
ArChIVED: High Performance Validation of
Microprocessors Using Event Digests

Chang-Hong Hsu†, Debapriya Chatterjee†, Ronny Morad‡, Raviv Gal‡ and Valeria Bertacco†

†University of Michigan Ann
Arbor, MI

{hsuch,dchatt,valeria}@umich.edu

‡IBM Research Lab
Haifa, Israel

{morad,ravivg}@il.ibm.com

ABSTRACT

Simulation-based techniques play a key role in validating the func-

tional correctness of microprocessor designs. A common approach

for microprocessors (called instruction-by-instruction, or IBI check-

ing) consists of running a RTL and an architectural simulation in

lock-step, while comparing processor architectural state at each in-

struction retirement. This solution, however, cannot be deployed on

long regression tests, because of the limited performance of RTL

simulators.

Acceleration platforms have the performance power to overcome

this issue, but are not amenable to the deployment of an IBI check-

ing methodology. Indeed, validation on these platforms require

logging activity on-platform and then checking it against a golden

model off-platform. Unfortunately, an IBI checking approach fol-

lowing this paradigm entails a large slowdown of the acceleration

platform, because of the sizeable amount of data that must be trans-

ferred off platform for comparison against a golden model.

In this work we propose a sequence-by-sequence (SBS) check-

ing approach that is efficient and practical for acceleration plat-

forms. Our SBS checking solution validates the test execution over

sequences of instructions (instead of individual ones), thus greatly

reducing the amount of data transferred for off-platform checking.

We found experimentally that SBS checking delivers the same bug-

detection accuracy as traditional IBI checking, while reducing the

amount of traced data by >90%.

1. INTRODUCTION
Design verification has become increasingly challenging due to

shrinking transistor sizes with each technology node, which has al-

lowed designers to fit more transistors in the same chip area, and

thus to develop more complex micro-architectural features with

each generation. This increase in complexity has greatly increased

the state space of microprocessor designs, and has resulted in a

significant increase in associated verification effort. In this con-

text, simulation-based validation continue to be the primary mode

of verification in the industry. In this methodology, the correct-

ness of the design under verification (DUV) is checked by exam-

ining simulation results created from executing a large collection

of long test regression suites on different abstraction levels of the

DUV. Usually, billions of simulation cycles are executed for each

new revision of the microprocessor under development. To achieve

sufficient simulation coverage for these long regressions in a rea-

sonable amount of time, the performance of the simulator plays a

key role. Software-based simulation tools are most prevalent, but

unfortunately their performance is not even close to being adequate

(1-10 cycles per second on a full-chip design) to obtain acceptable

validation coverage for modern microprocessor designs.

This crucial requirement for simulator performance has led func-

tional verification engineers to transition from software-based sim-

ulation solution, towards acceleration platforms that can meet the

ever growing verification performance requirements. These plat-

forms achieve orders of magnitude higher performance over software-

based solutions by using specialized hardware components for logic

simulation.

This boosted simulation performance, however, comes at the cost

of reduced checking and debugging capability. While the micro-

processor design can be mapped onto the platforms, these plat-

forms are designed to only simulate synthesizable logic descrip-

tions, leading to challenges in integrating the software checkers

onto the same platform. To overcome this issue, one often needs

to rely on the communication between the host and the platform

to transfer the data to be checked off the platform. This approach,

however, also has limitations; specifically, the limited input/output

(I/O) pins and off-platform bandwidth of the platform greatly con-

strain the observability of internal signals. Another drawback is

related to the fact that most checkers designed for microprocessor

validation execute in lock-step, which frequently suspends the sim-

ulation, eroding the performance advantage of hardware platforms.

These issues, unfortunately, render this off-platform checking ap-

proach infeasible.

Another verification technique considers adapting software check-

ers to acceleration platforms by following a “log and then check”

approach, which utilizes recording mechanisms of the platforms. In

this approach, only a relevant subset of a design’s signals/events are

recorded during simulation. The recorded data is then checked off-

line for consistent behavior. However, as the number of recorded

signals increases, simulation performance degrade quickly. This

rapid degradation implies that, when crafting a design checking so-

lution for acceleration platforms, we need to ensure that the record-

ing bit-rate is minimal. The need of minimizing the recording bit-

rate leads to major challenges in acceleration-platform checkers:

how can we ensure the same quality of checking as with software-

based simulation, while collecting only minimal information?

In this work, we target a common family of checking schemes,

called instruction-by-instruction (IBI) checking, which is able to

identify any architectural state deviation in a design’s behavior from

the golden reference at the architectural state and provides bug lo-

calization capability. Even though the deployment of this solu-

tion is quite straightforward in software-based simulation, creat-

ing an equivalent scheme for acceleration platforms is challenging.

First, the checking functionality is usually too complex to be imple-

mented in hardware, and it is further complicated by re-orderings

in architectural state updates due to the micro-architectural imple-

mentation. To address this issue, we must resort to a “’log and then

check” approach. Second, the recording rate necessary to gather

information for IBI checking (i.e., all updates to architectural state)

is too high to sustain the performance advantage of acceleration.

These two challenges require novel alternative methods to attain the

objective of IBI checking, namely, validation of the architectural

state updates with respect to a golden model by recording minimal

information.

