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Abstract

In this paper we present an algorithm for converting a
BDD representation of a logic function into a multiple-level
netlist of disjoint-support subfunctions. On the theoretical
side, we show that the algorithm takes at most quadratic
time in the size of the BDD and that the resulting netlist
retains the canonicity properties of the original BDD. Ex-
perimentally, we found the algorithm to be extremely fast,
taking at most a few minutes for the most complex bench-
mark circuits. The resulting netlist is also often better than
what achieved by conventional synthesis tools.

1 Introduction.
A disjunctive decomposition of a function

F (x1; � � � ; xn) is a partitioning of the inputs x1; � � � ; xn
in disjoint subsets, so that F can be given a multiple-level
representation as :

F (x1; � � � ; xn) =

G(A(x1; � � � ; xA); B(xA+1; � � � ; xB); � � �) (1)
Discovering a disjunctive decomposition of F such as in Eq.
(1) is beneficial in several respects:

First, a disjunctive decomposition evidences some paral-
lelism in the (hardware or software) computation of F : one
can evaluate the component functionsA;B; � � � ; in parallel,
as they share neither variables nor intermediate results.

Second, a disjunctive decomposition suggests implicitly
a clustering of inputs and functions so as to reduce the
amount of interconnect: Cells can be designed so as to com-
pute separately G;A;B; � � �. The designer can concentrate
on the optimization of the cells implementing the individual
functions, and the routing problems are simplified as only
one wire needs be brought out of each cell. The reduction
of interconnects is of increasing importance with the advent
of deep submicron technology, where the interconnect de-
lay tends to dominate the overall circuit performance.

Eventually, we observe that a disjunctive decomposition
can be beneficial also for other logic functions representa-
tions, namely BDDs [1, 2], since it offers implicitly a good
partial ordering of the primary inputs for BDD construction.

Previous work and contributions of this paper.
Decomposition algorithms are a classical research sub-

ject of switching theory. Exhaustive search procedures have
been presented in [3, 4, 5], and were efficient for circuits
with six or fewer inputs [4]. At the time, decomposition
was regarded as the main path to multiple-level logic syn-
thesis.

Algebraic factoring [6] is a form of disjunctive decom-
position: one attempts to decompose a 2-level cover of
F into a product G � H , where G and H have no vari-
ables in common. Factoring is a powerful step in passing
from a Boolean cover to a multiple-level representation in
multiple-level logic synthesis [7].

Recently, decomposition has also been considered in the
context of technology mapping ([8]) and canonical Boolean
function representation ([9, 10]).

In [10] it was in particular shown that a simple form of
decomposition, based on NOR functions, is indeed canon-
ical: A function can be decomposed into the NOR of
disjoint-support components in a unique way. This result
was used to develop a normal form (MLDDs) for Boolean
functions based on Shannon- and NOR- decompositions.
Algorithms for translating BDDs into MLDDs and for the
direct manipulation of MLDDs were also presented. These
algorithms are very efficient in terms of CPU time, as the
decomposition of a function is inferred locally from that
of the two cofactors. Moreover, the decomposition of co-
factors of complex functions often evidenced common sub-
functions, whose sharing resulted in memory savings with
respect to BDDs. The resulting netlist, however, is not par-
ticularly appealing, because of the restriction to NOR de-
compositions only.

In this paper, we provide the following contributions.
First, we present new results on canonicity. We introduce
prime functions, functions that cannot be further decom-
posed. Some such functions are, for example, 2-input logic
functions, the 2-input MUX function, and all non-trivial
symmetric functions.

Clearly, when we attempt the decomposition of a func-
tion F as F = L(A;B; � � �) we only need consider prime
functions L. We prove that logic functions can be classified
as follows:

1. F is prime;
2. F is decomposable using a binary associative operator

X (X = OR,AND,XOR) of disjoint-support functions:

F = X(A0; A1; � � � ; An) (2)

In this case, F cannot be decomposed using any other
function L; moreover, the functions Ai are identified
uniquely (modulo permuttion, complementation) pro-
vided they cannot be further decomposed by X ;

3. F is decomposable using a prime function L of three
or more inputs:

F = L(A0; � � � ; An); n � 3 (3)
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In this case, also L and the functions Ai are identified
uniquely (modulo permulations/complementations),
that is, no other prime function L can decompose F .

The above results indicate essentially the uniqueness of a
disjunctive representation of F .

