
Simulation­based Signal Selection
for State Restoration in Silicon Debug

Debapriya Chatterjee, Valeria Bertacco

Department of Computer Science and Engineering, University of Michigan
{dchatt, valeria}@umich.edu

ABSTRACT

Post-silicon validation has become a crucial part of modern inte-

grated circuit design to capture and eliminate functional bugs that

escape from pre-silicon verification. The most critical roadblock in

post-silicon validation is the limited observability of the internal sig-

nals of a design, since this aspect hinders the ability to diagnose de-

tected bugs. A solution to address this issue leverage trace buffers:

these are register buffers embedded into the design with the goal of

recording the value of a small number of state elements, over a time

interval, triggered by a user-specified event. Due to the trace buffer’s

area overhead, designers can afford to trace only a very small frac-

tion of a design’s signals. Thus, the pre-silicon phase selection of

which signals to trace is of paramount importance in post-silicon

debugging and diagnosis. Ideally, we would like to select signals

enabling the maximum amount of reconstruction of internal signal

values. Several automatic signal selection algorithms for post-silicon

debug have been proposed in the literature: they rely on a probability-

based state-restoration capacity metric, coupled with a greedy algo-

rithm to produce a trace signal selection. In this work we propose

a more accurate restoration capacity metric, based on simulation in-

formation, and also present a novel algorithm that overcomes some

of the key shortcomings of previous solutions. In our experimental

evaluation, we show that our technique provides up to 34 % better

state restoration compared to all previous techniques on the more

complex benchmark designs while providing much better restoration

trend with increasing trace buffer size.

1. INTRODUCTION
Shrinking transistor size with each new generation of digital inte-

grated circuits (IC) has allowed modern IC designs to include more

and more logic, thus becoming increasingly complex. Concurrently,

the time-to-market for new IC products has been shrinking rapidly.

This phenomenon has put enormous burden on the verification flow

of digital designs. Traditionally, functional bugs in a design have

been identified through the extensive use of simulation and formal

verification techniques in the pre-silicon phase. However, with shorter

design cycles, and considering the limited speed of simulation and

limited capacity of formal tools, these methodologies are often in-

sufficient to detect functional bugs that manifest deep in the design’s

state space or are very infrequent. As a result, the first silicon proto-

types often still contain design bugs, even if they clear manufactur-

ing testing. To avoid the escalating cost of many re-spins and to meet

stringent time-to-market requirements, these design bugs escaped to

silicon must be detected and root-caused in the first available silicon.

To facilitate the task of detecting and investigating these bugs post-

silicon debug has emerged in recent years as a crucial technique.

The fundamental challenge in silicon debug lies in the very lim-

ited visibility of internal design signals. The capabilities of physi-

cal probing tools [9] are very limited, and it is infeasible to observe

each and every signal in fabricated silicon. So far, reusing design

for test (DFT) circuit structures, such as internal scan chains, for sil-

icon debug has been widely adopted in the industry [12]. Though

scan chains can capture all or a subset of internal state elements of

a design, and thus increase signal observability for silicon debug,

it may take several thousand clock cycles to dump out one observed

state snapshot and, in most cases, the circuit’s execution must be sus-

pended until the completion of this process. The inclusion of shadow

flip-flops in the scan chain can maintain normal circuit operation dur-

ing the scan transfer, but it requires higher area overhead, and can still

only produce one snapshot every few thousands cycles, which is too

infrequent for being useful in most debugging efforts.

To facilitate silicon debug, design for debug (DFD) structures such

as embedded logic analyzers (ELAs), have been proposed [1] and

have found widespread use in the industry [2, 13, 3]. An ELA con-

sists of a mix of trigger units and sampling units. Programmable

trigger units are used to specify an event for triggering the logging of

internal signal values. Sampling units are used to log the values of a

small set of signals (trace signals) over a specified number of clock

cycles into trace buffers. The number of signals traced is known as

the width of the trace buffer, while the length of the tracing interval is

called depth. Trace buffers are implemented with on-chip embedded

memories [13] and data acquisition can be performed concurrently

with normal chip operation by setting up the relevant trigger event.

Subsequently, the sampled data is transferred off-chip via low band-

width interfaces for post-processing analysis for debug. Note, how-

ever, that DFD structures must maintain a low area overhead profile,

since they do not provide added benefits to the design. As a result,

only a very small number of signals can be traced in comparison to

those available in the design.

