1

Hn

E1

R
-1

-1En

E2

E1-1

H2

H1

En

E2

Ln

(b)(a)

S

Figure 3. Graphical representation of equivalent de-
compositions

3.3 Equivalence and uniqueness of perfect decom-
positions.

Definition 7. A E-block is any 1-1 function E : Bk ! Bk.
2

The role of E-blocks is that of re-encoding k-bit words
into other k-bit words. Because E-blocks are 1-1, this en-
coding is lossless. It trivially follows that if A is a perfect
function, also E(A) is a perfect function.

Definition 8. We say thatA and B are E-equivalent (A �
B if there exists an E-block E such thatB = E(A). 2

Definition 9. A decomposition (R;H1; � � � ;Hh) is termed
perfect if R is a perfect root and each input functionHi is
a full-range perfect function. 2

Consider a decomposition (R;H1; � � � ;Hh). By suit-
ably using E-blocks, it is possible to transform this decom-
position in a different one. Figure (3) illustrates graphically
this process.

Definition 10. We say that two decompositions
(R;H1; � � � ;Hh) and (S;L1; � � � ;Ll) are equivalent if and
only if:

1. h = l;
2. there exist h E-blocksEi (possibly degenerating in iden-

tity functions) such that

Li = Ei(Hi); (15)

S = R(E�1

1 (x1; � � �);E
�1

2 (); � � �) (16)

2

We are now able to state a theoretical result of this work.

Theorem 1. If a function F has two distinct perfect decom-
positions, namely R;H1; � � � ;Hh and S;L1; � � � ;Ll, these
two decompositions are equivalent. 2

The proof, although not difficult, is somewhat laborious.
It is therefore omitted from this version of the paper, but it
will be made available upon request to the authors.

Unlike perfect decompositions, AP-decompositions may
be not unique: Example 6. Consider the function F =

3



x0y0a+ xy0b+ x0yc+ xyd. It can be decomposed as
F =MUX(x1; x2; x3) (17)

(x1; x2) = (x0a+ xb; x0c+ xd); (18)
x3 = y; (19)

as well as
F =MUX(x1; x2; x3) (20)

(x1; x2) = (y0a+ yc; y0b+ yd); (21)
x3 = y; (22)

Both decompositions are AP. 2

As mentioned previously, the non-uniqueness of AP-
decompositions implies that we may miss opportunities for
discovering them. On the other hand, we will be sure of
finding perfect decompositions, but such decompositions
may be less frequent.
4 Finding (almost) perfect decompositions.

The procedures for finding AP-decompositions and truly
perfect decompositions are very similar. Therefore, they
will be outlined together, marking the point where the two
procedures actually differ.

4.1 Overview of the algorithm.
The decomposition algorithm proposed here works its

way up a BDD graph, and annotates each node with a de-
composition information. This decomposition information
contains a list of pointers to the BDDs of the functionsHi.
For reasons of memory efficiency, no information is stored
about the root function R. This decomposition information
is constructed as follows. When a BDD node � is visited, it
contains no information. A procedure checks the similarity
of the decomposition of two cofactors of each node �. The
actual comparison is decribed below. If the decompositions
are deemed “sufficiently” similar, then a decomposition is
inferred for the function rooted at � and � is annotated with
its own decomposition information.

We now describe how the decompositions of the cofac-
tors are compared, and how the decomposition of the node
is constructed.

4.2 Comparing decompositions.

The following observation is central when identifying
decompositions: If a function F (z; x1; � � � ; xn) has a non-
trivial decomposition, then also its cofactors with respect to
, say, z, must have a “similar” decomposition. “Similar” , in
this context, means that :

1. The decomposition of each cofactor F0, F1 is similar to
that of F , and

2. the decomposition of the two cofactors are “similar”
among themselves.

Indeed, consider a function F , with decomposition
F = R(A(z; x1; � � � ; xA);B(xA+1; � � � ; xB); � � �): (23)

Consider its cofactors with respect to the top variable z:
F0 = R(A0(x1; � � � ; xA);B(xA+1; � � � ; xB); � � �) (24)

and
F1 = R(A1(x1; � � � ; xA);B(xA+1; � � � ; xB); � � �) (25)
Eqs. (23-25) indicate that superficially the two cofactors

have a decomposition similar to that of F : the root function

A

R
B

C

R

B

D

A

E

RR

C

1

0

x

C

E

D

x

1

0

(b)(a)

Figure 4. Decomposition of a complex function.

is the same, and most of the input functions are the same.
In practice, we need to analyze three decomposition “ types”
separately :

1 The two functions A(z = 0) and A(z = 1) are both
full-range. The two cofactors will have decompositions
with the same root and similar decomposition lists.