We then present an algorithm for inferring the disjunc-
tive decomposition of F from the BDD representation. The
algorithm is fast, as it is based on the local inference of the
decomposition of a function F from that of its cofactors. It
is worth noting that the success in identifying a decomposi-
tion does not depend on the topology of the BDD represen-
tation (as affected, for instance, by the variable ordering).
Hence, the method differs in scope from topological tech-
niques such as those presented in [11].

2 Disjoint-support decompositions.
This section provides the relevant definitions and theo-

retical results.
Let B denote the Boolean set f0; 1g. A Boolean function

is a mapping F : Bn ! B.
We say that a function F depends on a variable xi if

@F=@xi is not the constant function 0. We call support of
F the set SF of variables F depends on. The size of SF is
the number of its elements, and it is indicated by jSF j.

We say that two functions F and G are disjoint-support
if they share no variables, i.e. SF \ SG = �.

We say that a function F is NP-equivalent to a function
G if it can be obtained from G by a permutation / comple-
mentation of some of the inputs of G.

Hereafter, lower-case and upper-case letters will denote
Boolean variables and functions, respectively.

Definition 1. A function F (x1; � � � ; xn) is said to be re-
ducible by L if it can be expressed as the composition of
other non-constant disjoint-support functions A;B; : : ::

F = L(A;B; � � �) (4)
F is said to be prime if it cannot be decomposed by any L.

If Eq. (4) holds, we say that a function L reduces F . We
denote by F=L any set of functions fA;B; � � �g satisfying
Eq. (4). 2

It is worth noting that the set F=L is, in general, not
unique. Consider, for example, the function F = x1+x2+
x3 and a function L = a + b. Then one can write (for
instance) F = L(x1; x2 + x3) or F = L(x1 +x2; x3). The
two options result in F=L = fx1; x2 + x3g and F=L =
fx1 + x2; x3g, respectively.

We also observe that if L reduces a function F , then any
other function NP-equivalent to L also reduces F . More-
over, L reduces F if and only if L0 reduces F 0.

We now present the main theoretical contributions of this
paper. For reasons of space, the proofs have been omitted
from the paper.

Theorem 1. Consider an arbitrary functionF (x1; � � � ; xn),
and a prime function L(a; b; � � �). Suppose L reduces F :

F = L(A;B;C; � � �); (5)
Then F is reduced only by functions M that are NP-
equivalent to L. 2

The above Theorem states that the prime function reduc-
ing L is unique, modulo syntactic transformations. The fol-

lowing two results indicate that also the functions in F=L
are essentially unique:

Theorem 2. If a function F is reducible by L, with jSLj �
3, then the functions F=L are unique, up to permutations
and complementations. 2

Theorem 3. If a function F is reducible by L, with jSLj =
2, then it is reducible by an associative operatorX . The op-
eratorX decomposingF is unique; moreover, the functions
A;B; � � � in the decomposition

F = X(A;B;C; � � �)

are also unique, provided they are not further decomposable
by X . 2

Theorem (3) in particular indicates that if a function
F can be decomposed as the (say) XOR of two disjoint-
support components, then no other operator (AND, OR) de-
composes it. Moreover, the component functions are iden-
tified uniquely, provided they’re not further decomposable.

Since AND-decomposable functions are complements of
OR-decomposable ones, Theorems (1 - 3) allow us to ulti-
mately classify logic functions as follows:

1. prime;
2. decomposable by a prime function L; jSLj � 3;
3. XOR-decomposable;
4. OR-decomposable;
5. complements of OR-decomposable functions.

3 BDD-based logic decomposition.

We now present algorithms for mapping a BDD repre-
sentation of a function F into a multiple-level netlist of
disjoint-support components. We will first describe the data
structures employed for the function representation, and
then present the actual relevant procedures.

A disjunctive decomposition could be represented just
by introducing hierarchy in an ordinary BDD-based repre-
sentation. This is obtained by allowing splitting function
instead of a splitting variable.

Example 1. Consider the functionF =MAJORITY (a�
b; cd + e; ITE(fg; h; i)). F has the following disjoint-
support representation:

F = MAJORITY (G;H; I) (6)
G = a� b (7)
H = L+ e (8)
I = ITE(M;h; i) (9)
L = cd (10)
M = fg (11)

Fig. (1) shows the representation of F . 2

This representation, however, does not fit entirely our
purposes, because complex functions generally lack signif-
icant decompositions, and consequently do not take advan-
tage of hierarchy. It is often the case, however, where a
function, albeit lacking a decomposition, has decompos-
able cofactors. It is then better to represent the function
by Shannon decomposition, using the decomposed forms
of the cofactors. A function is then here represented by two
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Figure 1. ITE-dag representation for Example (1)

distinct data structures, namely, one representing its decom-
position structure (i.e.decomposition tree), and the second
its proper logic functionality.

