
High Radix On-Chip Networks at Incremental Reconfiguration Costs

Animesh Jain, Ritesh Parikh and Valeria Bertacco

Department of Computer Science and Engineering, University of Michigan
{anijain, parikh, valeria}@umich.edu

ABSTRACT
Networks-on-chip (NoCs) have become increasingly widespread in re-
cent years due to the extensive integration of many components in mod-
ern multicore processors and SoC designs. One of the fundamental
tradeoffs in NoC design is the radix of its constituent routers. While
high radix routers enable a richly connected and low diameter network,
low radix routers provide simple and low power designs. Today, NoC
designs take significant silicon area and may consume up to 30% of the
entire chip power budget; thus, naïvely deploying an expensive high-
radix network is no longer possible.

In this work, we present HiROIC 1 (HighRadixOn-chip Networks at
Incremental re-Configuration Cost), to provide high-radix like perfor-
mance at a cost similar to a low-radix network. HiROIC leverages the
irregularity in runtime communication patterns to provide short low-
latency paths between frequently communicating nodes, while infre-
quently communicating pairs take longer paths. To this end, HiROIC
proposes a flexible topology reconfiguration infrastructure where the
abundantly available links between routers (in accordance to a high-
radix topology) are decoupled from scarcely available router ports (sim-
ilar to a low-radix topology). The link-to-port binding is done at run-
time, based on traffic patterns, using low-overhead multiplexers. Hi-
ROIC employs a statistics collection and decision-making framework
to orchestrate the topology modifications that maximize performance.
While our solution may require some additional and/or longer links, we
observe that links are not the timing bottlenecks in contemporary router
pipelines and links that are not coupled to ports could be power-gated
to save power. HiROIC ensures a globally connected and deadlock-
free network at all times. Our experiments on a 64-node CMP, running
multi-programmed workloads, show that HiROIC reduces average net-
work latency by 21% over an area- and power- comparable mesh NoC.

1. INTRODUCTION
As a result of increasing integration of components into CMP and

SoC architectures, networks-on-chip (NoCs) have become the dom-
inant choice for on-chip interconnects, due to the highly concurrent
communication paths and better scalability they provide. Moreover,
to keep up with the communication demands of the cores/IPs on-chip,
NoCs are increasingly incorporating bulky and power-hungry resources,
required to meet target latency and bandwidth goals.

One such design decision is the radix of the routers in the topology,
that is, the number of I/O ports that a router provides to connect links
to adjacent routers. High-radix routers enable low-diameter topologies,
and allow the processing nodes to be connected closely, with pack-
ets traversing just a few routers to reach their destination. On the
down side, router components, such as crossbar and allocators, grow
quadratically in area with the radix of the router. In addition, high-radix
routers lead to increased signal propagation latencies, and slower oper-
ating frequencies. A popular alternative are topologies deploying low-
radix routers, such as meshes. Typically, routers up to a radix of five
(e.g., mesh) are considered low radix, while larger ones are considered
high-radix. Low-radix routers can be clocked at a substantially higher
clock rate than their high-radix counterparts. For example, according
to the models provided in [17], a radix-7 router has a 4.1% higher cycle
time compared to a radix-5 router. Unfortunately, for many-core ar-
chitectures, low-radix topologies could lead to large network diameters
and prohibitively high hop counts. Using low-radix routers particularly
hurts performance when applications do not have sufficient memory-
level parallelism (MLP) to hide the higher latency. The radix of the
router is therefore an important design decision that directly affects la-
tency, area and power targets.

With HiROIC we want to provide the best of both classes of topolo-
gies: low and high radix. HiROIC provides an effective network di-

1ROIC is a popular Economics acronym for ’Return on Invested Cap-
ital.’ HiROIC is synonymous to high-ROIC, since we provide a high
performance return for a given area/power budget dedicated to NoCs.

ameter at par with high-radix topologies, while only utilizing resources
comparable to low-radix routers. HiROIC exploits the non-uniformity
of communication patterns to provide short, low latency paths only
between heavily communicating nodes, while it forces the low traffic
source-destination pairs to use longer paths. Therefore HiROIC pro-
vides, on average, a small hop count for packets traversing the network,
similar to high-radix topologies. Naturally, the greater the disparity in
communication load between source-destination pairs, the greater is
HiROIC’s effectiveness. With the increasing integration of application-
specific components, the location and quantity of heavily used routing
paths is likely to be highly unbalanced both across and within appli-
cations. We therefore envision great potential for the deployment of
HiROIC in upcoming CMP and SoC designs.

HiROIC uses routing and topology reconfiguration to optimize for
high-volume source-destination pairs. At the heart of HiROIC is the
concept of link-port decoupling. HiROIC’s routers do not statically
bind their ports to links, unlike traditional routers. Rather, this bind-
ing is applied at runtime, depending on the communication demands
of the application. HiROIC deploys links abundantly, in accordance to
a high-radix topology, to potentially provide short paths between any
source-destination pair. However, HiROIC’s routers still maintain the
internal port-count of low-radix networks. HiROIC deploys an addi-
tional layer of glue-logic to bind ports to links at runtime. These bind-
ings are used for one epoch of execution, after which HiROIC evaluates
whether the current topology is suitable for upcoming traffic patterns.
If not, binding decisions are re-evaluated to globally optimize for the
new communication patterns. In essence, our infrastructure’s ability
to realize many irregular or regular topologies is leveraged to adapt to
application’s demands at runtime. While HiROIC’s wiring overhead
is greater than conventional topologies like meshes, due to longer and
additional wires, we observe that wires are never the timing bottleneck
in conventional router pipelines [10]. In addition, unused wires can be
power-gated once the port-to-link binding decisions are finalized.