1.1 Contributions
In this work, we introduce a novel sequence-by-sequence check-

ing scheme that checks the validity of the accumulated updates on

the architectural state of sequences of instructions. This approach

drastically reduces the volume of recorded data, while still being

capable of discerning most types of discrepancies in the architec-



tural state with high probability. We achieve this goal by construct-

ing a digest of the architectural events over a sequence of instruc-

tions. Our digest-based solution has the following features:

1. Minimal average recording bit-rate.

2. Error-detection ratio comparable to fine-grain IBI checking.

3. Digests can be realized with a small logic footprint.

We observe that, even for digests resulting from long (>10,000) in-

struction sequences, sensitivity to architectural state discrepancies

is not diminished when using appropriate compression schemes.

2. BACKGROUND AND RELATED WORK
In this section we first discuss relevant background for hardware-

accelerated simulation platforms; then we introduce prior checking

solutions developed for design validation on such platforms and

finally delineate some of the challenges faced by any solution at-

tempting to perform architectural checking of microprocessor de-

signs on such platforms.

2.1 Acceleration background
Acceleration [6] platforms are becoming increasingly vital to de-

sign validation. Design simulation acceleration platforms leverag-

ing special-purpose hardware (whose computational units are op-

timized for the simulation of a single logic gate or a small block

of gates) has been developed and utilized over past decades [1,10].

One of the very first such systems, the Yorktown Simulation En-

gine [7], was developed at IBM and consisted of an array of special-

purpose processors. Modern acceleration platforms are typically

composed of large arrays of customized processing elements ded-

icated to simulate logic gates in a concurrent fashion. The de-

sign under verification (DUV) must be synthesized into a struc-

tural logic description to map the design to the execution platform’s

components. Cadence Palladium [4], IBMAWAN [6] are examples

of such platforms. Simulation performance of these platforms are

typically between 10 kHz to 1MHz.

Acceleration platforms experience slowdown when increasing

the amount of simulated logic; hence it is important to ensure that

the footprint of any additional logic necessary to enable check-

ing is minimal. As mentioned earlier, acceleration platforms al-

low recording and subsequent transfer of a subset of the design’s

signal values, but this process slows down the simulation, thus nul-

lifying the key advantage of acceleration. Degradation of acceler-

ation performance is usually proportional to the number of traced

signals. The exact relationship between performance degradation

and recording rate depends on the specific architecture of the ac-

celeration platform. This is due to the fact that the underlying

architecture of the acceleration platform records the values of the

signals marked for observation in each cycle and stores them in

internal memory. To do so, the simulation must be temporarily

suspended whenever the memory becomes full, so that the content

can be transferred via a low bandwidth channel to a connected host

machine. The more frequently the transfer takes place, the higher

the associated performance penalty. Thus, the lower the number

of traced bits, the longer it takes to exhaust the internal memory

resources and the longer the intervals of uninterrupted simulation.

As a result, limiting the recording bit rate is critical for a solution to

be practical on acceleration platforms. Emulation platforms exhibit

similar trade-offs, hence the same considerations apply.

2.2 Checking in acceleration
While acceleration and emulation platforms can provide high-

performance simulation of synthesized structural descriptions of a

design, they cannot accommodate the associated high-level soft-

ware testbenches and checking environments necessary for fine grain

validation. Hence, acceleration and emulation platforms are typi-

cally utilized to perform coarse grain validation, such as compar-

ing final outputs of a simulated design model and the design run-

ning on the acceleration platform. Moreover, lockstep execution

of software checkers on a host paired with the design simulated on

an accelerator is not tenable, since it unacceptably degrades over-

all performance to an unacceptable level. It is, therefore, critical

to adapt checkers to acceleration platforms to fully leverage high-

performance simulation for verification and debugging. Current

industry methodologies on this front have focused on limiting the

number of synchronizations between the host running the checkers

and the accelerator by: i) accumulating short and frequent interac-

tions between the design and the testbench into longer and infre-

quent transactions [11, 12], by ii) recording the values of critical

design signals during simulation on-platform and off-loading the

log at the end to check for consistency with a software checker [5],

or by iii) synthesizing some of the checkers into hardware for sim-

ulation alongside the design [3].

2.3 Architectural checking on acceleration
Architectural checking, i.e., instruction-by-instruction (IBI) check-

ing is a dominant technique for microprocessor validation. In IBI

checking, a test regression is executed on the simulated micropro-

cessor, while updates to the architectural state of the simulated

microprocessor design are compared against those of a software-

based golden architectural model, one instruction at a time. IBI

checking involves monitoring two types of updates on the archi-

tectural state: namely instruction completion (IC) and associated

architectural register updates (RU). This technique provides the ad-

vantage of instantaneously detecting any deviation between the be-

havior of the DUV and that of the golden reference, thus facili-

tating bug localization. For decades, software-based IBI check-

ing [13] has been among the most effective solutions for micropro-

cessor validation and it is currently widely deployed in the indus-

try. As design complexity increases however, software simulation

simply cannot meet the ever-increasing demands for greater simu-

lation speed and shorter times-to-market. To expedite this process,

hardware-accelerated simulation platforms [8] have become pre-

dominant.

