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ABSTRACT

As silicon technology continues to scale, transistor reliability is be-

coming a major concern. At the same time, increasing transistor

counts are causing a rapid shift towards large chip multi-processors

(CMP) designs, comprising several processors cores connected via

a network-on-chip (NoC). As the sole medium of communication,

an NoC should be able to gracefully tolerate an increasing number

of permanent faults. In particular, it should be able to fully utilize

all the functional resources to maintain decent performance.

We propose LinkMiser, a solution for reliable operation of NoCs

incurring high fault rates. In contrast to previous approaches that

only use a subset of the functional links, LinkMiser utilizes all the

working components in the NoC to provide reliable, deadlock-free

routes between nodes. To this end, it leverages fine-resolution fault

diagnosis mechanisms [18], designed specifically for on-chip net-

works. We also propose a modified version of up*/down* rout-

ing, specifically designed for maximal utilization of the functional

components. Our solution places no restriction on the number and

location of faults, while its distributed nature enables an efficient

implementation. Experimental results show that LinkMiser, imple-

mented in a 64-node NoC, provides 4.4% greater connectivity and

6.7% latency improvement at 50 faults over state-of-the-art on-chip

fault tolerant solutions. Moreover, the reliability improvement is

even more impressive at higher fault rates.

1. INTRODUCTION
To benefit from the continued technology scaling in micropro-

cessors, recent trend has been towards a growing number of sim-

pler, power-efficient cores-on-chip. As a result, the corresponding

increase in inter-core communication demands has rapidly side-

lined traditional interconnects, such as simple buses, due to their

limited bandwidth and poor scalability. NoCs, characterized by

highly concurrent communication and thus better scalability, are

becoming the de-facto choice for on-chip interconnects. Moreover,

as the sole medium for on-chip communication, these NoCs are

single points of failure, so that any permanent fault in the NoC

can cause the entire system to fail. The waning reliability of sili-

con manufacturing at the most recent technology nodes makes the

problem even worse. It is paramount to any reliability solution de-

signed for highly unstable silicon, to fully utilize all the resources

that are still functional after faults manifest.

Existing NoC reliability techniques can be broadly divided into

protection against faults in router logic [5, 9] and re-routing around

faulty links [19, 14, 8, 1]. The latter can also be leveraged for router

logic faults using a simple fault model where a fault in a router’s

logic is modeled as a fault in each of the links connected to that

router. Fortunately, recent on-chip diagnosis mechanisms, such as

[21, 18], allow us to diagnose faulty components at a finer resolu-

tion, pointing out the faulty link or turn (the connection between

two links through a router). However, current re-routing based re-

liability solutions do not exploit this additional opportunity of finer

reconfiguration as they are distributed implementations [1, 8] of

off-chip solutions [20, 10], which were in turn originally designed

to route in irregular topologies. Off-chip solutions (and hence their

on-chip derivatives) assumed links to be bidirectional, and a fault

in one direction was assumed fatal for the entire link. This assump-

tion worked well for off-chip networks where faulty components

could be replaced with new ones. However, for on-chip networks

with fixed amount of resources, this overapproximated model disre-

gards precious functional resources, leading to an opportunity loss

in performance and connectivity, as we demonstrate in Section 3.

Moreover, unlike most approaches for NoC reliability, LinkMiser

is not limited by the number or location of failures. This is im-

portant when targeting multi-cores at future technology nodes [3],

where a large number of transistors may fail in an unpredictable

manner. For NoCs, this might lead to deadlock-prone or even dis-

connected topologies, forcing surviving nodes to coordinate the

discovery of the existing topology and deadlock-free routes.

1.1 Contributions
Increasingly unreliable silicon at advanced technology nodes re-

quires techniques that can provide high reliability, with graceful

degradation in performance. In addition, area overhead should be

kept at a minimum. LinkMiser uses a novel routing algorithm that

extends the theory of up*/down* routing to networks with unidirec-

tional links between routers. This new unidirectional up*/down*

routing (named uni-up*/down*) is uniquely designed to maximally

utilize surviving links in faulty on-chip networks. Uni-up*/down*

is also guaranteed to discover only deadlock-free routes without

the use of any virtual channels, and provably performs better than

traditional up*/down* in all possible fault scenarios. Moreover, a

lightweight reconfiguration algorithm implementing uni-up*/down*

provides maximum robustness, as it places no restriction on the

location of faults. Given only local information, the reconfigura-

tion algorithm executes in lockstep at each network router to route

around faulty components. As transistors fail over time, LinkMiser

disables components in a frugal fashion, so as to maintain the max-

imum working set of links leading to three major benefits:

Path Diversity: As faults accumulate over time, a greater number

of links are available to route packets between nodes, creating path

diversity, and hence better performance.

Node Connectivity: LinkMiser is able to connect nodes using

dead-lock-free routes, including nodes that were unreachable us-

ing traditional up*/down* with bidirectional links.

Load Balance: In previous solutions, bidirectional links were com-

pletely disabled even when only one direction had become faulty.

LinkMiser disables links sparingly, only in the affected directions,

thus utilizing a greater number of links for node-to-node commu-

nication and reducing the stress on the healthy links.