2 Exactly one of the two functions (say, A(z = 0) is
full-range. The other cofactor is equivalent to the paral-
lel composition of a constant and a full-range k 0-output
function, where k0 < k. In this case,Rwill no longer be
the root function for the decomposition of F1. The de-
composition tree of F1, however, will contain the func-
tionsHi.

3 Neither cofactor is full range. The observations of Type
2 apply to both cofactors. The functionsHi will appear
in both decomposition trees.

When we inspect a node �, we first verify if a function has
a decomposition of Type 1. If the test suceeds, we construct
the decomposition information. If it fails, we move on to
check if it has a decomposition of Type 2, etc ...

We now show how to verify decompositions of Type 1,
and how to construct the decomposition list. For reasons of
space, the full description of the other cases is deferred to a
more complete version of this work.

4.3 Type 1.
We inspect the decomposition lists of the two cofactors.

If they differ by more than one element, then the decom-
position of � cannot be of type 1. Otherwise, let H and
L denote the two differing elements in the decomposition
lists.

Before asserting that node � has a decomposition of type
1, We need then to check whether the two root functions
are the same. While this check is conceptually simple, its
formalization is notationally cumbersome. Therefore, it is
convenient to describe it by examples.

Example 7. Consider the situation of Fig. (4.a).
A;C;D denote two-bit busses, encoding positive in-
tegers, and F0 = LARGER(A;C), and F1 =
LESS OR EQUAL(C;D). A;C;D may be primary in-
puts or functions of other variables. The only relevant in-
formation is that the support of A is disjoint from that of C,
and that the supports of C and D are disjoint as well.

4



We now show that the root of the two decompositions
is essentially the same, and that the comparator function
LARGER can be shared. 1.

To this end, the following actions are taken:

1. The inspection of the two fanin lists shows that they dif-
fer only in one argument, namely, A vs. D. The case
would be rejected as “non-Type-1” if the fanin lists dif-
fer by more than one element.

2. We replace A with two independent Boolean variables,
a1; a0. We then replace D with two independent vari-
ables, d1; d0.

3. The four cofactors of F0 (F0;0; F0;1; F0;2; F0;3) with re-
spect to a1; a0 are computed. The four cofactors of
F1 (F1;0; F1;1; F1;2; F1;3) with respect to d1; d0 are also
computed.

4. The two sets of cofactors are compared against each
other. In this case, each F0;i expresses the condition
C < i. Each cofactor F1;i expresses the condition
C < i as well. The two sets of cofactors match exactly
pairwise. Therefore, the root function can be re-written
as

F = LARGER(zA+ z0D;C)

whose circuit is shown in Fig. (4.b).

2

In the above example, we had F0;i = F1;i; i = 0; � � � ; 3.
An input function H = z 0A + zD has been constructed.
Notice that H is full-range, because both A and D are full
range. Even if A and D were perfect, however, we would
not be able to assert the perfection ofH . If we are interested
in perfect decompositions, we need to test the perfection
of H . If H is perfect, then the decomposition is listed as
perfect. Otherwise it is rejected. Currently, our test is based
on the definition of perfect functions. This test is laborious,
but we hope to find more efficient tests in the future. At this
stage, we do not know of an efficient test that would help

In the previous example, we created a 1-1 matching be-
tween cofactors. To address general cases, however, an ar-
bitrary 1-1 matching between cofactors must be considered.
We illustrate this by means of the following example.

Example 8. Consider the case F0 = ADD MSB(C;A)
and F1 = SUB MSB(C;B), that is, the most significant
bit of the two arithmetic operations. The operations are on
two-bit quantities, addition is modulo-4, and subtraction is
in two’s complement2.