Nevertheless, the higher simulation speed comes at the cost of

reduced observability of the architectural states. To gather IC and

RU event data, it is now necessary to instrument the design to be

simulated. For an IC-event, we require the program counter value

to correspond to a non-speculative instruction completion. For RU

events, we must monitor non-speculative architectural register up-

date events, along with their updated values. Hence, a straightfor-

ward solution would be to record all such events and then compare

them against the golden model. Some additional logic would also

be necessary to output the collected information, so that it can be

brought off-platform. A recent solution in this space is [5], where

the authors propose to decouple event-tracing from checking ef-

forts. The proposed method detects any divergence between ar-

chitectural states in the accelerated simulation and in the software-

based golden model. It accomplishes this goal by recording a com-

pressed “abstraction” of each instruction footprints, and so it trans-

fers data off-platform at a much lower rate than if it were to transfer

the raw data recording. Unfortunately, even with this compression

technique, the latency overhead on the accelerator is still higher

than what is typically tolerable (∼50% slowdown in the worst case)

in high-performance validation flows. For any such solution to be

successful, two major challenges must be overcome:

Handling the lack of event correlation: For modern microproces-

sor designs in the industry, recorded IC and RU events lack close

time correlation due to microarchitectural implementation. This



problem is reported in [5] as well. Because of this lag, the trace

obtained from acceleration platforms only consists of a sequence

of IC and RU events, although the RU events corresponding to an

IC event are neither grouped together nor ordered with respect to

the IC event. In fact, an RU event may appear in the trace a few

positions before or after its corresponding IC event. Even so, it

can be guaranteed that under correct execution, all RU events cor-

responding to an IC event will appear within a bounded number of

cycles from the IC event. This upper bound can also be consid-

ered in terms of a conservative number of IC events following the

associated IC event; we treat this value as a parameter k for our

experiments. Note that, all IC events occur in program order. Also,

even though the RU events are re-ordered with respect to their cor-

responding IC events, if we consider a certain architectural register,

all the updates to that particular register appear in program order in

the trace. Our digest computation scheme takes advantage of this

fact. Any checking scheme operating on a trace of this type must

find a match between any logged event and the expected events

predicted by the golden model. A failure to match an expected RU

event within k IC events of the associated instruction will be con-

sidered a missing RU event.

Reducing the amount of traced data: The recording rate neces-

sary to trace all the IC and RU events, along with the associated

program counter and register values, is prohibitive for acceleration

platforms. Hence, a straightforward tracing approach would erode

away acceleration performance advantage, in which case, it be-

comes compulsory to perform on-platform compression using addi-

tional logic. Previous attempts to tackle this problem [5] record all

events but only compress the values associated with each of these

events (such as updated register value) using checksum schemes.

Our solution achieves much higher compression density than what

is achievable by merely compressing data values.

3. SEQUENCE-BY-SEQUENCECHECKING
In this section we introduce our novel sequence-by-sequence (SBS)

checking solution for architectural state validation. First, we present

a high-level overview of our solution followed by an in-depth pre-

sentation of checking flow and methods. We also detail the addi-

tional tracing logic that is necessary to collect event data from the

design during its simulation on the acceleration platform.

3.1 Sequence-by-sequence checking overview
The classic approach of recording all events and then compar-

ing each event against the golden model is fundamentally limited

in terms of recording bit-rate reduction. That is because, in this

context, the only way to achieve reduction is to compress the data

values associated with each event and compare <event,compressed

value> pairs. Clearly, the recording rate attained by this technique

is limited by the event generation rate. In contrast, our solution

maintains a record of cumulative changes for each architectural

resource (in our case, architectural register values and completed

instruction addresses) over a simulation interval of several clock

cycles, and compares it against the golden model after accruing a

large number of events. In this context, the average data genera-

tion rate is no longer related to event generation rate; rather, it is

amortized over the length of the simulation interval. This is the key

insight of our solution.

Our solution use a two-phase approach: acceleration run and a

post-simulation checking. Figure 1 presents a high-level overview

of the solution. During the simulation phase on the accelerator plat-

form, architectural event digests are computed for each interval of

simulation, called an epoch. Low-overhead additional logic can be

Epoch 1 digest

...

Total # of 
IC events

Cumulative 
checksum of PC

IC

Total # of 
r1 updates

Cumulative 
checksum for r1

Reg 
r1

Total # of 
r2 updates

Cumulative 
checksum for r2

Reg 
r2

Epoch 2 digest

...

Total # of 
IC events

Cumulative 
checksum of PC

IC

Total # of 
r1 updates

Cumulative 
checksum for r1

Reg 
r1

Total # of 
r2 updates

Cumulative 
checksum for r2

Reg 
r2

Epoch 1 digest

...

Total # of 
IC events

Cumulative 
checksum of PC

IC

Total # of 
r1 updates

Cumulative 
checksum for r1

Reg 
r1

Total # of 
r2 updates

Cumulative 
checksum for r2

Reg 
r2Simulated 

microprocessor 

design

Tracing 

logic

Acceleration platform

During acceleration run:

Post-simulation checking:

=?

Golden model trace
time

Epoch 0 digest

...

Total # of 
IC events

Cumulative 
checksum of PC

IC

Total # of 
r1 updates

Cumulative 
checksum for r1

Reg 
r1

Total # of 
r2 updates

Cumulative 
checksum for r2

Reg 
r2

Epoch 0 digest

...