The rest of this paper is organized as follows: Section 2 presents

the related work, and Section 3 discusses the need for a reliable

routing algorithm for networks with unidirectional links and the op-

portunities for better reliability and performance that it offers. The

uni-up*/down* routing algorithm is detailed in Section 4, while the

distributed reconfiguration scheme to implement it is described in

Section 5. Finally, Section 6 discusses the experimental setup and

results, while Section 7 concludes the paper.

2. RELATED WORK
Ensuring reliability in NoCs has been the subject of much pre-

vious research, focusing on a variety of aspects. These methods

enhance NoC reliability by enabling one or a combination of the



following features: i) detection of erroneous behavior [7], ii) diag-

nosis of fault site [18, 9], ii) recovery from erroneous state [17], or

iii) system reconfiguration to bypass the permanent faults [19, 14,

9, 1]. In this work, we specifically look at reconfiguration.

During reconfiguration, a new set of routing paths is generated

(whenever a new link fault is detected) to replace the current ones.

Complex, performance-oriented reconfiguration algorithms often

translate to high area overhead. If implemented in software, like in

most off-chip solutions [20, 16, 13], they require additional hard-

ware to collect the surviving topology information at a central node

and to relay the new routing tables back to the respective nodes

once the reconfiguration algorithm completes. Similarly, if im-

plemented in hardware, the complex optimizations would lead to

prohibitive area overhead. The result is that most low-overhead

hardware-only reconfiguration mechanisms can only tolerate a small

number of faults, usually with constraints on fault locations. The

situation is even worse for on-chip networks that have tight area

and power budgets. In addition, high fault rates in upcoming sili-

con technology, along with the unpredictable nature of fault occur-

rences, result in solutions designed for a bounded number [11, 12]

or constrained pattern of faults locations [22] being unfit for NoCs.

Researchers have recently proposed a few hardware-only recon-

figuration solutions [19, 9, 1] that tackle the problem of uncon-

strained faults to a certain extent. However, they either impose sig-

nificant area overhead, and/or fail to adequately address all failure

scenarios. For example, Immunet [19] incurs large area overhead

and Vicis [9] deadlocks on fault occurrences.

Ariadne [1] proposes a low-overhead distributed implementa-

tion of up*/down* [20] routing for NoCs. Ariadne has all desirable

features of up*/down* routing, being able to provide deadlock-free

routes between connected nodes, regardless of the number and lo-

cation of faults. However, Ariadne, as a direct implementation of

off-chip solutions, does not exploit finer reconfiguration opportu-

nities offered by the unique nature of faults in NoCs. Specifically,

Ariadne can only work on bidirectional links and it disables healthy

unidirectional links if the link in the opposite direction is faulty.

Similarly, Ariadne has no support for disabling faulty turns within

a router, and must disable both links that form a turn to continue

error-free operation.

In this work, we propose LinkMiser, based on a novel routing

mechanism, uni-up*/down*, that extends the theory of up*/down*

routing to use in networks with unidirectionally faulty links and

turns. Moreover, LinkMiser incorporates a low-overhead distributed

reconfiguration algorithm, implementing this novel routing algo-

rithm. LinkMiser offers the same unlimited robustness of Ariadne,

while outperforming all previous approaches, as it does not disable

healthy links to be able to use off-chip reconfiguration solutions.

3. BACKGROUND ANDMOTIVATION
In this section, we first discuss unique characteristics of fault

manifestation in NoCs and opportunities they present for improved

reliability and performance. Routers in an NoC are connected by

bidirectional links, where each unidirectional link is implemented

using separate sets of parallel wires. Most previous reconfigura-

tion approaches assume a very simple fault model, where a broken

link wire in one direction is represented as a failure in the whole

bidirectional link. All faults within the router logic are modeled by

tagging all communication links connected to it as faulty. Vicis [9]

first improved on this simplistic fault model by mapping gate-level

faults within a router logic to link-level failures. This coarse grain

fault model (denoted CG_FModel) used by Vicis (and Ariadne [1]),

however, modeled each link failure as a bidirectional link failure, so

to leverage off-chip irregular routing algorithms [4, 20] for recon-

figuration in faulty on-chip networks without significant changes.

Up*/down* routing [20] is a classic example of a routing algorithm

that was originally designed for off-chip irregular networks and,

because of its simplicity, it was adopted by Ariadne [1], an on-chip

fault tolerant solution. Up*/down* routing is a deadlock-free algo-

rithm that assigns directions to all surviving links in the network:

up or down. First, a spanning tree is constructed after choosing a

root node, as shown in Figure 1a. Starting from the root, the rest

of the nodes in the network are arranged on a single spanning tree.

Considering that each link is made of two opposite unidirectional

links, the up link is defined as: i) the unidirectional link towards a

node that is closer to the root in the spanning tree; ii) or the unidi-

rectional link towards the node that has the lower identifier, if nodes

at either end of the link are at the same tree level. Cyclic dependen-

cies are broken by disallowing routes that include traversing a down

link followed by a up link (Figure 1b). However, due to the overap-

proximation of faults in the CG_FModel, up*/down* is unable to

fully utilize all functional resources available.
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Figure 1: Up*/down* routing. Links are marked either up or down. Links
are marked up if they point towards the node that is closer to the root, while
in case of nodes being at the same level, the link towards a lower ID node
is marked as up. Finally, all down→up turns are disabled.