Note that, in typical NoCs, routers have one local port (sometimes
more) connecting to the processing node(s). Since the connection to
the processing node is essential, HiROIC uses a fixed port-link binding
for local ports. In the rest of this paper we exclude the local port(s)
when reporting the radix of the router.

0

20

40

60

80

100

0 20 40 60 80 100

Region of interest

Region of interest

0

15

30

45

60

75

0 2 4 6 8 10 12

> 60%

ne
tw

or
k

tr
af

fic
 (

in
 %

)

ne
tw

or
k

tr
af

fic
 (

in
 %

)

cumulative source-destination pairs(in %) – high to low traffic sharing

Figure 1: Fraction of traffic load shared by the most exercised source-destination pairs.
The top 10% source-destination pairs transfers more than 60% of total network traffic be-
tween them, therefore, HiROIC targets this pool for topology optimization.

It is essential for HiROIC to have a high variation between high-
usage source-destination pairs and other source-destination pairs. To
this end, we conducted a study whose findings are plotted in Figure 1.
The plot shows the contribution of traffic flowing between each source-
destination pair. Our testbed consisted of an 8x8 mesh CMP running a
multiprogrammed mix of applications from the SPEC CPU2006 suite.
Source-destination pairs are sorted by decreasing traffic activity dur-
ing the execution, and the plot on the left indicates what fraction of
network traffic (Y axis) was carried out by a given fraction of sorted
source-destination pairs. The plot on the right is an enlargement of the
contribution by the top 12% source-destination pairs: less than 10% of
the source-destination pairs shares as much as 60% of the traffic load
on average. Beyond the tenth percentile of utilization, this disparity
is no longer obvious. Thus, HiROIC’s goal is to identify and leverage
the 10% most used source-destination pairs to provide short and high-
bandwidth paths between them. This, in turn, minimizes the effective

network hop count.
In summary, our contributions are:

• A novel router architecture to mimic high-radix router’s behav-
ior, while consuming resources comparable to a low-radix router.

• A software-based reconfiguration algorithm that predicts an ap-
plication’s upcoming communication needs, and periodically adapts
the network topology to provide short paths between heavily com-
municating source-destination pairs.

In our evaluation with non-uniform multiprogrammed workloads from
the SPEC CPU 2006 suite, HiROIC’s 64-node layout reduces average
network latency by 21%, compared to a baseline mesh.

2. RELATED WORK
Extensive research has been dedicated in the past towards: i) reduc-

ing the number of pipeline stages within the router [13, 17], and ii) in-
creasing the frequency of a router’s operation [2]. Certain other works
have optimized routers for a particular topology and flow control [9,
18]. Our technique, HiROIC, is orthogonal to such approaches, as Hi-
ROIC aims at decreasing the effective hop count of packets.

A considerable body of previous work targets application-specific
NoC synthesis. In these works, before the NoC design phase, all appli-
cations that are expected to run on the system are characterized. This
characterization then drives the optimization of a variety of design as-
pects: (i) topology [3, 21], (ii) routing [4, 14], (iii) buffer sizing [8], etc.
However, these techniques typically produce static configurations and
the resulting NoC cannot adapt to changing application behavior at run-
time. In contrast, HiROIC can quickly adapt by predicting near-future
communication patterns and reconfiguring the topology accordingly.

A few runtime reconfiguration approaches have also been proposed
to optimize for either power or performance. To reduce the NoC’s leak-
age power, researchers have proposed power-gating network resources
at a coarse [19, 11] or fine [12] granularity during periods of inactiv-
ity. Other works, as in [7], reconfigure the routing algorithm at runtime
to provide greater routing adaptivity at hot-spots, or adapt the channel
bandwidth at runtime to optimize for performance [6]. All these tech-
niques are orthogonal to our approach as they adapt the routing algo-
rithm or channel bandwidth, while HiROIC reconfigures the topology;
thus, they have the potential to provide extra gains.

Most of the previous runtime topology reconfiguration solutions have
been targeting silicon reliability. Ariadne [1] and uDIREC [15] pro-
pose reconfiguration algorithms for faulty NoCs that update the routing
function to bypass the malfunctioning components. To the best of our
knowledge, HiROIC is the first technique that aims at reconfiguring the
topology at runtime for performance gains.

3. METHODOLOGY
HiROIC leverages link-port decoupling to mimic high-radix topolo-

gies by utilizing resources comparable to a low-radix topology. Hi-
ROIC optimizes a topology for transferring traffic efficiently between
heavy load source-destination pairs, using three major components: i) a
statistics collection framework to predict upcoming traffic patterns, ii)
a decision engine to determine whether to invoke a topology reconfig-
uration, and iii) a centralized software-based reconfiguration algorithm
that determines the link-port bindings for each epoch of execution.

3.1 Link-Port Decoupling
In conventional routers, ports have a one-to-one mapping with links.

Therefore, each port has a dedicated link connected to it. As mentioned
the Section 1, we propose to add more links to low-radix routers and
decouple the traditional one-to-one connection between ports and links.
With the help of a few multiplexers, we can still have the same number
of ports as in a low-radix router, while providing more links to choose
from in forming a connection. The micro-architecture of the low-radix
routers remains unchanged because each port is still connected to only
one link. Upon closer examination, only the routing function within
the router must be updated to reflect changes in the topology caused by
new port-link bindings.