For ELAs to be effective, designers must carefully select for trac-

ing those signals that yield the most debug information. By judi-

cious choice of trace signals, one can even reconstruct data for state

elements that are not traced. As an example, for micro-processor de-

signs, it is common practice to trace pipeline control signals, so that

the values of other data registers can be inferred during post-analysis

of the traced data. This approach cannot be used in a general circuit,

however, because it leverages architectural knowledge of the design.

Indeed, there is a growing need for automated solutions in this do-

main that can be applied to general circuit structures. Even though

the additional inferred information does not guarantee identification

of design errors, it still increases internal signal visibility and has the

potential of providing valuable debugging information. Indeed, bugs

tend to occur in unexpected regions and configurations and it is not

always possible to predict the most important signals to trace. Ideally

we would like a mechanism which allows to reconstruct almost all in-

ternal signals in a design from tracing of just a handful of signals, so

as to offer pre-silicon quality observability during post-silicon debug.

Recent research addressing these challenges [6] has shown that

many un-traced signals and state elements can be inferred from a

small number of traced state elements by forward and backward im-

plication even in arbitrary logic. Ko and Nicolici [6] were also first

to propose an automated trace signal selection method that attempts

to maximize the number of non-traced states restored from a given

number of traced state elements. The quality of the trace signal se-

lection was quantified by the state restoration ratio (SRR), that is,

the ratio of the number of state values restored over the state values

traced for a given time interval. This measure has been adopted by

subsequent research in this area to compare the quality of other so-

lutions. Further research [8, 10, 4] has proposed several automated

trace signal selection methods based on different heuristics for esti-

mating the state restoration capabilities of a group of signals. These

research solutions share a common structure: (i) a metric to estimate

the state restoration capability of a set of state elements and (ii) the

use of the metric in a greedy selection process to evaluate candi-

date set of signals and converge to a final selection. In this work we

show that a more accurate metric for state restoration capability of a

set of signals can be obtained by actually simulating the restoration

process on the circuit over a small number of cycles, and measur-

ing the restoration ratio. We also propose a novel signal selection

method guided by this metric. Previous greedy selection methods

suffer from the shortcoming of diminishing returns: when increasing

the number of traced signals, the number of additional restored state

elements increase sluggishly. Our solution overcomes this shortcom-

ing by offering better restoration trend with increasing number of

traced signals.

1.1 Contributions
The main contributions of this work can be summarized as fol-

lows:

• We show that computing the state restoration ratio by simula-

tion of the design over small number of cycles (compared to

the typical depth of the trace buffer in use) provides an accu-

rate estimate of the SRR obtained from actual trace buffer data

over a longer period.

• We suggest a novel trace signal selection method based on it-

erative elimination of state elements. We show experimentally

that our solution provides better trends when the number of

traced signals increases.

• Experiments show that our solution provides up to 34 % better

state restoration ratio compared to all previous solutions.

2. RELATED WORK
Automatic trace signal selection algorithms for post-silicon debug

are a fairly new research area. One of the first solutions in this do-

main [5] considered only the reconstruction of data at the combi-

national logic nodes of the circuit. Ko and Nicolici [6] defined the

term state restoration and introduced an efficient algorithm to per-

form state restoration as a post-analysis process on recorded trace-

buffer data. They also introduced the first trace signal selection al-

gorithm striving to maximize the amount of restored state. Further

research in this area has produced several improved solutions for au-

tomatic signal selection [8, 10, 4], all sharing the goal of improving

the SRR.

As mentioned earlier, these solutions share a common structure,

with a metric to estimate the restoration capacity of a certain set of

state elements and a greedy selection algorithm to decide which ones

to trace, based on the estimator metric. These previous solutions pri-

marily differ in the way estimation is performed. Both [6] and [8]

leverage a probabilistic metric: the steady state probability of the

value at flip-flop outputs is estimated assuming uniform random dis-

tribution of 0 and 1 logic values at the primary inputs. Given these

assumptions and using the knowledge of the traced signal values, a

probabilistic model of the visibility of 0 and 1 values at the other cir-

cuit nodes in the circuit can be generated. This probabilistic model

can leverage the circuit topology and logic functionality of individ-

ual gates, and the estimation process performs forward and backward

propagation of probability values across logic gates. The final state

restoration capacity estimate is then expressed as a sum of the pre-

dicted visibility of 0 and 1 values at the state elements of the cir-

cuit. The probabilistic model presented in [6] lacks theoretical basis

and it is then improved on in [8]. In contrast, [4] considers only the

restoration probability along the direct paths among flip-flops. The

probability that a flip-flop output value controls the input value of an-

other flip-flop is computed and called direct restorability of the cor-

responding path. The selection algorithm grows a region of flip-flops

in a greedy fashion based on this metric, while an adjustment mecha-

nism accounts for flip-flops that are already selected in the region and

updates the direct path probability values accordingly. Another so-

lution described in [10] estimates the visibility of non-traced nodes

by non-trivial logic implications of flip-flop values. However [10]