4 Constructing the decomposition.
The algorithms of this paper aim at constructing a repre-

sentation as in Fig. (2) from the BDD of F .
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Figure 2. Decomposition tree for F .

This is accomplished by visiting each BDD node N and
constructing the decomposition of the function rooted at N
from that of its cofactors.

A BDD node, with root variable z, represents a function
F (z; x1; � � � ; xn) as

z0F0(x1; � � � ; xn) + zF1(x1; � � � ; xn) (12)
where F0 = F (z = 0); F1 = F (z = 1). There exists
an intuitive link between the decomposition of F and that
of its cofactors F0; F1. In practice, we need to distinguish
three cases, depending on the role of z in the decomposition
of F . Below we describe how to infer the decomposition of
F in each of the three cases.
Case 1.
Suppose z belongs to the support of a function (say,A) with
nontrivial support jSAj � 2. Suppose also that neither co-
factor A(z = 0); A(z = 1) is a constant. Then F0; F1 are:

F0 = L(A(z = 0); B; � � �); F1 = L(A(z = 1); B; � � �)

In other words, F0 and F1 are decomposable by the same
prime function L. Moreover, the decomposition lists of F0
and F1 differ exactly in one element (A(z =0) vs. A(z=1)).

Viceversa, suppose F0; F1 are expressed as
F0 = L0(A0; B; � � �); F1 = L1(A1; B; � � �)

jF0=L0 \ F1=L1j = jF0=L0j � 1 = jF1=L1j � 1 (13)

(that is, F0=L0 and F1=L1 differ in exactly one element,A1

in place of A0) and suppose
L0(A0 = 0) = L1(A1 = 0);

L0(A0 = 1) = L1(A1 = 1); (14)
then it is easy to verify that F can be written as in Eq.(5),
where L = L0 and A = A0z

0 +A1z.
The compliance of F0; F1 to Eqs. (13) is easily tested

from their decomposition lists. The compliance to Eqs. (14)
is tested by computing the four cofactors and verifying their
identity.
Example 2. Consider again the function F =
MAJORITY (a� b; cd+ e;MUX(fg; h; i)), and its co-
factors F0 = F (g = 0); F1 = F (g = 1). We consider
available the representations of the cofactors :

F0 = MAJORITY (G;H; h) (15)
G = a� b (16)
H = L+ e (17)
L = cd (18)
F1 = MAJORITY (G;H;N) (19)
N = MUX(f; h; i) (20)

Their decomposition lists are (G;H; h) and (G;H;N),
respectively. They differ in exactly one element, namely,
N instead of h. We then check if Eqs. (14) hold. This
check can be carried out by computing F0(h = 0); F0(h =
1); F1(N = 0); F1(N = 1), and verifying the identities
F0(h = 0) = F1(N = 0); F0(h = 1) = F1(N =
1). Indeed, both these identities hold in our case. We
then form a representation of the function I = g 0h +
gMUX(f; h; i) and construct a representation of F as
MAJORITY (G;H; I). 2

Case 2.
Suppose z belongs to the support of a nontrivial function
(say, A, with jSAj >= 2), but such that exactly one of
A0; A1 is constant (say, A1 = 1). The cofactors are:

F0 = L(A(z = 0); B; � � �); F1 = L(1; B; � � �) (21)
In the expression of F1 one of the arguments of L is a con-
stant. Hence, F1 is decomposed no longer byL but by some
other prime function. Notice, however, that the functions
B; � � � will be in the decomposition tree of F1. Moreover,
the two cofactors still have the property F0(A = 1) = F1.

Viceversa, suppose F0; F1 are decomposable as
F0 = L0(A;B; � � �); F1 = L1: (22)

and that one can find an element in the decomposition list
of F0 (say, A) such that:

L0(A = 1) = L1; (23)
one can then write

F = L0(A+ z;B; � � �): (24)
The inference of the decomposition for F is slightly

more complex than the previous case. First, we need to
identify all the possible candidate functions in the decom-
position list of F0. The functions not appearing in the de-
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composition tree of F1 are all candidates. For each candi-
date, we need to test if Eq. (23) holds. For n candidate
functions, this entails the computation of 2n cofactors.