The proposed design provides flexibility to the network to adapt to
changing communication needs. It enables binding a same port to dif-
ferent links during different phases of execution. In Figure 2, we show

ports

ports
ports

ports

links

linkslinks

links

links

links

links

Examples

xbar

router

Glue logic composed of

muxes

Figure 2: Port-link decoupling. The router in the figure can connect up to four router ports
by selecting among eight links. Depending on the application’s traffic demands, it can adopt
different port-binding configurations, by simply assigning select signals of the multiplexers.
The right part of the figure shows three such possible bindings.

a HiROIC-enabled router with four ports that has a choice to connect
to eight different links. The figure shows three such possible bindings
for the router. These link-port bindings are enforced with the help of
multiplexers (represented by the glue logic in the Figure), which are
configured depending on the application’s demands. The size and num-
ber of multiplexers are heavily dependent on the baseline topology and
the flexibility of port-link bindings desired. This trade-off is detailed in
Section 4. We also provide a statistics collection framework to monitor
the traffic transferred between each pair of nodes. This framework pro-
vides the information necessary to predict the quasi-optimal port-link
bindings for upcoming execution phases.

3.2 Execution Flow
Figure 3 provides a high level overview of HiROIC’s execution flow.

An application’s execution is divided into epochs of fixed clock cycle
length. The NoC statistics collection framework records the communi-
cation patterns of each router for every epoch. When the epoch ends,
the NoC framework transfers this information to one of the cores. This
core drives the topology reconfiguration phase and it is therefore re-
ferred to as the supervisor core. The supervisor core makes the deci-
sion of whether to modify the topology based on the current topology
and the recorded patterns in the previous epoch. If the supervisor core
decides to change the topology, then traffic injection is suspended while
the supervisor runs the reconfiguration algorithm. Meanwhile, all the
packets that were in flight at the end of the previous epoch are allowed
to drain. The supervisor node then transmits the new link-port bindings
to each router through dedicated wires. Once the topology and routing
reconfiguration completes, the NoC resumes its normal operation with
the new reconfigured topology.
Statistics Collection Framework. Knowledge of traffic statistics is
necessary for the supervisor node to decide whether the current topol-
ogy suits the traffic demands of the application. This information helps
the supervisor node predict an application’s communication needs for
the next epoch. The insight is that if few nodes are generating most
of the traffic in one epoch, then the same nodes are expected to gen-
erate high volume traffic in the next epoch, too. Thus, the prediction
is history-based, as it depends on the communication patterns observed
in last epoch. Specifically, our framework collects the following two
values: i) number of packets sent between each source and destination,
and ii) each router’s maximum buffer occupancy [5] averaged over the
epoch duration. Note that we utilize the maximum buffer occupancy
metric as an indicator of congestion in NoC’s paths. The HiROIC
scheme leverages this information to reduce congestion in the recon-
figured topology by allowing only a few packets to use the congested
paths.

Topology reconfiguration phase

0

9 10 118

4 5 6

1 2

12 13 14

7

3

15
E

p
o

ch
 d

u
ra

ti
o

n

Topology for current epoch

8 9

4 5

10

6

0 1 2

12 13 14

11

7

3

15

Statistics collection framework
Frequently communicating pairs during

completed epoch

0 15

6 9

Epoch starts

Invoke topology reconfiguration

- Selection of high priority links

- Backtracking DFS algorithm

with constraint satisfaction

Topology for current epoch
Links enabled to reduce hop count for

frequently communicating pairs

N
th

ep
o

ch
(N

+
1)

th
ep

o
ch

- Broadcasting port-link binding

to routers

Figure 3: HiROIC execution flow. The application’s execution is divided into epochs. A
NoC statistics collection framework identifies the frequently communicating pairs. Once
the epoch ends, the topology reconfiguration phase is triggered. During this time, NoC traf-
fic is suspended. The newly reconfigured topology aims at reducing the hop count between
frequently communicating node-pairs.

The Decision Engine is used to determine when to invoke a topol-
ogy reconfiguration. As discussed previously, the supervisor node is
responsible for determining when to trigger the topology reconfigura-
tion phase. Initially, it identifies which are the top 10% pairs that are
generating the highest amount of traffic in the NoC. In the rest of this
paper, we will refer to such source-destination pairs as the Frequently
Communicating Pairs (FCP). At the end of each epoch, the super-
visor node calculates the new FCP set. Topology reconfiguration is
invoked when the following conditions are met: i) FCPs share more
than a threshold percentage (Tth) of total traffic, ii) and the new FCPs
are significantly different from the FCPs of the previous epoch. The
first condition determines HiROIC’s sensitivity to changing applica-
tion’s behavior. If the usage threshold Tth is too high, then the topol-
ogy will not adapt quickly enough to the NoC’s communication needs.
However, if the threshold Tth is kept too low, then the topology re-
configuration phase will be triggered too frequently, causing traffic to
suspend often and resulting in net slowdown. Our experiments show
that setting the threshold Tth to 60% provides a suitable trade-off. The
second condition makes sure that a topology reconfiguration is not trig-
gered when the current topology is already capable of handing the ap-
plication communication needs for the next epoch. These two condi-
tions together guarantee that the topology reconfiguration is triggered
only when the current topology is not fit for the current and near-future
communication patterns.