Authors of [18] further refined the diagnosis problem for on-

chip networks by mapping all link or router (datapath and control)

level faults to OP/IP (output port/input port) links or turns. [18]

defines an OP/IP link as the combination of a link between routers,

the corresponding output port in the upstream router, and the input

port/FIFO in the downstream router. As packets that enter anOP/IP

link always traverse all its components, all faults within any OP/IP

link can be modeled as a failure in the corresponding unidirectional

link. This fine grain fault model is denoted as the FG_FModel.

Other faults (such as within the crossbar) can be modeled as mal-

functioning turns. Note that, instead of a failed connection between

links, a malfunctioning turn is modeled as two bidirectional link

failures in the CG_FModel. This motivates our research to find

an efficient algorithm that could incorporate this new fault model,

i.e., find opportunities for better reliability and performance us-

ing working unidirectional links/turns. Figure 2 graphically rep-

resents the two fault models, i.e., CG_FModel and FG_FModel.

Fault locations shown in Figure 2a are modeled differently in the

CG_FModel (2b) and the FG_FModel (2c).

Improved Performance: The FG_FModel can improve path di-

versity over the CG_FModel, as working unidirectional links that

were disabled in the CG_FModel can be used to transmit packets.

As shown in Figure 3a, the unidirectional link R1→R0 is faulty.

With the CG_FModel, only a single path will remain from R0 to

R1, via link R0→R2 and then link R2→R1. However, using the

FG_FModel, an additional deadlock-free route can be utilized from

R0 to R1, via the unidirectional link R0→R1.

Improved Reliability: The FG_FModel can provide better load

balance than theCG_FModel, as the number of working links shrinks

faster in the CG_FModel than in the FG_FModel, as can be noted
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Figure 2: Fault Modeling. (a) Example fault manifestation. (b)
CG_FModel: fault in one direction blocks communication in both direc-
tions via the faulty link. Faulty turns are modeled as two bidirectionally
faulty links. (c) FG_FModel: fault in one direction only blocks commu-
nication in the faulty direction. Faulty turns are modeled by disallowing
packet routes from input to output link of that turn.

in Figure 3a. Moreover, the FG_FModel can enable routes to and

from a node that was considered disconnected in the CG_FModel,

thus providing better connectivity. In case of Figure 3b, R1 is dis-

connected from the rest of the network if the CG_FModel is used.

However, the FG_FModel can provide deadlock-free routes be-

tween any pair of nodes by simply disabling the turn R0→R1→R2.
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Figure 3: Additional working links in the FG_FModel can provide: (a)
improved path diversity and load balance, (b) additional node connectivity.

4. RESILIENT ROUTING ALGORITHM
As mentioned earlier, all previous versions of up*/down* rout-

ing assume only bidirectional links (CG_FModel). This constraint,

although it forces reconfiguration algorithms like Ariadne to dis-

able working unidirectional links, it enables a low-overhead imple-

mentation with a desirable property: if a path between two nodes

exists, the algorithm will enable at least one deadlock-free route

between them, irrespective of the number and location of faults. It

is easy to visualize that if paths exist between all nodes in an undi-

rected graph, then a tree spanning all nodes without forming cycles

always exists. Following paths in this tree can guarantee deadlock-

free connectivity among all nodes. However, finding deadlock-free

routes between any pair of nodes, even if the network is connected,

is not always possible in a directed network. Therefore, we de-

sign the new uni-up*/down* routing mechanism in such a manner

that enabled routes are always deadlock-free and at the same time

the algorithm tries to maximize connectivity. In other words, uni-

up*/down* never enables networks where deadlocks are possible,

sacrificing a few connected nodes if connecting them would lead

to possibility of deadlock. Additionally, uni-up*/down* provably

performs better than traditional up*/down* in all possible fault sce-

narios, that is, uni-up*/down* provides more path diversity, better

connectivity and load balance in any fault configuration. It also

allows for unlimited robustness as it places no restriction on the

location of faults.

4.1 Separate Up and Down Trees
Traditional up*/down* routing is considerably restricted, as a

single spanning tree is expanded only via links that are bidirec-

tionally working. No additional connectivity among nodes can be

achieved using this version of up*/down* routing on networks us-

ing the FG_FModel. Referring to the example of Figure 3b(iii),

even though deadlock-free connectivity is possible, a traditional

up*/down* spanning tree only consists of R0 and R2. The net-

work has to unnecessarily sacrifice R1, severely affecting the avail-

able computational resources. In addition to connectivity, current

up*/down* approaches have no provision for assigning directions

(up or down) to unidirectional links, and hence, cannot be used to

provide better path diversity or load balance.

To this end, we present uni-up*/down* routing, specifically de-

signed to provide maximum connectivity with deadlock freedom

in networks with unidirectional links. To maximally utilize all the

unidirectional links, we construct separate spanning trees for con-

nections away from the root node (down-tree) and for connections

towards the root node (up-tree). In other words, the down-tree

marks all the down links and the up-tree marks all the up links.