If one functionA is found that satisfies Eq. (23), we form
the representation of A+ z and represent F as in Eq. (24).

Example 3. Consider the functions F0 =
ITE(A;CD;B + C), F1 = CD. The decomposi-
tion list of F0 contains A;B;C;D. The tree of F1 contains
F1; C;D. The functions not appearing in the tree of F1 are
then A;B. We observe that by assigning B = 1, however,
F0 = ITE(A;CD;B + C) 6= F1, and that assigning
B = 0 results in F0 = ITE(A;CD;C) 6= F1. The
function B is then discarded. Assigning A = 1 instead
results in F0 = ITE(1; CD;B + C) = CD = F1. A new
functionZ = A+ z is constructed, and F is represented by
ITE(Z;CD;B + C). 2

Case 3.
We call pushing z into A the operation of moving z from
the support of F (as in Eq.(12)) to the support of a non-
trivial function A. As we can push z only in cases 1 and 2,
we recognize the third case by failing the push of z. In this
case, F must have a decomposition of type

F = L(z;B;C; � � �): (25)
The two cofactors are expressible only as

F0 = L0(B;C; � � �); F1 = L1(B;C; � � �) (26)
where L0 6= L1. Notice that in this case the argument func-
tions B;C; � � � may appear in the decomposition trees of
both F0; F1, but not necessarily directly in their decompo-
sition lists.

In this case, a decomposition of F can be constructed
as follows. Consider the decomposition trees T0 and T1 of
F0 and F1, respectively, and their intersection T01. Recall
that the nodes of T01 represent essentially functions that are
common to the decomposition of F0; F1.

Let (P;Q;R � � �) denote the root children of T01. These
functions are disjoint-support and we can write F0 and F1
as

F0 = R0(P;Q; � � �); F1 = R1(P;Q; � � �) (27)
where in general R0; R1 are not prime functions. Consider
the functionR(z; P;Q; � � �) = z0R0 + zR1. Clearly,

F = R(z; P;Q; � � �): (28)
Moreover, R must be prime. If, by contradiction, R had a
decomposition, say, as

R(z; P;Q; � � �) = S(z; U(P;Q); � � �) (29)
then the functionU would have appeared in the decomposi-
tion of F0 and F1, and hence in T01. Eq. (29) then represent
the prime decomposition of F .

Example 4. Consider the case F0 = ITE(abc; d + e +
f; g�h), F1 = ITE(ab; e+f+g; h�c). The intersection
tree, shown in Fig. (3), indicates that F is expressible as:

A = ab (30)
E = e+ f (31)
R = R(A; c; d; g; h; z) (32)

An expression of R is A0(E + dz0 + gz)+A(c0hz+ c(h�
(g + z))). 2

And

Intersection

Or

Var a

Var b

Var e

Var f

Var c Var d Var g Var h

Figure 3. Intersection tree for cofactors of Ex. (4)

In practice, we do not construct an explicit representation
of R, but only of its decomposition list.

5 Experimental results.
The procedures of this paper have been implemented in

a C program named LODE, and tested on several combina-
tional logic benchmarks. The CPU time was taken on a PC
equipped with a 150 MHz Pentium, 256Kbyte of on-board
cache and 32Mbyte of main memory.

Table (5) below compares the literal counts ob-
tained by LODE against those obtained by SIS running
rugged script. Literals are counted from the factored
form. It also reports the CPU time employed by LODE for
the decomposition, in seconds. The CPU time includes the
time required for the preliminary construction of the BDDs.
IN all the reported examples, the time required by SIS was
over one order of magnitude that of LODE.

6 Conclusions.
We have presented theoretical advances and procedures

for the disjunctive decomposition of logic functions, start-
ing from a BDD representation. The procedure returns a
multiple-level netlist which, given the uniqueness of the
proposed decomposition, is actually a normal form. A pre-
liminary implementation of the ideas presented of this pa-
per, has shown the practicality of the approach, in terms of
CPU time and quality of results. We know of some simple
improvements (like, the recognition of locally unate vari-
ables) which will further improve the quality of the circuit,
at little CPU time expense.

We are currently exploring the implications of the canon-
icity of the proposed netlist in several directions, including
rapid prototyping and sequential verification.
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