HiROIC also utilizes the maximum buffer occupancy metric to at-
tain a more effective reconfiguration. Based on the number of packets
metric, HiROIC can only optimize the average hop count, without tak-
ing congestion into account. Congestion could lead to longer packet
wait times and, hence, application slowdowns. Therefore, HiROIC tries
to balance the load on all links using the maximum buffer occupancy
metric. Our analysis shows that a baseline 2D mesh network is better at
balancing traffic than the irregular topologies realized at runtime by Hi-
ROIC. Therefore, upon detection of a congestion situation, indicated by
a high average value for the maximum buffer occupancy metric, the su-
pervisor node reverts the NoC back to the 2D mesh topology. Note that
this situation is a special case of topology reconfiguration, where the
port-link bindings lead to a 2D mesh network. Therefore, HiROIC al-
ways ensures above-par performance compared to a baseline 2D mesh.
Centralized Software-Based Topology Reconfiguration Algorithm.
Once the decision engine triggers a topology reconfiguration event, the
supervisor core runs the algorithm outlined in Figure 4. The topology
reconfiguration problem falls under the category of constraint satisfac-
tion problems (CSP). It can be modelled as a depth-first search (DFS),
using a backtracking algorithm to find valid configurations. At each

FCP_set = find_fcp(info_by_statistics_collection);

/* Pre-selection of high priority links */
for (PAIR in FCP_set);
| path = up_down_routing_algo(PAIR);
| enable_links(path);
| if(check_constraints() == FAIL)
| | disable_links(path);

/* Backtracking algorithm for constraint satisfaction*/
for (NODE in NoC);
| for (BINDING in remaining_bindings(NODE))
| | enable_binding(BINDING);
| | if(check_constraints() == FAIL)
| | | disable_binding();

broadcast_bindings_to_routers();
compute_up_down_routes_with_new_bindings();

Figure 4: HiROIC’s centralized software-based topology reconfiguration algorithm.
First, the supervisor node pre-selects the high priority links for the the FCPs. The remaining
topology is generated by running a backtracking DFS algorithm. Remaining ports at each
router are randomly bound to links one-by-one, while the algorithm backtracks if any such
binding leads to a violation of the constrains imposed by the router’s radix and the glue
logic.

step of the decision process, the current selection is validated against a
set of constraints, while the algorithm strives to optimize a target met-
ric. Specifically, HiROIC tries to minimize the hop count between the
FCPs, while constraining the number of links bound to a router to be
less than or equal to its radix. The topology reconfiguration algorithm
involves the following steps:

i) Selection of High Priority Links. Initially, all links are consid-
ered disabled. Then data received from the statistics framework is anal-
ysed and links that are on the shortest paths between FCPs are enabled.
We use the up*/down* routing algorithm to route packets in the NoC,
and for identifying the shortest path between FCPs. The link selection
is completed step-by-step for each frequently communicating pair. A
check is performed after each step to determine that the constraints are
not violated. The exact set of constraints depend on the layout of links
and router ports and the glue logic. We outline the set of constraints
for our representative system in Section 4. If any constraint is violated
for any pair, then all the links for that particular pair are released. This
completes the first phase of our reconfiguration algorithm, as shown in
Figure 4.

ii)Backtracking DFSAlgorithmwith Constraint Satisfaction. Once
the links connecting the FCPs are selected, the DFS algorithm traverses
the NoC router by router and selects random port-link bindings. Every
binding is validated against the same set of constraints. If constraints
are not met, then the binding is disabled and another binding is tried.
Once all the routers have been visited, a connectivity check is per-
formed to ensure that all routers are globally connected. If this check
fails, then the algorithm is run again with a different initial router. We
ran several Monte Carlo simulations to evaluate the frequency of this
connectivity check failure for the first root node, and found out that it
is, in practice, a rare event, occurring only 5 times in 1,000 runs. The
corresponding pseudo-code is depicted in Figure 4. We relaxed some
constraints that are not vital to the functional correctness of the system
in order to ensure full connectivity. This aspect is discussed in Section
4.

iii) Broadcasting port-link bindings to routers. Once the software
reconfiguration routine terminates, the new port-link bindings are com-
municated to routers using dedicated wires. The routers modify the
control signals of the multiplexers within the glue logic to reflect the
new port-link bindings.

To route packets through the network, once the topology has been
updated, we employ the up*/down* routing algorithm [1]. The up*/
down* routing algorithm best suits our needs because HiROIC’s run-
time topologies are often irregular. The up*/down* algorithm, by con-
struct, is deadlock-free and guarantees connectivity if the network is
fully connected. It works by assigning a direction, up or down, to all
links. Then all the routes that contain a down-link followed by an up-
link are forbidden. By forbidding such routes, the algorithm breaks the
abstract cycles that can potentially lead to deadlock. We use the Ari-

(a) 2D mesh topology (b) x-y plane of 3D torus

topology

x-dimension
y-

di
m

en
si

on
routers used for illustration

(b) Cross-mesh topology

Figure 5: Organization of links and routers in our proposed physical topologies. We
consider two different topologies for HiROIC: a cross-mesh and a 3D Torus. For simplicity
of illustration, the figure shows the x- and y- dimension connections only for the bold col-
ored routers. A cross-mesh router has eight connections around a router, while a 3D torus
router has two connections in each dimension resulting in a total radix of six.

adne [1] reconfiguration algorithm to update the routing tables for all
routers, once the topology has been updated. In a network of N nodes,

Ariadne takes N2 cycles for updating the routing table of all routers.
Finally, we enhance the up*/down* routing algorithm to ensure that the
number of hops between the frequently communication nodes is kept
as low as possible.