Note that both spanning trees are made of strictly unidirectional

links. Links are marked in accordance to the up*/down* principle

(Section 3) and in a consistent manner, meaning no unidirectional

link is marked as both up and down. Due to consistent marking

of links in accordance to the up*/down* principle, all dependency

cycles are broken by disabling down-up turns and hence the new

routing function is guaranteed to be deadlock-free. Additionally,

if both down-tree and up-tree are able to reach all nodes, then the

network will be connected in a deadlock-free fashion, as all nodes

can reach the root following the links in up-tree and the root can

forward the messages to respective destinations following the links

in down-tree, all without taking a down-up turn.
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Figure 4: Independent breadth-first construction of up and down spanning
trees with conflict in the labelling of link R1→R2. (a) Up-tree: link R1→R2

is directed towards node that is closer to the root; hence marked up. (b)
Down-tree: link R1→R2 is between nodes at the same level and it is di-
rected towards a node with larger identifier; hence marked down.

Down-tree and up-tree are not always required to have the same

shape in order to have a consistent link marking, as in this case our

novel uni-up*/down* would degenerate to traditional up*/down*.

The two spanning trees are considered to be of the same shape when

unidirectional links in both trees have one-to-one correspondence,

i.e., for each unidirectional link in the down-tree the opposite di-

rection link of the same bidirectional link is a part of the up-tree.

On the other hand, the two spanning trees cannot be extended in an

oblivious fashion, without knowledge of each other. For example,

if we build independent breadth-first search (BFS) spanning trees

for up and down links, then, due to the uneven structure of directed

networks, consistent labeling of all the unidirectional links is not

guaranteed. An example of such an independent construction is

shown in Figure 4, where link R1→R2 is marked differently in two

trees. In the up-tree (Figure 4a), link R1→R2 is towards a node

(R2) that is closer to the root and hence marked up, while in the

down-tree (Figure 4b), link R1→R2 is between nodes equi-distant



from the root node, but it is marked down as it is towards a node

with a larger ID (R2>R1). The assignment of directions to links

strongly depends on the hierarchical structure of the BFS spanning

tree, which is established once the root is selected, and hence in-

dependent construction of trees may lead to inconsistent labeling

of links. Uni-up*/down*, therefore, builds the two trees concur-

rently using the BFS methodology but expands to new branches

only if consistent link labelling is possible, ensuring consistent la-

beling by construction. Links between nodes that are at the same

level for both trees, are marked based on static node IDs, similar to

traditional up*/down*.

Each node in the network expands the two trees to its descen-

dants, only when that node is reachable by both up and down trees.

Otherwise, the growth of the up-tree (down-tree) beyond a node is

halted till the down-tree (up-tree) reaches that node. If expanding

the trees to their neighbors takes a single unit of time, then link

labeling automatically terminates within a deterministic amount of

time which is bounded by the number of nodes in the network. All

nodes that are reachable by both the up-tree and the down-tree can

communicate among themselves by enabling deadlock-free routes.

All other (unreachable) nodes timeout after waiting for one or both

tree(s) to reach them. Thereafter, links between nodes reachable

by both trees are used to enable deadlock-free routes. As shown

in Figure 5a, with R1 as root, the up-tree uses the link R0→R1 to

expand to R0 and the down-tree takes the link R1→R2 to expand

to R2. Both trees halt at their frontier nodes (R0 for up-tree; R2 for

down-tree) waiting for their counterpart trees. The algorithm ter-

minates with R1 connected to no other node, as down-tree (up-tree)

never reaches R0 (R2) in this configuration.
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Figure 5: (a) Failure to find deadlock-free connectivity when R1 is chosen
as root. (b) Successfully provides deadlock-free connectivity if R0 is chosen
as root. Both up-tree and down-tree are complete.

However, the structure of both trees greatly depends on the choice

of root and as shown in Figure 5, this aspect may affect the connec-

tivity of the network. In this example, if instead of R1 (Figure 5a),

R0 (Figure 5b) is chosen as root, then uni-up*/down* is able to

find deadlock-free routes among all nodes in the network. In Fig-

ure 5b, starting from the root node both trees expand to R2 using

bidirectional link R0↔R1 and hence R2 can expand to its descen-

dants. At the same time, the down-tree expands to R1 and halts at

R1 for the up-tree to catch-up. In the next iteration, R2 expands

the up-tree to R1, cancelling the halting status of R1. At this time,

both trees are complete (reach all nodes), and hence the network

is connected and deadlock-free. This is different from traditional

up*/down* where connectivity is independent from the choice of

root node. Thus, in order to provide maximum deadlock-free con-

nectivity, uni-up*/down* tries all nodes as potential roots and se-

lects the one that provides maximum connectivity. A pseudo-code

of the uni-up*/down* routing algorithm is provided in Figure 6.