Total # of 
IC events

Cumulative 
checksum of PC

IC

Total # of 
r1 updates

Cumulative 
checksum for r1

Reg 
r1

Total # of 
r2 updates

Cumulative 
checksum for r2

Reg 
r2

=?

r1
 u

p
d

a
te

r2
 u

p
d

a
te

IC
 e

v
e

n
t

r2
 u

p
d

a
te

r7
 u

p
d

a
te

r5
 u

p
d

a
te

IC
 e

v
e

n
t

r2
 u

p
d

a
te

IC
 e

v
e

n
t

r2
 u

p
d

a
te

r7
 u

p
d

a
te

IC
 e

v
e

n
t

IC
 e

v
e

n
t

r2
 u

p
d

a
te

r7
 u

p
d

a
te

r5
 u

p
d

a
te

IC
 e

v
e

n
t

r5
 u

p
d

a
te

IC
 e

v
e

n
t

r1
 u

p
d

a
te

r2
 u

p
d

a
te

IC
 e

v
e

n
t

r2
 u

p
d

a
te

IC
 e

v
e

n
t

Figure 1: Overview of sequence-by-sequence checking. Digests contain-
ing cumulative checksum of updates to each architectural register, along
with a count of the total number of updates are computed during each epoch.
This digest is compared against that generated from the golden model dur-
ing the post-simulation checking phase.

used to compute and record such event digests. During the off-

line checking phase, these event digests are compared by epoch-

by-epoch against the golden model. The digests consist of cumu-

lative checksums of updates to each architectural register, along

with a count of the total number of updates. A checksum is also

built from the series of completed instruction addresses during the

epoch. Counting update events is important for tackling possible

issues relating to event correlations. Indeed, from the count, we

can infer whether an update event to a certain architectural register

has either moved ahead enough to be in the subsequent epoch or

backward to be in the preceding epoch.

One may think of two possible downsides of our approach. The

first one is that the cumulative nature of the checksum may re-

duce the sensitivity to discrepancies between corresponding archi-

tectural state update events. We approach this issue by using suffi-

ciently long checksums for each architectural resource. While this

approach may entail more recorded data, the impact is insignifi-

cant since the long checksums are amortized over the length of the

epoch. The other possible downside is that, after we identify a

discrepancy in the cumulative record of a large number of events,

it is no longer possible to localize which update was the cause of

such discrepancy. However, if the regression’s length is in the order

of billion cycles, then narrowing down a discrepancy to a window

of a few thousands cycles is already very valuable. Other fine-

granularity methods, such as [5], can then be applied to analyze the

region of interest in detail.

3.2 Complete checking flow
The proposed sequence-by-sequence validation mechanism is a

process that iteratively checks the consistency between the simula-

tion trace of the DUV and that of the golden model. This process

takes two inputs: the trace’s digest from the DUV and the unmod-

ified trace generated by the golden model. The checking task is



...

RU:…

IC:…

IC:…

RU: ...

IC: ...

RU: ...

IC: ...

IC: ...

RU: ...

RU: ...

RU: ...

IC: ...

RU: ...

RU: …

RU:…

RU:…

IC:…

RU:…

...

RU: r7<-a6e5

IC: 0x0945a

RU: r8<-ea35

IC: 0x0945b

IC: 0x0945c

RU: r2<-7

RU: r1<-9

RU: r32<-bea5

IC: 0x0945d

Simulation 

Trace

Epoch 

Epoch length = 4

Figure 2: Epoch of epoch length 4. An epoch is a sequence of instruction
events consisting of a fixed number of IC-events and an arbitrary number of
RU events. The last entry of an epoch is always an IC-event.

about manipulating the golden model trace to fit it on the DUV di-

gest. We work epoch by epoch. When we succeed in matching an

epoch, we move to the next one. If we fail, we flag a bug.

An epoch E is a contiguous portion of a simulation trace, con-

sisting of a sequence of IC and RU events, interleaved in any way.

The number of IC events in an epoch must be fixed, and it is called

the epoch’s length. The number of RU events within an epoch may

vary. The last entry of an epoch must always be an IC-event. Fi-

nally, for each architectural register we define a metric, called RU

length, which corresponds to the number of RU events updating

that register within the epoch. Thus, each epoch has an RU-length

vector associated with it, with one entry for each architectural reg-

ister.

In our approach, we compare epochs obtained in acceleration

against those from the golden model execution, by checking the

checksums derived from the epochs. The epoch’s comparison flow,

which is illustrated in Figure 3, consists of three main parts:

• Epoch segmentation: Segmentation is a process that aligns the

epochs obtained from the DUV with those from a golden model.

After a segment is identified via the epoch length of the golden

trace, this step examines whether the last IC-event of the segment

matches the last IC-event of the digest obtained from the DUV.

A mismatch here reveals a bug for incorrect program flow.

• RU events adjusting: The goal of this step is to match the RU-

length vectors between the golden model’s epoch and the DUV

epoch. As mentioned before, it is possible that the separation

between an RU event and its corresponding IC event is such that

the two are logged in separate epochs in the DUV execution.

Therefore, before our final check, we must guarantee that the

epoch’s digests from our two traces include the same amount of

RU events for each architectural register. To this end, we may

move some RU events between adjacent epochs in the golden

model’s trace, in order to match the RU length for all the regis-

ters. We operate in the golden model’s trace, since we only have

a digest for the DUV trace. If we cannot find a set of moves of

RU events that matches the DUV trace’s digest, we flag a bug for

missing RU event(s).

• Checksum computation: This is the final step of the checking

process. We construct the digest (i.e., checksums for all archi-

tectural registers and checksum of PC-values for all IC-events)

from the segmented and adjusted epoch in the golden trace, and

then compare it against the digest from the DUV trace. If every-

thing matches, we move on to the next epoch, otherwise we flag

an error.

The checking process iterates through these three steps for the

entire regression, one epoch at a time. Whenever any of the steps

Epoch 

segmentation

Match?

DUV trace 

digest

RU events 

adjusting

Match?

Checksum 

computation

Match?

Golden model 

trace
Start

Last epoch?

Bug found!