The two operand lists differ in only one component
(namely, A vs. B). The four cofactors of ADD MSB
with respect to A are F0;i = MSB(C + i); i = 0; � � � ; 3.
Notice that the four cofactors are all distinct. The four
cofactors of SUB MSB with respect to B are F1;i =
MSB(C � i); i = 0; � � � ; 3, also all distinct. Moreover,
from the properties of modulo-4 arithmetic and two’s com-
plement notation, one gets C � 0 = C + 0;C � 1 =
C + 3;C � 2 = C + 2;C � 3 = C + 1. Consequently,
F0;0 = F1;0;F0;1 = F1;3; F0;2 = F1;2; F0;3 = F1;1. The
four cofactors can be matched pairwise. Therefore, the

1Strictly speaking, the function LARGER is not prime, and there-
fore it could not be a root. The choice of LARGER is just to simplify
notations

2Again, the choice of functions was motivated by readability

A
2

z

N-block

2

2

22
B

C

z

2

2

2

2

ADD

SUB

A

C

B

(b)

ADD

(a)

Figure 5. Decomposition of the adder/subtracter cir-
cuit.Note the added E-block.

adder can be shared, provided that a suitable function of
A;B and z is created. This function is as follows. When
z = 0, the function should just replicate A to the adder in-
puts. When z = 1, the function should transform the value
of B according to the mapping established by the cofactors
of z : when B is, say, 01, then the value 11 should be pre-
sented to the adder inputs, and so on. This is accomplished
by means of an N -block with a table implementing the co-
factor mapping:

A B (26)
00 10 (27)
01 11 (28)
10 10 (29)
11 01 (30)

Figure (5) shows the circuit. 2

4.4 Clustering wires.
The previous section has shown how to push a variable

z when the two cofactor functions are structurally similar.
The ”bussing” structure into the root function is unchanged.
Each bus is the output of a multiple-output, lossless func-
tion.

Initially, however, typically only single-output functions
are generated. These functions are then clustered into
larger, multiple-output functions. In this paragraph, we
show the mechanisms for creating these functions. For the
sake of conciseness, only two simple cases are described,
by means of examples.

Example 9. Consider the case where F0 =MUX(a; b; x),
x being the MUX control, and F1 = MUX(c; d; x). All
variables are primary input variables, and therefore the sup-
port lists for F0 and F1 are a; b; x and c; d; x, respectively.
Variable z cannot be “pushed” anywhere, because the two
lists differ by more than one element. Consider, however,
making a multiple-output function of a and b on one side,
and of c and d on the other side. The new lists now differ
by just one element. Moreover, the inspection of the cofac-
tors shows that the grouping is legal (because the cofactors
of MUX with respect to all combinations of a and b are
distinct), so that z can now be pushed. 2

Example 10. Consider now the case where F0 =
MUX(a; b; x), and F1 = d + x. This represents a cor-
ner case where the number of input functions differ. There
is one element in common, namely, x. To asses whether we
can push the top variable z, we group a; b into a multiple-
output functionA = (a; b). Now, we have a situation where
the two lists differ in just one element, but this element is
the 2-output function A on one side, and a 1-output func-

5



Circuit Inputs Outputs DEC CPU
k2 45 45 36 0.47s
apex1 45 45 36 0.45s
apex7 49 37 36 0.03s
seq 41 35 35 0.79s
s1423 91 79 74 3.58s
s953 45 52 23 0.08s

Table 1. Decomposability of some benchmark cir-
cuits.

tion d on the other side. We handle this situation as follows.
We first determine the four cofactors ofMUX with respect
to the two clustered inputs. The four cofactors are , again,
F0;0 = 0; F0;1 = x; F0;2 = x0; F0;3 = 1. Consider now the
two cofactors of F1 with respect to the differing function d:
F1;0 = x;F1;1 = 1. There is then a 1-1 mapping from the
cofactors of F1 into the cofactors of F0:

R1 R0

0 01
1 11 (31)

This mapping is used to generate the 2-input function, as
follows. When z = 0, the input function should present
(a; b). When z = 1, the input function should always
present only one of the right-hand side entries of Table (31),
that is, (d; 1). Notice that this is a 2-output function ob-
tained by juxtaposing a constant to a lossless function. The
final two-output function is then A = (a1; a0) = (z0a +
zd; z0b+ z1), and F can be expressed as MUX(a1; a0; x).
Notice that the new decomposition is also lossless: both
cofactors of A with respect to z are either lossless or the
pairing of a lossless function with a constant. Similarly for
the cofactors of F with respect to the other variables. 2

5 Experimental results.
We are interested in two types of results. First, we are

interested in discovering which benchmark functions are
decomposable, and , second, what kind of improvement is
made possible by decomposition, in terms of, for instance,
literal counts.