4. PHYSICAL TOPOLOGIES
The key idea behind HiROIC is to emulate a router with more links

than available ports. We refer to a particular arrangement of links, ports
and binding logic as a physical topology. In physical topologies, links
are organized in accordance to a high-radix topology (e.g., 3D torus),
while router ports are organized as in a low-radix topology (e.g., 2D
mesh). Naturally, the effectiveness of HiROIC greatly depends on the
arrangement of links and ports within the physical topology. Specifi-
cally, we evaluate HiROIC with two physical topologies: both of them
use routers with only four ports, as in a mesh. We argue that, due to the
similar internal structure of routers, both physical topologies will have
power and area characteristics similar to a 2D mesh network. There-
fore, all the presented performance comparisons are against a 2D mesh
topology. Notice that a traditional 2D mesh has a one-to-one binding
between ports and links, as depicted in Figure 5(a). We evaluate Hi-
ROIC with the following proposed topologies:

Adaptive Cross-Mesh. A cross-mesh topology is a high-radix topol-
ogy that is a direct extension of the 2D mesh topology. As shown
in Figure 5(b), in this topology routers have a radix of eight. In our
proposed physical topology, referred to as adaptive cross-mesh topol-
ogy, routers have a radix of four, while still having eight links to select
from in building connections. Depending on application’s demands, the
routers dynamically choose the four links to bind to. Figure 3 shows
one configuration of an adaptive cross-mesh topology.
Adaptive 3D Torus. Any HiROIC physical topology should be able
to provide short paths between particular source-destination pairs. The
average hop count between the nodes in a 3D torus topology is substan-
tially smaller than a 2D mesh. This is because of the higher (six) radix
of its constituent routers. Figure 5(c) shows that the 3D torus topology
has 2 connections in each dimension and thus provides richer connec-
tivity than a 2D mesh. We therefore build our proposed adaptive 3D
torus topology by organizing links in a similar fashion as the 3D topol-
ogy. Once again, the routers in the adaptive 3D torus topology have a
radix of four with six links to choose from in building connections.

As mentioned in the previous section, the glue logic incorporates
multiplexers to decouple the traditional port-link binding. The size and
the number of multiplexers affects how many links a particular port in
the router can choose from. For instance, consider the scenario where
a router in an adaptive cross-mesh topology is provided full flexibility
to connect any link to any port. In such a scenario, each output link
can be connected to any of the four output ports, requiring eight 4:1
multiplexers. On the input side though, each input port can receive
the data from any of the eight links. Thus, it results in the addition of
four 8:1 multiplexers. Therefore, full flexibility results in the addition
of eight 4:1 and four 8:1 multiplexers in total. In addition, the mixing
of ports and links might lead to layout challenges. We experimentally
concluded that giving full port-link binding flexibility is not beneficial,
considering the extra logic overhead. Therefore, to create a balance
between flexibility in port-link bindings and size/number of multiplex-

b)a)

port

port

m
ux

m
ux

port

port

Xbar

m
ux

port

port Link 1

Link 2Link 3Link 4

Link 5

Link 6 Link 7 Link 8
m

ux

port

port
port

port

Xbar
port

port Link 1

Link 2Link 3Link 4

Link 5

Link 6 Link 7 Link 8

m
u

x m
u

x

mux

mux

Figure 6: Logic diagram of the glue logic for an adaptive cross- mesh router. a) shows
the output glue logic comprising four 2:1 multiplexers while b) shows the input glue logic
comprising four 3:1 multiplexers. Note that only four links will be connected to the ports
at any one time. At the end of the topology reconfiguration phase, the supervisor node
provides the control signals to perform the port-link bindings.

ers, we decided to limit the number of links a port can choose from.
Specifically, we used the following arrangement of multiplexers in the
router’s glue logic.

In an adaptive cross-mesh topology, each output port of the router has
only three fixed output links to choose from. As shown in Figure 6(a),
four out of the eight links can connect to only one port (for example,
Link 7 can connect only to the North port), whereas the other four links
can connect to one of two ports (for example, Link 8 can connect to
North or East port). This results in the addition of four 4:1 multiplexers
for the output glue logic. For the input glue logic, an input port can
recieve data from three input links, requiring four 3:1 multiplexers, as
shown in Figure 6(b).

Link 1

Link 2

Link 3

Link 4

Link 5

Link 6

m
ux

mux

m
u

x

m
ux

mux

m
u

x

a)

Glue logic

Router

Link 1

Link 2 Link 3

Link 4

Link 5Link 6

m
ux

mux

m
ux

b)

Glue logic

Router

mux

Figure 7: Logic diagram of the glue logic for an adaptive 3D torus router. a) shows
the output glue logic comprising six 2:1 multiplexers while b) shows the input glue logic
comprising four 3:1 multiplexers. Note that only four links will be connected to the ports
at any one time. At the end of the topology reconfiguration phase, the supervisor node
provides the control signals to perform the port-link bindings.

In the adaptive 3D torus topology, each output port of the router can
connect to one of three fixed output links. This constrains the router
to have at most two links in each dimension. In one possible config-
uration, it can have two links in the x-dimension, while having one
link each in y- and z- dimensions. In another possible configuration,
it can have two links each in x- and y- dimensions, with no link in the
z-dimension. Such glue logic design results in a suitable trade-off be-
tween flexibility and size/number of multiplexers. As shown in Figure
7a), each output link can connect to one of two ports, and therefore six
2:1 multiplexers are required for the output glue logic. For the input
glue logic, each input port can get data from one of three links, result-
ing in the addition of four 3:1 multiplexers, as shown in the Figure 7b).