No No No

No

Yes Yes Yes

PASS Yes

Figure 3: ArChIVED’s checking flow proceeds epoch-by-epoch
through three main steps: epoch segmentation, RU events adjusting
and checksum computation.

reports a failure, a bug is reported and the post-simulation checker

terminates. Our solution can report the time of the bug occurrence

at the granularity of an epoch length. Other solutions can then be

deployed to further refine the localization (for instance [5]).

3.3 Checking steps
In this section we elaborate on the tasks entailed by each of the

checking steps.

3.3.1 Epoch segmentation

In the “segment epoch” step, we process corresponding epochs

of the same length – that is, epochs including the same number of

IC events. If the two epochs were to match each other they should

end at the same IC event, since we have already matched all the

previous epochs. When the last IC event does not match, we flag

an error, indicating that there is mismatch between the execution

flow in the acceleration platform and that in the golden model.

3.3.2 RU events adjusting

As explained in Section 2.3, the lack of event-correlation is one

of the main challenges for SBS validation. The RU events cor-

responding to an IC-event may appear up to k IC-events earlier or

later. However, all the IC-events and RU events for a particular reg-

ister follow program order, which is a key tenet for the mechanism

of our solution. This step computes the RU-length for each register

in the golden trace’s epoch, and compares it against the value ob-

Matching IC 

event

GoldDUV GoldDUV

R2<-..

Matching IC 

event

R2<-..

R2<-..

R2<-..

RU length 

[R2] = N

RU length 

[R2] = N+2

Figure 4: An example of RU event adjusting step. The two epochs from
the DUV and the golden model have the same IC length and the boundary
IC event is matched. However, the epoch from the golden model is two RU
events longer than EDUV with respect to register R2. Thus, the RU event

adjusting step searches for 2 RU events updating register 2 in the golden
model epoch, starting from its end. Once found, it moves them forward to
the next epoch.



tained from the DUV. For each register with a different length, our

checker attempts to move RU events in the golden model across the

epoch’s boundaries, until it can attain a match.

The process considers one register at a time. It first adds or sub-

tracts, to the number of RU events computed for the epoch, those

RU events that have been propagated forward or borrowed back-

ward from the previous epoch. If, at this point, the sum matches

that of the DUV digest, the work for this register is completed.

Otherwise, it will push forward to the next epoch, or borrow from

it, the number of RU events required to make the two sums match.

Note that this stage only needs to work within the neighboring

epochs. Indeed, the epoch length has been selected to be suffi-

ciently long so that RU events can never land more than one epoch

before or after the IC-event to which they relate. The epoch length

depends on the specific microarchitecture under verification. Thus,

if we cannot borrow a sufficient number of RU events for a given

register, that indicates a bug of missing RU event(s) or of excessive

RU event displacement. Figure 4 illustrates this process with an ex-

ample. In the figure we show an epoch in which the golden model

trace includes two additional RU events with respect to register 2.

Thus the adjustment step moves the last two RU events relating to

register 2 to the following epoch.

3.3.3 Checksum computation

While the previous steps have already ruled out many bug mani-

festation possibilities, some other manifestation types still remain.

For example, RU events may occur with incorrect register values.

Moreover, the wrong ordering among RU events updating the same

register also reveals a bug, often leading to erroneous behavior. To

address these types of issues in our SBS checking scheme, we cal-

culate a set of digests from the golden model’s trace for the epoch,

and compare it against the set of digests we have for the corre-

sponding DUV’s epoch. The digest consists of running checksums

on each architectural register and PC-values of IC-events.

To compute the digest of the DUV, every architectural register

should be equipped with checksum computation and storing logic.

Given the possibility of corruption or wrong ordering in IC-events,

we also need to compute the checksum from the PC-value of IC-

events. The necessary hardware support is detailed in Section 3.4.

To compare the digests, we compare the vector extracted from the

DUV against that extracted from the golden model. If any pair of

checksums are not equal, our checker reports an error. There are

a few desirable characteristics that the checksum scheme of choice

should have:

1. small logic footprint in hardware;

2. on-the-fly checksum computation (instead of block-based),

so that less intermediate computation storage is required;

3. a checksum that is sensitive to event ordering, that is, without

the presence of aliasing, the checksum scheme should be able

to distinguish between update orders a → b and b → a to

capture bugs manifesting as a wrong event order;

4. low aliasing.

We study below two simple checksum schemes, XOR and rotate-

and-XOR, and analyze their qualities with respects to the charac-

teristics above.

XOR checksum scheme.
The XOR checksum scheme simply updates the checksum by ap-

plying an exclusive-or operation between the current epoch’s tem-

porary checksum value with the next architectural event. For each

epoch, our checker initializes the checksum to 0 and repeatedly ap-

plies the above operation through the entire epoch. The advantage

of this checksum scheme is that the logic footprint is extremely

small. Moreover, because of its simplicity, one can easily apply

incremental updates to this checksum.

However, XOR cannot preserve the ordering information be-

tween events. For example, if we have three binary messages,

1001, 1010, and 0011, regardless of the order of calculation, the

XOR checksum will generate the same result, that is, 0000. We

will note in Section 4.4 that this checksum is very vulnerable to

certain kinds of errors. In practice, this drawback renders XOR an

untenable candidate for our SBS checking framework.

Event order: A→B→C

A:1001

0011

B:1010

1001XOR

0011

C:0011

0000XOR

Event order: A→C→B ≠
 

A:1001

0011

C:0011

0000XOR

0000

B:1010

1010XOR

Figure 5: An example of rotate-and-XOR checksum scheme. The rotate-
and-XOR checksum scheme is capable of distinguishing among different
event orderings.