We report in Table (5) the decomposability of some
benchmark circuits. The results are incomplete because,
as mentioned, not all corner cases have been imple-
mented. Therefore a function may still be listed as non-
decomposable when it actually could be decomposed.

It is interesting to contrast these results against those of
[1]. Table (5) lists the functions for which complex decom-
positions are already found to be strictly better than simple
decompositions.

Table (5) shows some literal counts. For these functions,
we already know that complex decomposition produces bet-
ter results than simple decomposition. For instance, bench-
mark cm150 was reduced from 47 literals down to 23 liter-
als. We expect further improvements once all corner cases
are addressed.
6 Conclusions.

Decomposition is important during optimization because
it reduces wiring complexity by identifying functions of
minimal clusters of variables. Moreover, heuristically it
also reduces area as functions of smaller support are iden-
tified whenever possible. In this paper, we have identi-
fied some reasons for the difficulty in deriving efficient,

Circuit Inputs Outputs Dec Lit. CPU SIS lit
9symml 9 1 74 0.00s 223
alu2 10 6 346 0.01s 357
cm150 21 1 23 0.01s 51
cm151 12 2 17 0.00s 26
cm152 11 1 34 0.00s 22
cu 14 11 75 0.01s 59
mux 21 1 26 0.01s 51

Table 2. Literals count of some benchmark circuits.

exact algorithms for complex decompositions. This analy-
sis allowed us to define two decomposition classes, namely,
almost-perfect and perfect decompositions. We have proved
that a function has a unique perfect decomposition. More-
over, the “nice” properties of these decompositions allowed
us to design a decomposition procedure with predictable
run-time behavior. The number of corner cases makes its
full implementation complex, but the first experimental re-
sults are definitely encouraging.

One byproduct of this work is the definition of a bound-
ary between the proper decomposition process and an en-
coding step, the latter belonging strictly to logic optimiza-
tion. Moreover, it further articulated the area of complex
decompositions.

References

[1] V. Bertacco and M. Damiani. The disjunctive decomposition
of logic functions. In Proc. ICCAD, pages 78–82, November
1997.

[2] R. Murgai, Y. Nishizaki, N. Shenoy, R.K. Brayton, and
A. Sangiovanni-Vincentelli. Logic synthesis for pro-
grammable gate arrays. In Proceedings 27th ACM/IEEE De-
sign Automation Conference, pages 620–625, June 1990.

[3] R. E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Trans. on Computers, 35(8):677–691,
August 1986.

[4] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient imple-
mentation of a BDD package. In Proc. DAC, pages 40–45,
June 1990.

[5] R. Ashenhurst. The decomposition of switching functions. In
Proceedings of the International Symposium on the Theory
of Switching, pages 74–116, April 1957.

[6] H. A. Curtis. A New Approach to the Design of Switching
Circuits. Van Nostrand, Princeton, N.J., 1962.

[7] J. P. Roth and R. M. Karp. Minimization over boolean
graphs. IBM Journal, pages 661–664, April 1962.

[8] Kevin Karplus. Representing boolean functions with if-then-
else dags. Technical Report UCSC-CRL-88-28, Baskin Cen-
ter for ComputerEngineering & Information Sciences, 1988.

[9] R.K. Brayton and C. McMullen. The decomposition and fac-
torization of boolean expressions. In ISCAS, Proceedings
of the International Symposyium on Circuits and Systems,
pages 49–54, 1982.

[10] T. Sasao (Ed.). Logic Synthesis and Optimization. Kluwer
Academic, 1993.

[11] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and
A. Sangiovanni-Vincentelli. Logic Minimization Algorithms
for VLSI Synthesis. Kluwer Academic, 1984.

[12] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and
A. R. Wang. MIS: A multiple-level logic optimization sys-
tem. IEEE Trans. on CAD/ICAS, 6(6):1062–1081, Novem-
ber 1987.

6