5. RECONFIGURATION ALGORITHM
Reconfiguration in LinkMiser is invoked upon a permanent link

failure and it implements our novel uni-up*/down* routing scheme

for (ROOT in all_nodes): //try all nodes as roots

unreached_nodes = all_nodes - ROOT

while (tree_expansion_possible(ROOT)):

for (node in unreached_nodes):

if(is_reachable_by_both_trees(ROOT,node)):

mark_link_towards_root_up(ROOT,node)

mark_link_away_from_root_down(ROOT,node)

expand_up-tree_if_backward_link(ROOT,node)

expand_down-tree_if_forward_link(ROOT,node)

unreached_nodes = unreached_nodes - node

if(no_unreached_nodes_remaining()): //connected

exit() //no need to try other nodes as roots

ROOTmax = get_root_with_max_connectivity();

apply_up_down_link_marking(ROOTmax);

disable_all_down_up_turns(ROOTmax);

Figure 6: Uni-up*/down* Routing Algorithm. All nodes are tried as root
and the root that provides maximum connectivity is chosen to build the new
network. Within each root trial, nodes expand the trees to their neighbors
only if both up-tree and down-tree have reached them.

to provide topology agnostic routing in networks with unidirec-

tional links. Moreover, in a disconnected network, our reconfigura-

tion automatically discovers the largest connected topology. In con-

trast, most previous distributed reconfiguration approaches, partic-

ularly Ariadne [1], may construct a sub-optimal (in terms of num-

ber of nodes connected) network. In Ariadne, the node that detects

the fault is fixed as the root node of the up*/down* re-routing pro-

cess, and thus the construction of new routes is limited to the nodes

that are connected to the node detecting failure. However, in dis-

connected networks, the node detecting the fault maybe a part of

the sub-network that is smaller as compared to the other surviving

sub-topologies. In addition, Ariadne forwards the recovery initia-

tion flags only to the connected neighbors, and thus, nodes that are

not a part of the fault-detecting node’s sub-network are unaware of

the reconfiguration process.

Therefore, we propose a scheme where all nodes are made aware

of the reconfiguration process, irrespective of their connection sta-

tus and a selection process determines the optimal choice of the

root. To this end, during reconfiguration, each node broadcasts two

1-bit flags (instead of a single 1-bit flag in Ariadne) to all other

nodes. The first 1-bit ’notification’ flag is used to notify all nodes

about recovery initiation, whereas the second 1-bit ’connection’

flag is used to discover the underlying topology and build resilient

deadlock-free routes. LinkMiser uses hardware that is independent

from the router pipeline and is turned-on only during reconfigura-

tion and hence, is less susceptible to wear-out faults. Moreover,

even if reliability of reconfiguration logic becomes a bottleneck,

simple area-inefficient resiliency schemes such as logic duplication

[5] can be leveraged without significant penalty due to the low area

requirement of the reconfiguration logic. Resilient LinkMiser hard-

ware design and its independence from the router pipeline allows

reliable broadcasting of reconfiguration flags even to disconnected

nodes, notifying them of the reconfiguration process.

During LinkMiser reconfiguration, each node, in turn, is ap-

pointed as the temporary root node and the selection is finalized

when one of the following two conditions occur: (i) a root node is

found which provides deadlock-free connectivity among all nodes;

or (ii) all nodes completed their attempt to serve as root node. Dur-

ing the trials, all nodes note the root node for which the correspond-

ing tree could connect maximum nodes in a deadlock-free fash-

ion. This forms the first phase of our reconfiguration algorithm,

which we call the selection phase. Following selection, the root

node(s) that could connect maximum nodes (winners), form sep-

arate sub-networks and each node becomes the part of the largest

sub-network to which it is connected. Note that, there can be mul-

tiple winner root nodes in a disconnected network. We call this the



construction phase.

Our algorithm is fully distributed, i.e., given only local informa-

tion, the algorithm runs in lockstep at each network router to col-

lectively reconfigure the network. Based on simple broadcast by

network nodes, the reconfiguration procedure consists of N broad-

casts in the best case to 2*N2 broadcasts in the worst case, when

operating on a network with N nodes. Each broadcast determin-

istically ends in 2*N cycles and thus the algorithm is bounded by

4*N3 cycles. Each node has the local knowledge of when the re-

configuration finishes.

5.1 Selection Phase
The node detecting permanent failure initiates reconfiguration by

entering the selection mode and broadcasting two 1-bit flags to all

other nodes. This node works as the temporary root node of the

reconfiguration process, and corresponds to the first root node trial

(first selection epoch). Each selection epoch involves broadcasts

by the remaining N-1 nodes, after the root node completes its first

broadcast. However, during these N-1 broadcasts, the notification

flag is not broadcasted and the nodes that receive the connection

flag perform only a subset of operations that were performed during

the root node broadcast. Each broadcast takes 2*N cycles to com-

plete and thus one epoch of selection deterministically completes

in 2*N2 cycles. A node performs different operations on receiv-

ing different 1-bit flags (notification or connection), as discussed in

detail later in this section.