Rotate-and-XOR checksum scheme.
One direct improvement to XOR checksum is to apply a rotation

operation before updating the checksum, to take the ordering in-

formation into account. The rotate-and-XOR scheme left-rotates

the accumulated checksum by one bit before updating it with a

new message. While this mechanism successfully preserves the or-

dering information to some extent, it imposes additional overhead,

usually entailing only several short wires, which is negligible.

Figure 5 illustrates the benefits of this approach with an example.

We use the same sequences considered in the previous subsection

and show that, when using the rotate-and-XOR checksum we ob-

tain two distinct checksums, namely 0000 and 1010.

3.4 Hardware requirements
To implement sequence-by-sequence checking, the microproces-

sor design needs to be instrumented with two kinds of tracing logic

components: RU-events counters and checksum computation logic.

We equip each architectural register with these two components

to record its related RU length and keep track of the cumulative

checksum corresponding to that register. We also need additional

checksum computation logic for IC-events as well.

• RU-length counter: We use this to record the number of RU

events that update a same register. As the execution of DUV

proceeds, whenever a register update event is reported in the ac-

celeration platform, the event is analyzed so that the index of the

destination register is obtained, and the corresponding counter is

incremented. All counters are reset to 0 at the beginning of every

epoch.

• Checksum computation logic: The checksum computation logic

must hold the current checksum value in a checksum-register and

update it according to the selected checksum algorithm, when a

regression is executed. The value in the checksum-register at the

end of each epoch is the cumulative effect of this epoch, and is

reported as the checksum of the corresponding architectural reg-

ister for that epoch in the digest. The checksum-register will also

need to be reset after each epoch in the DUV.

The logic necessary to implement this support is very simple and

straightforward. Because of their extremely limited complexity, we

will also need additional logic and buffers to stream out the digest

data of an epoch over the duration of the following epoch. We es-

timate that the logic overhead to implement these structures would

have no substantial effect on acceleration performance.



4. EXPERIMENTAL RESULTS
This section first describes our experimental setup and then presents

the recording rate trade-offs and the detection accuracy for different

variants of our checking scheme.

4.1 Experimental setup
Our experimental environment is built on the gem5 simulator [2].

We chose the ARMv7 ISA as the underlying architecture, which

has a total of 64 integer registers (int regs) and 168 special purpose

registers (misc regs). We collected architectural traces, consist-

ing of register-update events (RU events) and instruction-complete

events (IC events), by executing test programs using the Alpha-

21264-based cycle-accurate O3CPU model in gem5. To test the ef-

ficacy of our solution, we analyzed a total of 5 benchmarks includ-

ing a full execution of an eight-queen problem solver, and full or

partial executions of four SPECCPU2006 integer benchmarks [9].

To provide the hardware support, as described in Section 3.4, we

equip each register with an RU-counter and a set of checksum logic,

including a 32-bit checksum-register and the checksum-computing

logic. The bitwidth of RU-counters, however, varies throughout

the experimental evaluation, since it depends on the epoch length

selected.

4.2 Error injection
We obtain our test traces by mimicking the execution traces gen-

erated by a buggy processor model being simulated on an accel-

eration platform in the following three steps: i) we first execute

the test program on the simulator to obtain a golden trace. ii) We

reorder the RU events in these traces in a constrained-random fash-

ion to generate legal variants of the golden trace. In this step, every

RU event will be within a range of a small number of IC-events

from its associated IC-event. iii) Random errors are then injected

into these variant traces. In our current setup, we inject one ran-

dom error into each of the variants. The distribution of injected

errors (as shown in Table 1) basically follows the distribution de-

scribed in [5]. Considering the epoch-based nature of our solution,

our SBS checking scheme must tackle several types of manifesta-

tions of buggy behaviors, including some that are not present in a

traditional IBI scheme [5].

We now present the categories of errors we considered in our

experiment. For RU events, the bug manifestations (symptoms)

studied include:

• VanishedRU: An architectural register update event takes place

in the golden model, but does not appear in the DUV trace.

• ExtraRU: An architectural register update event appears in the

DUV traces, but not in the golden model.

• CorruptedRU: The updated value of a register in the DUV does

not match the expected value as recorded in the golden model.

• MigratedRU: The order between at least two register update

events which update the same destination register is incorrect

with respect to the golden model.

For IC-events, the bug manifestations include:

• VanishedIC:An architectural instruction completion event takes

place in the golden model, but does not appear in the DUV trace.

• CorruptedIC: The PC value of an instruction completion event

in the DUV trace is inconsistent with that in the golden trace.

• ReorderedIC: The order between at least two instruction com-

pletion events is incorrect with respect to the golden model.

Note that MigratedRU bugs can be categorized as register value

mismatches because of their immediate detection nature; i.e., such

bugs are no different from a register value mismatch when the

checker can observe this event as soon as it is produced. From

a SBS perspective, however, since the checker can only see the

accumulated results, MigratedRU errors could be easily masked

Table 1: The distribution of types of bug manifestation in the pool of traces.
Note that “0.00%” denotes the situation where such kind of bug doesn’t
manifest in that benchmark.

bzip2 libquantum sjeng mcf 8queens

VanishRu 57.93% 66.21% 57.93% 64.83% 62.41%
ExtraRu 26.90% 21.38% 22.07% 12.41% 17.72%
CorruptRu 7.59% 2.07% 9.66% 11.03% 7.66%
MigrateRu 5.52% 8.28% 8.28% 11.72% 7.45%
VanishIc 0.69% 0.69% 0.69% 0.00% 1.52%
CorruptIc 0.69% 0.00% 0.00% 0.00% 1.45%
ReorderIc 0.69% 1.38% 1.38% 0.00% 1.79%

Total 100.00% 100.00% 100.00% 100.00% 100.00%

Table 2: Comparison of recording rates of several epoch-length variants of
our scheme (SBS) against prior work [5].