The restrictions we place on the port-link bindings translate to con-
straints in the backtracking search algorithm that was discussed in Sec-
tion 3.2. Since each router can choose among more links than the num-
ber of ports, the most basic constraint is that the radix of the router
should never be greater than the number of ports (four in our physical
topologies). Other constraints are physical topology specific and arise
from the limited flexibility of the glue logic: an example constraint for
the adaptive cross-mesh topology is that its routers cannot connect si-
multaneously to links 1, 2, 3 and 4 from Figure 6. Such a binding would

violate the restrictions placed on the link-port binding.
As it is common in constraint satisfaction problems, some conditions

might not result in a solution satisfying all the constraints. In order to
handle such scenarios, some of the constraints that are not vital for
correct functionality, are relaxed. For e.g., we can relax the constraint
that the radix of each router should be exactly four. The relaxed version
of this constraint accepts solutions with routers of radix less than four.
This is reasonable as one port can easily be disabled and power-gated.

Obviously, constraint relaxation can result in routers with fewer ac-
tive ports, and thus can increase average the hop count between nodes.
To evaluate the effect of this constraint relaxation, we conducted Monte
Carlo simulations to determine the number of routers that do not achieve
a radix of four upon topology reconfiguration. In this experiment, only
a fixed number of links were enabled initially, then the topology recon-
figuration algorithm was run to build the complete topology. Table 1
shows that even after pre-selecting 50 links at the start of the reconfig-
uration in an adaptive 3D torus topology, 94% of the routers are able
to achieve the ideal radix of four. This provides a quantitative indica-
tion that relaxing the radix constraint does not drastically degrade the
topology properties.

(a) Adaptive 3D torus topology

Number of pre- % of routers

selected links with radix-4

10 96.46

20 95.67

30 95.18

40 94.65

50 94.36

(b) Adaptive cross-mesh topology

Number of pre- % of routers

selected links with radix-4

10 99.95

20 99.76

30 99.45

40 99.16

50 98.72

Table 1: Impact of low (<4) active ports in routers. The Monte Carlo analysis shows that
even when relaxing the number of active ports constraint, almost all routers still achieve an
ideal radix of four. Even with 50 pre-selected links, 94% (99%) of the routers achieve an
ideal radix of 4 for adaptive 3D torus (adaptive cross-mesh) topology.

5. EXPERIMENTAL RESULTS
We evaluated HiROIC on a cycle-accurate trace-driven multi-core

simulator. Table 2 shows the characteristics of the processors and the
NoC we evaluated. We ran all experiments considering a 64 core sys-
tem as a baseline. The traces for applications were obtained using the
PIN [16] instrumentation tool. The simulator further incorporates a
detailed model for the NoC with 3-stage pipelined routers. We imple-
mented the HiROIC scheme over the adaptive cross-mesh and adaptive
3D torus topologies discussed in Section 4. All our comparisons are
against a baseline 2D mesh topology. Finally, we used the up*/down*
routing algorithm [20] to navigate the packets within the NoC.

We also evaluated our proposed scheme with a set of multi-program-
med workloads consisting of 35 applications from the SPECCPU 2006
benchmark suite. The experiments were conducted across 60 multi-
programmed workloads, with each workload consisting of 15 copies
each of 4 unique applications. The studied applications exhibit a wide
range of values for cache misses per kilo instructions (MPKI): theMPKI
metric directly correlates to the amount of traffic sent through the NoC.
Some workloads use applications with similar MPKI values causing all
cores to inject similar amount of traffic in the NoC. We further divide
such workloads into two categories: the LL category workloads use ap-
plications with lowMPKI, while the HH category workloads use appli-
cations with high MPKI. We also use imbalanced workloads, in which
the MPKI values among the applications differ substantially. We group
such workloads under the LH category, as they use applications with
both low and high MPKI.

(a) Processor @2GHz

Cores
2-wide fetch/commit

64-entry ROB

coherence 4-hop MESI, 64B block

L1 cache
Private: 32KB/node

ways:4 latency:2

L2 cache
Shared: 256KB/node

ways:16 latency:6

Memory
Distributed: 1GB/bank

banks:4 latency:160

(b) Network @2GHz

Topology 8x8 mesh, 128 bit links

Pipeline 3-stage VC flow ctrl

VCs 4 VCs/port, 8 flits/VC

Routing up*/down*,XY

Routing- Ariadne [1]: new

Update up*/down* routes

Workload
multi-programmed:

SPEC CPU 2006

Simulation 10M cycles

Table 2: Experimental CMP: configuration of processor and network.

Area Overhead. As discussed previously, the HiROIC scheme is im-
plemented by glue logic surrounding the core router logic. The glue
logic comprises only multiplexers, which are very small compared to
the size of the router, rendering HiROIC’s area overhead negligible.
The adaptive 3D torus topology has slightly higher area overhead com-
pared to the adaptive cross-mesh topology (due to more multiplexers in
the glue logic), but the overall overhead is still small and it is not a vital
factor in choosing a physical topology.

Power Overhead. The addition of multiplexers can lead to an increase
in power dissipation. Longer (and more abundant) wires in HiROIC
also lead to a slight increase in power dissipation. However, wires
that are not used during an epoch of execution, can be power-gated to
eliminate any additional leakage power consumption. In addition, the
amount of dynamic power overhead due to longer wires is negligible,
compared to the dynamic power spent in reading and writing buffers,
traversing the crossbar, etc. Fortunately, HiROIC reduces the amount
of dynamic energy spent on each packet traversal by reducing the av-
erage packet hop count. Same radix routers spend the same amount
of dynamic energy per packet transmission. Therefore, by reducing
the number of routers that packets hop through to reach the destination
node, HiROIC also decreases the dynamic energy consumption. Thus,
we argue that HiROICmore than compensates for the increase in power
dissipation due to multiplexers and long wires.