After the first epoch, each (remaining) node, in turn, acts as tem-

porary root and initiates a new epoch. Thus, there are N total se-

lection epochs, one for each choice of root. Meanwhile, during

selection, all networks nodes keep track of the largest sub-network

that they are connected to, and the corresponding root node of that

sub-network. All nodes automatically switch to construction phase

after the Nth selection epoch, and therefore selection takes a total

2*N3 cycles (N epochs, N broadcasts each, 2N cycles each broad-

cast). However, the state switches back directly to normal (skipping

construction), if any root node trial finds deadlock-free connectiv-

ity among all nodes in the network. Thus, selection and the en-

tire reconfiguration could potentially be completed in one selection

epoch, i.e., 2*N2, if the network is still connected. The activity at

all nodes during one selection epoch are shown in Figure 7.

The notification flag is broadcasted only during root broadcast.

If the notification flag is received in “normal” state, then the node

invalidates the routing paths, freezes the router pipeline and sets the

router’s state to “selecting”. Additionally, the node notes the begin-

ning of a new selection epoch (by setting the micro-status register

(MSR)). The node will automatically reset the MSR after 2*N2 cy-

cles, indicating the end of current epoch. Finally, the notification

flag is forwarded to all port(s) from which no flag was received ear-

lier. Note that, notification flags are forwarded across all ports, irre-

spective of the condition of the corresponding network link (failed

or working). However, upon receiving the connection flag, each

node performs three more involved operations, the details of which

are given below:

(i) Tagging LinkDirections. This action applies the uni-up*/down*

routing restrictions and is performed only during the broadcast by

the root node. Separate to (broadcasting node) and from (broadcast-

ing node) connection flags are used to build up-tree and down-tree,

respectively. The outgoing link corresponding to the port that re-

ceived the to connection flag is marked as up (towards a node closer

to root), whereas the outgoing link corresponding to the port that

forwarded the from connection flag is marked as down (towards a

node farther from root). However, nodes at equal distance from the

root can forward flags to each other in the same cycle. In such a

scenario, ties can be broken by comparing the statically assigned

node IDs: the node with the higher ID marks the outgoing link as

up, while the other node marks the outgoing link as down. Time

multiplexing is used to forward to and from flags separately on a

single connection wire and thus broadcasts are bounded by 2*N

cycles (instead of N cycles for a single flag transfer).

(ii) Routing Table Update. During broadcast by any node (in-

cluding root), the broadcasting node informs the other nodes how

it can be reached. A (to) connection flag reception at a port implies

that the reverse path of flag broadcast can be followed to reach the

broadcasting node. Since bidirectional connectivity is a must, both

to and from flag receptions are required at a node during root node

broadcast for it to record the routes to any other node. A bidirec-

tionally connected node records the ports where the to connection

flag was received from in its routing tables, learning the path to the

broadcasting node. Additionally, the reachability counter (RC) at

the node is incremented to indicate the discovery of a route to a

new node. Moreover, broadcasts should spread only through work-

ing links and enabled turns. This means that to connection flags

are forwarded only if the link is working in the reverse direction

of forwarding, whereas from connection flags are forwarded if the

link is working in the direction of transmission. Also, each node

during connection flag forwarding only forwards flags to ports on

enabled turns.

(iii) Flag Forwarding. Each node initiates the broadcast by for-

warding the to connection flag if a link is functional in the reverse

direction of forwarding, followed by from connection flag forward-

ing if a link is working in the same direction as forwarding. Thus,

each forwarding event is completed in two cycles. All other nodes

decipher whether they receive a to flag or from flag depending on

odd and even cycle numbers respectively. In the next couple of cy-

cles, the receiving node forwards the to and from flags one by one

only to those port(s) that did not receive a flag earlier. Addition-

ally, flags are forwarded only across enabled turns: to connection

flags received from up ports are not forwarded to up ports, because

this will allow a down→up path in the reverse direction. In ad-

dition, nodes forward flags only if they had received both to and

from connection flags during the root node broadcast. This applies

the constraint of growing up and down spanning tree together, as

discussed in Section 4.1.

Orchestration of Selection Epochs. At the end of each selection

epoch (indicated by reseting of MSR), each node performs a series

of checks and status updates to orchestrate the selection phase. All

nodes, if connected, resume normal operation at the end of selec-

tion epoch. A connected network can be easily detected by check-

ing the contents of the routing table. As our resilient routing al-

gorithm only provides bidirectional connectivity, either all nodes

have full routing tables or all nodes have incomplete routing tables.

This implies that the entire network is connected only if RC=N

(reachability counter counts the number of connected nodes), at

the end of any selection epoch. Otherwise, if routing tables are not

complete (RC 6=N), the value of RC is compared to the maximum

RC achieved during all previous selection epochs (different roots).

If current RC value is greater than the maximum RC value from

previous trials, then the corresponding <ROOT, RC> value pair

is stored locally at each node in-place of the previous maximum

<ROOT, RC> pair. A separate counter, named the epoch counter

(EC) is maintained to count the number of finished epochs. Selec-

tion phase automatically switches to construction phase when all

root trials are finished (EC=N). The construction phase, discussed

in the next section, utilizes the maximum <ROOT, RC> values at

each node to connect best effort (large) sub-networks. At the end
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Figure 7: Selection Epoch Activity. Each epoch completes in 2N2 cycles.

of each epoch, each node also pro-actively tries to initiate a new

epoch (with itself as root), if the node has not been tried as root be-

fore. A node stops attempting to be root if it receives a notification

flag indicating that some other node has already initiated an epoch.