Scheme Epoch length Checksum width Average recording rate

IBI - 32 108.80
IBI - 5 27.90

SBS 10 32 1506.24
SBS 100 32 163.15
SBS 1,000 32 17.57
SBS 10,000 32 1.92
SBS 100,000 32 0.20

due to checksum aliasing. A similar situation also occurs with Re-

orderedIC bugs. Hence, we treat them as separate categories.

4.3 Recording bit rate
We evaluated the proposed framework by analyzing its effec-

tiveness in detecting bugs and its performance from a recording

rate perspective. We first demonstrated the efficacy of our SBS ap-

proach by comparing the recording bit rate of our approach with

that of a classic IBI solution.

Assuming that in our SBS checking scheme, we transmit one

set of event digests off platform every N cycles, the recording rate

RSBS can be calculated as follows:

RSBS =
IPC

N
((BRUdigest + BRUlength) × R × EPIRU

+ (BICdigest × 1))

where BRUdigest is the number of bits for recording the message

digest of RU events each time and BRUlength is the number of bits

for recording the RU length; BICdigest is the number of bits for

recording the digest of IC events; R denotes the number of regis-

ters; EPIRU represents the average number of RU events reported

per instruction. Note that, in this equation, we also assume that

only 1 IC event is reported for each instruction.

We also notice that an IBI checking scheme is a special case of

a SBS scheme with N equals to 1. Moreover, since IBI check-

ing schemes record data on a per-cycle basis, they do not require

register counters to store the RU event counts related to individual

registers. They also do not need to record each register value every

cycle. However, they should still record a few extra bits to specify

the index of the destination register of the current RU event. Thus,

the recording rate RIBI for an IBI scheme can be calculated as

follows:

RIBI = IPC((BRUdigest + Breg−idx)) × EPIRU

+ (BICdigest × 1))



Table 3: Percentage of bugs detected by XOR and rotate-and-XOR (RnX) checksum schemes. Similar to Table 1, N/A denotes the situation where the certain
kind of bug doesn’t manifest in that benchmark.

Bug category VanishedRU ExtraRU CorruptedRU MigratedRU VanishedIC CorruptedIC ReorderedIC

Chksum scheme XOR RnX XOR RnX XOR RnX XOR RnX XOR RnX XOR RnX XOR RnX

bzip2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 0.0% 25.0% 100.0% 100.0% 100.0% 100.0% 0.0% 100.0%
libquantum 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 0.0% 50.0% 100.0% 100.0% N/A N/A 0.0% 100.0%

sjeng 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 0.0% 16.7% 100.0% 100.0% N/A N/A 0.0% 100.0%
mcf 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 0.0% 52.9% N/A N/A N/A N/A N/A N/A

8queens 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 0.0% 86.1% 100.0% 100.0% 100.0% 100.0% 0.0% 65.4%

where Breg−idx is the number of bits for specifying the index of

the destination register of the curreny RU event. In the following

discussion, we assume a test regression execution with EPIRU =
2 and IPC = 0.9.

With these parameters, an IBI checking scheme that records com-

plete event messages (32 bits) (IBI(32), for short), which theoret-

ically can obtain the highest detection accuracy, has a bit rate of

0.9 × ((32 + 8) × 2 + 32) = 100.8 bits/cycle, in which 8 bits are

used to indicate the index of the destination register of the current

RU event. Under the same execution, an IBI scheme with event

message compressed into 5-bit checksums, similar to [5], (IBI(5),

for short) can achieve a bit rate of 0.9 × ((5 + 8)× 2 + 5) = 27.9
bits/cycle.

However, since our SBS approach equips every architectural reg-

ister with a RU-counter and checksum logic, if the epoch length is

small, we suffer from heavy recording rate overhead. The record-

ing rate of our SBS scheme can be calculated as follows: assume

that we always use 32-bit checksums in our SBS checker. For a

SBS checking scheme with an epoch length of 10 (SBS(10,32), for

short), since we need 4-bit RU-counters to conservatively store the

number of RU events for each register, the theoretical recording bit

rate is 0.9
10

[(32+4)×(64+168)×2+32] = 1506.24 bits/cycle. It

is not surprising that this number is much larger than the bit rate of

IBI(32), since we augment our RU events with a large amount of in-

formation. Fortunately, this bit rate can be drastically amortized if

we increase the length of the epoch, even though it also widens the

RU-counters. For instance, using the above equation, we can obtain

a bit rate of 17.57 bits/cycle for the SBS(1000,32) scheme; simi-

larly, the bit rates of SBS(10000,32) and SBS(100000,32) would

be 1.92 bits/cycle and 0.20 bits/cycle, respectively. Table 2 reports

the complete set of calculations.

We can conclude that, if we increase the size of the epoch, we

can possibly achieve more than 99% reduction of recording bit rate

compared to the IBI(5) configuration.

4.4 Detection accuracy
A large data-compression ratio may also cause a substantial loss

of information and thus degrade checking accuracy. To ascertain

whether this is the case, we first conducted a study on detection

accuracy. Since an epoch length of 100,000 gives us the largest

improvement with respect to our objective, i.e., the minimization

of the recording bit rate, we select this epoch length for this study.