Reconfiguration Duration. Whenever we trigger a topology recon-
figuration phase, traffic is suspended and packets in flight are allowed
to drain. The average number of cycles required to drain packets for
each topology reconfiguration across all workloads is approximately
46 for the adaptive 3D torus topology. This overhead is small as the
computational epoch is 10,000 clock cycles long. Apart from this over-
head, the topology reconfiguration algorithm is executed in software
on the supervisor node, potentially taking up to a few milliseconds to
calculate the new topology and routing function. We expect to evaluate
the reconfiguration duration as part of our future work, while also try-
ing to develop techniques to reduce the reconfiguration duration. We
also argue that the reconfiguration process, no matter how slow, can be
masked by running in background, while still using the old topology
and routing configuration. After the new topology and routing con-
figuration is computed, the old configuration is discarded and normal
operation can resume after packet drain. This reduces HiROIC’s re-
sponsiveness to application behavior, but still allows it to capture traf-
fic behavior in longer phases. Note that we have taken the packet drain
time into account in our experimental evaluation.

Frequency of Reconfiguration. The HiROIC scheme tries to adapt
to communication needs quickly. Therefore, for high-imbalance work-
loads, the topology reconfiguration happens more frequently. For work-
loads with only slightly imbalanced applications, the number of topol-
ogy reconfigurations are fewer. The reason behind this is that for such
workloads the traffic originating and terminating at all nodes is more
or less the same, and HiROIC decides against topology reconfiguration
due to lack of favorites. Quantitatively speaking, we found out that
the average number of topology reconfigurations per workload is 102,
where each workload was executed for 1,000 computational epochs.

Suitable Tth Value to invoke the topology reconfiguration. As dis-
cussed in Section 3, one of the conditions for triggering the topology
reconfiguration is that FCPs share more than a preset fraction of total
network traffic. We conducted the experiments by simulating all the
workloads on an adaptive 3D torus topology with different Tth values,
and comparing the results on the basis of average packet latency. We
found out that the optimal Tth to trigger a topology reconfiguration is
60% for our baseline system. It gives the best trade-off between the
capability to quickly adapt to communication needs and the frequency
of topology reconfiguration. If the value of Tth is higher than 60%,
then HiROIC is not able to adapt to changing application needs and
the workloads do not see much latency improvement. However below
60%, topology reconfigurations happen more frequently, often causing
unnecessary suspension of traffic, which in turn, nullifies the benefits
of HiROIC. Figure 8 shows the average packet latency averaged across
all the workloads for different values of Tth.
Reduction in Average Network Latency. Since HiROIC optimizes
the hop count for a subset of communication paths, it provides solid

24

22.24

23.17

21.24

20.62

19

20

21

22

23

24

50 60 65 70

A
v
e
ra
g
e
 %
 l
a
te
n
c
y

im
p
ro
v
e
m
e
n
t

Traffic threshold value(Tth) in terms of % of traffic shared by FCPs

Figure 8: Comparison of different Tth values on the basis of average packet latency.
The plot shows that a 60% Tth provides the best trade-off between application adaptivity
and time spent in draining packets upon a reconfiguration trigger.

latency improvements for LH category workloads. By adapting to the
communication needs, it facilitates the communication between the fre-
quently communicating pairs and sends more amount of packets on the
NoC, as compared to 2D mesh in the same time. We found that for LL
category workloads, HiROIC still shows good improvement. This is
because network transmissions are scarce for such workloads, and only
a small subset of applications produce traffic within a certain compu-
tational epoch (in contrast to all applications producing traffic all the
time). Therefore, HiROIC optimizes the NoC topology to provide short
communication paths to and from this active subset. Consequently, the
network observes significant decrease in average packet latency.

However, in the case of HH workloads, HiROIC does not provide
exciting latency improvements, as it reverts back to the better-balanced
(baseline) mesh topology, as discussed in Section 3. Remember from
Section 3 that HiROIC leverages congestion information for the deci-
sion to revert to a mesh topology. For an exhaustive analysis, we dis-
abled this aspect of HiROIC, and monitored the latency characteristics
of the system. In such a case, the latency degradation was as much as
20% in the worst case for low-imbalance high-load workloads. How-
ever, with the congestion detection and decision framework in place,
HiROIC ensures that the adaptive topologies are never congested, by
switching the topology back to a 2D mesh upon indications of conges-
tion.

The average latency improvement for the adaptive 3D torus topology
across LH and LL workloads is 23%. For adaptive cross-mesh, the av-
erage latency improvements across the same workloads is 6%. We con-
ducted these experiments by setting the Tth to 60%. Even for the case
of HH category workloads, we found that adaptive 3D torus provides a
latency improvement of 19% on average. We further observe that the
HiROIC-enabled adaptive 3D torus provides better latency improve-
ments than the HiROIC-enabled adaptive cross-mesh. Upon closer in-
spection, we found that the reason for such behavior is two-fold: i) the
average hop count between nodes for adaptive 3-D torus is 4.7, which
is less than the average hop count of 5.4 for adaptive cross-mesh, and
ii) for adaptive cross-mesh, reconfiguration results in some links shar-
ing more traffic than others, leading to congestion. The adaptive 3D
torus has more potential minimal paths between any two nodes, pro-
viding greater path diversity, and therefore, it handles congestion by
better distribution of traffic.

Figure 9 shows the latency improvements for different categories of
workloads. The chart shows that the adaptive 3D torus quickly adapts to
the communication needs of the network and it never performs worse
than a 2D mesh. Adaptive cross-mesh results show little benefits for
some of the workloads because of the reasons described above. The av-
erage latency improvements across all workloads for adaptive 3D torus
and adaptive cross-mesh are 22% and 5%, respectively.