5.2 Construction Phase
The working of construction phase is similar to the selection

phase, however, only the winner root nodes (instead of all nodes)

construct separate sub-networks and routes discovered by this phase

are final, i.e., they are not erased in favor of a possibly larger sub-

network. Note that there can be multiple winners in a disconnected

network as nodes only have local knowledge about the sub-network

they are connected to. All nodes are independently aware of the end

of selection phase and at the start of construction phase, all winners

pro-actively try to initiate constructing their own sub-network, with

themselves as root. The winner root that gets the first construction

slot starts constructing its sub-network by broadcasting the noti-

fication and connection flags, almost in a similar fashion to one

selection epoch. However, as shown in Figure 8 individual nodes

(e.g. R2) or groups of nodes, can be part of multiple sub-networks.

Thus, to enable the largest surviving topology, each node chooses

the largest sub-network it is connected to and discards all commu-

nication from other sub-networks during construction phase. The

effective size of other sub-networks is reduced, as can be seen in

the example of Figure 8 where sub-network#1 is reduced to just

two nodes (R0 and R1). Again, it takes exactly N broadcasts to

complete one construction epoch. After each construction epoch,

the remaining winner roots start their construction process, one by

one, in available time slots. Reconfiguration deterministically ter-

minates when no flags are received at nodes for 2*N2 cycles (N

broadcasts of 2*N cycles each), as then all nodes infer that no

new winner root remains. Thus, in the worst case, when all net-

work nodes are isolated due to faults, there will be N winner root

nodes and the entire construction process will take 2*N3 cycles (N

epochs, N broadcasts each, 2*N cycles each broadcast).

We implement the timing of our reconfiguration algorithm us-
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Figure 8: LinkMiser: Construction Phase. Multiple winner roots are
possible after the selection phase if the network is disconnected. Individual
nodes (e.g. R2) or groups of nodes, can be a part of multiple sub-networks.
Each node chooses the largest sub-network it is connected to and discards
all communication from other sub-networks during construction phase. For
example, sub-network#1 reduces to just R0 and R1, as R2 is also a part of a
larger sub-network (#2) rooted at R3.

ing atomic broadcasts based on cycle numbers, where broadcast-

ing node’s nodeID is inferred by the cycle number at which the

broadcast is initiated. Each node is assigned different time win-

dows of 2*N cycles each, for broadcasting, during which the re-

maining nodes are prevented from broadcasting. The time slots of

all nodes in the network are interleaved to provide equal oppor-

tunity to all nodes to initiate broadcast. Thus, each node has the

knowledge of when to broadcast so that no other broadcasts collide

and all the flag recipients have exact knowledge of the broadcast

initiator node. This is similar to the implementation of timing in

Ariadne’s [1] reconfiguration.

6. EXPERIMENTAL RESULTS
We evaluate LinkMiser by modeling a NoC system in a cycle-

accurate C++ simulator based on [6]. The baseline system is an

8x8 mesh network with generic 5-stage pipeline 2-VC per port

routers. Each input channel is 64 bits wide and each VC buffer

is 5-entry wide. In addition, the NoC is augmented with Link-



Miser reconfiguration capabilities described in Section 5. More-

over, Ariadne, which reportedly outperformed all previous on-chip

distributed reconfiguration proposals, is implemented for compari-

son. The framework is analyzed with two different types of work-

loads (1a): directed random traffic (uniform random), as well as ap-

plications from the PARSEC suite [2]. PARSEC application traces

are obtained fromWisconsinMultifacet GEMS simulator [15] mod-

eling a similar network and configured as detailed in Table 1b.

(a) System Input

synthetic traffic uniform random

benchmark PARSEC

packet length
1flit (control)

5flits (data)

simulation time 250K cycles

warm-up period 10K cycles

(b) System Configuration (GEMS)

processors in-order SPARC cores

coherence MOESI protocol

L1 cache
private 32KB/node

ways:2 latency:3

L2 cache
shared 1MB/node

ways:16 latency:15

Table 1: Simulation Infrastructure. (a) GEMS configuration used to gen-
erate PARSEC traces. (b) Simulation inputs.

To accurately assess the impact of transistor failures in an NoC,

we developed an architectural level fault model similar to Vicis [9]

and Ariadne [1]. Their fault model maps gate-level faults to link-

level faults by randomly injecting faults in a network netlist, and

counting the number of dysfunctional links thereafter. After a sta-

tistically significant number of fault experiments, the model pro-

vides a probabilistic mapping of number of gate faults to number

of link failures. Although this fault model is fairly accurate for sce-

narios where all permanent faults occur at once, it can be fairly off

when modeling real world fault manifestations. In reality, perma-

nent faults due to wear-out cause devices to fail one-by-one over

time, and after each failure reconfiguration mechanisms (leveraged

by diagnosis information) bypass the faults by disabling parts of the

network. However, due to the limited resolution of reconfiguration,

often healthy components are disabled too. Specifically, as soon

as a fault manifests in one unidirectional link in CG_FModel, the

fault-free opposite unidirectional link is also disabled, and hence

wear-out faults cannot further affect this unidirectional link, as it is

no longer used. Thus, to accurately model faults, we do not map

faults to a unidirectional link if the opposite direction link is already

declared faulty and bypassed by the reconfiguration mechanism.