We implemented the two checksum schemes described in Sec-

tion 3.3.3 (i.e., XOR and rotate-and-XOR) to study how this factor

affects the detection ratio. According to our results, reported in

Table 3, we achieved a 100% detection ratio for all the bugs from

categories VanishedRU, ExtraRU, CorruptedRU, VanishedIC, and

CorruptedIC. This result, not only demonstrates the effectiveness

of our 3-stage checking approach, but it also suggests that it may

be a good choice to trade temporal precision (inversely proportional

to epoch length) for spatial precision (proportional to the bitwidth

of the underlying checksums).

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

10 100 1000 10000 100000

B
u

g
 d

e
te

ct
io

n
 r

a
ti

o

Epoch length

XOR

Rotate-and-XOR

Figure 6: Sensitivity of detection vs. epoch-length with different check-
sum schemes for MigratedRU and ReorderedIC bugs.

However, our SBS checking does suffer from aliasing if the bugs

are from the MigratedRU or ReorderedIC categories, especially for

the configurations using the XOR scheme. With an XOR checksum

scheme, we can observe from Table 3 that none of the MigratedRU

bugs or the ReorderedIC bus can be detected (except for the config-

uration with a 10 IC-events epoch length, as discussed below). This

result is not surprising and it is already implied by the discussion

in Section 3.3.3. In short, bugs related only to message reordering

cannot be detected by a simple XOR checksum scheme, unless data

bits are also corrupted.

On the other hand, we found that the rotate-and-XOR scheme

is still able of capturing a large portion of bugs in these two cate-

gories. Moreover, when we studied the buggy traces labeled false

negative, we noticed that, for some of the MigratedRU bugs, the

two reordered RU events actually write the same value to the reg-

ister. While bugs with this type of manifestation might exist in the

DUV, we cannot identify this kind of error if the simulation trace

is our only clue. Thus, we believe this result demonstrates that the

rotate-and-XOR scheme is both a simple and effective solution for

preserving temporal information within each epoch.

Finally, we conducted a sensitivity analysis on epoch length vari-

ation. In this study, we focus only on the detection of all the

bugs from the MigratedRU and the ReorderedIC categories, be-

cause bugs from every other category are 100% detected under ev-

ery epoch-length configuration. The results are presented in Figure

6. We found that while the detection ratio of XOR scheme degrades

from around 50% to almost 0% as the epoch length grows from 10

to 1,000, the degradation of detection ratio of the rotate-and-XOR

scheme is less significant.

It is worth noting that, the fact that some of the MigratedRU and

ReorderedIC manifestations can be captured by the XOR scheme

under small epoch length is not surprising. Whenever an event is



reordered across the epoch boundary, the manifestations can be de-

tected by the first two stages of our checking solution.

5. CONCLUSION AND FUTUREWORK
In this work, we proposed a novel scheme for architectural val-

idation of microprocessor designs for acceleration platforms. This

method, called SBS-checking, enables highly accurate architectural

validation at a very low recording rate on platform. The solution

provides the same, or even better quality of checking, compared

to previous solutions, but at much higher performance. As part

of our future work, we intend to develop more accurate checksum

schemes to detect certain types of bug manifestations.

6. ACKNOWLEDGMENTS
This work was supported by STARnet, a Semiconductor Re-

search Corporation program sponsored by MARCO and DARPA.

7. REFERENCES
[1] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and

A. Agarwal. Logic emulation with virtual wires. IEEE Trans.

on CAD, 16(6):609–626, 1997.

[2] N. Binkert et al. The gem5 simulator. ACM SIGARCH

Computer Architecture News, 39(2), 2011.

[3] M. Boule, J.-S. Chenard, and Z. Zilic. Adding debug

enhancements to assertion checkers for hardware emulation

and silicon debug. In Proc. ICCD, 2006.

[4] Cadence. Palladium. http://www.cadence.com/

products/sd/palladium_series.

[5] D. Chatterjee, A. Koyfman, R. Morad, A. Ziv, and

V. Bertacco. Checking architectural outputs

instruction-by-instruction on acceleration platforms. In Proc.

DAC, 2012.

[6] J. Darringer et al. EDA in IBM: past, present, and future.

IEEE Trans. on CAD, 19(12), 2000.

[7] M. Denneau. The Yorktown simulation engine. In Proc.

DAC, 1982.

[8] G. Ganapathy, R. Narayan, C. Jorden, M. Wang, and

J. Nishimura. Hardware emulation for functional verification

of K5. In Proc. DAC, 1996.

[9] J. Henning. SPEC CPU2006 benchmark descriptions. ACM

SIGARCH Computer Architecture News, 34(4), 2006.

[10] Y.-I. Kim, W. Yang, Y.-S. Kwon, and C.-M. Kyung.

Communication-efficient hardware acceleration for fast

functional simulation. In Proc. DAC, 2004.

[11] J.-G. Lee, W. Yang, Y.-S. Kwon, Y.-I. Kim, and C.-M.

Kyung. Simulation acceleration of transaction-level models

for soc with rtl sub-blocks. In Proc. ASPDAC, 2005.

[12] M. Shabtay, D. Leonard, B. Maya, and S. Michael. Building

transaction-based acceleration regression environment using

plan-driven verification approach. In DvCon, 2007.

[13] D. Victor et al. Functional verification of the POWER5

microprocessor and POWER5 multiprocessor systems. IBM

Journal of Research and Development, 49(4.5), Jul. 2005.