22.63 23.17
21.64

25

30

%
 i

m
p

ro
v

e
m

e
n

t
in

a
v

e
ra

g
e

 p
a

ck
e

t
la

te
n

cy

Adaptive Cross Mesh Adaptive 3-D Torus

4.76

1.23

7.46
4.49

22.63
19.12

23.17
21.64

0

5

10

15

20

25

LL HH LH Average

%
 i

m
p

ro
v

e
m

e
n

t
in

a
v

e
ra

g
e

 p
a

ck
e

t
la

te
n

cy

Types of workloads
Figure 9: Comparison of average network latency between mesh, adaptive cross-mesh
and adaptive 3D torus with Tth set to 60%. The chart shows that the adaptive 3D torus
adjusts to communication needs quickly, and thus reduces the average hop count between
busy nodes.

6. CONCLUSION
HiROIC provides performance similar to high-radix (> 5 ports) NoC

topologies using resources comparable to low-radix topologies (<= 5
ports) by optimizing for critical high-volume communication paths at
runtime. HiROIC proposes a topology reconfiguration infrastructure
that decouples dynamic router ports from links in the network topol-
ogy. In HiROIC, links are deployed abundantly for rich connectivity
as in high-radix topologies, while the number of router ports are kept
low. Router ports bind to links at runtime based on a traffic analy-
sis heuristic that runs periodically at a central node. Unused links are
power-gated to avoid any excess power dissipation. Our experiments
with multi-programmed workloads on a 64-node CMP show that Hi-
ROIC reduces average network latency by 21% compared to an area-
and power- comparable mesh.

Acknowledgements: This work was partially supported by NSF grant
#0746425 and CFAR, within STARnet, a Semiconductor Research Cor-
poration program sponsored by MARCO and DARPA.

7. REFERENCES
[1] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco. ARIADNE: Agnostic

reconfiguration in a disconnected network environment. In Proc. PACT, 2011.

[2] J. Balfour and W. Dally. Design tradeoffs for tiled CMP on-chip networks. In Proc.
ICS, 2006.

[3] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and
G. Micheli. NoC synthesis flow for customized domain specific multiprocessor
systems-on-chip. IEEE Trans. Parallel and Distributed Systems, 16(2), 2005.

[4] J. Cong, C. Liu, and G. Reinman. Aces: Application-specific cycle elimination and
splitting for deadlock-free routing on irregular network-on-chip. In Proc. DAC, 2010.

[5] R. Das, S. Narayanasamy, S. Satpathy, and R. Dreslinski. Catnap: energy
proportional multiple network-on-chip. In Proc. ISCA, 2013.

[6] M. Faruque, T. Ebi, and J. Henkel. Configurable links for runtime adaptive on-chip
communication. In Proc. DATE, 2009.

[7] B. Fu, Y. Han, J. Ma, H. Li, and X. Li. An abacus turn model for time/space-efficient
reconfigurable routing. In Proc. ISCA, 2011.

[8] A. Kahng, B. Lin, K. Samadi, and R. Ramanujam. Trace-driven optimization of
networks-on-chip configurations. In Proc. DAC, 2010.

[9] J. Kim. Low-cost router microarchitecture for on-chip networks. In Proc. MICRO,
2009.

[10] T. Krishna, C.-H. Chen, W. Kwon, and L.-S. Peh. Breaking the on-chip latency
barrier using SMART. In Proc. HPCA, 2013.

[11] H. Matsutani, M. Koibuchi, H. Amano, and D. Wang. Run-time power gating of
on-chip routers using look-ahead routing. In Proc. ASPDAC, 2008.

[12] H. Matsutani, M. Koibuchi, D. Ikebuchi, K. Usami, H. Nakamura, and H. Amano.
Ultra fine-grained run-time power gating of on-chip routers for cmps. In Proc. NoCs,
2010.

[13] R. Mullins, A. West, and S. Moore. Low-latency virtual-channel routers for on-chip
networks. In Proc. ISCA, 2004.

[14] M. Palesi, R. Holsmark, S. Kumar, and V. Catania. IEEE Trans. Parallel and
Distributed Systems, 20(3), 2009.

[15] R. Parikh and V. Bertacco. uDIREC: unified diagnosis and reconfiguration for frugal
bypass of NoC faults. In Proc. MICRO, 2013.

[16] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pinpointing
representative portions of large intel itanium programs with dynamic
instrumentation. In Proc. MICRO, 2004.

[17] L.-S. Peh and W. Dally. A delay model and speculative architecture for pipelined
routers. In Proc. HPCA, 2001.

[18] E. Rijpkema et. al. Trade offs in the design of a router with both guaranteed and
best-effort services for networks on chip. In Proc. DATE, 2003.

[19] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y. Hoskote, S. Vangal,
G. Ruhl, and N. Borkar. A 2 TB/s 6x4 mesh network for a single-chip cloud
computer with dvfs in 45 nm cmos. IEEE Journal of Solid-State Circuits, 46(4),
2011.

[20] M. Schroeder et. al. Autonet: A high-speed, self-configuring local area network using
point-to-point links. IEEE Trans. Selected Areas in Communication, 9(8), 1991.

[21] M. Stuart, M. Stensgaard, and J. Sparsø. The ReNoC reconfigurable
network-on-chip: Architecture, configuration algorithms, and evaluation. ACM
Trans. Embed. Comput. Syst., 10(4), 2011.