6.1 Performance Evaluation
To analyze LinkMiser’s performance impact we injected a vary-

ing number of permanent faults (0-160 transistor failures) into the

NoC infrastructure at (100) different random locations each. All

our performance results are reported for the largest surviving topol-

ogy, under the assumption that after occurrence of faults the oper-

ating system maps processes over the largest surviving topology

only. In our evaluation we report two performance metrics: aver-

age network latency and saturation throughput.

First, we report the zero-load latency, that is the steady-state la-

tency of a lightly loaded network (0.01 flits injected per cycle per

node). It reflects the average delivery time of a network without re-

source congestion, and hence in a sense indicates the average length

of routes between network nodes. Analysing Figure 9a, both Ari-

adne and LinkMiser initially show increase in latency with increas-

ing faults, although LinkMiser degrades gracefully as it is resource

conscious and provides greater path diversity. For example, at 50

faults, LinkMiser on average has 6.7% less latency than Ariadne.

However, as more faults accumulate, the network gets disconnected

into multiple sub-networks, and thus average latency drops as pack-

ets have to route within smaller network sections. As Ariadne

loses nodes more quickly than LinkMiser (Section 6.2), its latency

shows a greater improvement. Similar trends were observed when

a LinkMiser-equipped network is simulated with PARSEC bench-

mark traces, as plotted in Figure 10.
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(a) Zero Load Latency increases gracefully in LinkMiser. However, la-
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Figure 9: Performance under uniform random traffic.

Figure 9b plots the packet throughput delivered by the network

when heavy traffic is injected. Similar to the latency characteris-

tics, before the network gets disconnected, LinkMiser shows grace-

ful degradation in delivery capacity. For example, at 50 faults,

LinkMiser delivers 9.1% more packets than Ariadne. However,

as more faults cause the network to be segmented, throughput im-

proves because packets are routed within small subnetwork par-

titions. As expected, the throughput improvement is greater for

Ariadne equipped networks.

6.2 Reliability Evaluation
As faults accumulate, networks often become disconnected. Per-

formance of parallel workloads running on a multi-core chip with

a faulty network directly depends on the size of the largest surviv-

ing sub-network. A bigger surviving topology enables more pro-

cessing cores for applications. Thus, the ability of an algorithm

to maximize the connectivity of a faulty network is critical, since

if no routes are available between two nodes, they cannot work

collaboratively. Figure 11 plots average size of the maximum sur-

viving topology against the number of injected faults. LinkMiser,

due to its resource consciousness, loses fewer nodes as compared to

Ariadne. At 50 faults, LinkMiser on average connects 4.4% more

nodes, a gain which goes up to 36% at 100 faults and 83% at 160

faults. Due to the significantly large surviving topology, LinkMiser

has higher latency and lower throughput at high fault rates.

After faults manifest, only a few connected components within

the network are able to provide full functionality of multi-cores, as

there are certain nodes (main memory controllers, IO controllers)

that are vital to their functioning. Thus, it is essential for a con-

nected sub-network to include at-least each one of these vital nodes.

However, the probability of a connected sub-network having all vi-

tal functionalities decreases rapidly as the network gets more seg-
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Figure 10: Performance under PARSEC benchmark traces. Average
latency across all benchmarks and fault configurations is plotted against
number of injected faults. LinkMiser provides additional path diversity (and
hence graceful degradation) at low fault rates and greater node connectivity
at high fault rates (causing only moderate decrease in latency).
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Figure 11: Average Size of Largest Surviving Topology. Connectivity in
LinkMiser degrades gracefully.

regated, that is, the more the number of sub-networks, the less the

probability of any one having a full set of functionalities. Figure

12 plots the number of separate sub-networks that are formed as

an NoC is injected with faults. At 50 faults, LinkMiser segregates

into 34% fewer connected sub-networks as compared to Ariadne,

whereas beyond 100 faults Ariadne has almost twice as many sub-

networks as LinkMiser.
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Figure 12: Average Number of Connected Sub-Networks. With increas-
ing faults, LinkMiser segregates into fewer sub-networks.

7. CONCLUSIONS
We have presented LinkMiser, a solution for reliable operation of

NoCs incurring high fault rates. LinkMiser leverages uni-up*/down*

routing, a novel variant of traditional up*/down* routing, to max-

imally utilize all the working links in the NoC. Moreover, an area

efficient implementation is enabled by our novel distributed recon-

figuration algorithm, that places no restriction on the number or

location of faults. Simulations show that for a 64-node NoC, Link-

Miser provides 4.4% connectivity and 6.7% latency benefit (50

faults) over state-of-the-art on-chip reconfiguration solution. Re-

liability characteristics further improve at high fault rates, making

LinkMiser an excellent choice for aggressively scaled silicon.
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