assumes that in addition to trace signals, all primary input values for

every cycle are known to the restoration algorithm. Our proposed so-

lution is fundamentally different from these previous ones as it uses

simulation for estimation instead of a probabilistic metric.

Another line of research [14, 11] suggests that not all state ele-

ments or signals are equally relevant for debugging purposes. Hence,

instead of striving to maximize the state restoration ratio, they at-

tempt to perform trace signal selection to maximize the restorabil-

ity of a certain subset of critical flip-flops or signals. In specific

[11] describes an algorithm for trace signal selection with the goal

of enhancing restorability of a fixed subset of flip-flops while min-

imizing the observability impact to other flip-flops. The algorithm

uses a probabilistic estimation metric analogous to [8], and follows

a pareto optimal selection process. We show that our solution can

be adapted to solve this problem variant as well, by simply assigning

larger weight coefficients to the set of critical flip-flops.

3. BACKGROUND AND MOTIVATION
An ideal post-silicon debugging solution would allow pre-silicon

level observability i.e. every signal value is observable at each cycle,

with little design effort and area overhead. A more realistic goal is

to attain partial observability by tracing a small set of signals and use

them to find the root cause of the bug. Several previous solutions

have suggested automatic signal selection algorithms to determine

which state elements allow maximum restoration if traced. An intu-

itive measure for evaluating restoration quality is the state restoration

ratio, defined as SRR = Ntraced+Nrestored

Ntraced
, where Ntraced is the

number of traced state elements and Nrestored is the number of re-

stored ones during the time window dictated by the trace buffer’s

depth. Automated signal selection strives to maximize SRR.

3.1 State Restoration Process
The state restoration process relies on the special Boolean prop-

erty that if a controlling value is known for at least one input of a

logic gate, the output can be inferred without the knowledge of other

inputs. This property is used for forward inference of signal values

in the case of partial knowledge. Similarly, if a non-controlled value

is observed on the output of a gate, all input values can be inferred to

be the non-controlling value for that type of gate, enabling backward

justification. Combined inferences leveraging knowledge of both in-

puts and output are also possible. Repeated application of these sim-

ple operations for all gates of a circuit till no new value can be gener-

ated at any signal leads to value reconstruction for state elements be-

side those traced. This process is used in post-analysis of the data ob-

tained from trace-buffers to restore other non-traced signals. Figure 1

illustrates this process with an example inspired by [6]. In this exam-

ple flip-flop FF2 is traced over four clock cycles; additional values at

 0 1 2 3 4
FF0 1 1 X X X
FF1 0 0 X X X
FF2 0 1 1 0 X

FF3 X 1 0 0 1
FF4 X 1 1 1 X

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

FF0

FF1

FF2

FF3

FF4

circuit under debug

state restoration

0
X

0

1
1

1

0
1

0

1
X

1

0
0

0

1
0

1

forward

backward

combined

Figure 1: Example of state restoration process. The circuit shown at the
top left is the circuit under debug, with flip-flop FF2 traced for 4 clock cycles
(shown in grey). The table below lists the values of all flip-flops, whether
traced, restored or unknown(X). Forward inference and backward justifica-
tion through the logic gates (shown with forward and backward arrows in
the table) allows to restore several flip-flop values that were not traced. The
elementary rules of forward inference, backward justification and combined
inference are shown for two types of logic gates on the right side of the figure.

other flip-flops can be inferred as shown in the table in the lower part

of the figure. In this particular example, the state restoration ratio

(SRR) is SRR = 15/4 = 3.75 (Ntraced = 4, Nrestored = 11). [6]
introduces an efficient bit-parallel algorithm to perform this restora-

tion process, which we extensively use in our implementation. It is

important to note that the forward inference and backward justifica-

tion operations are correct only if the logic functions of the gates in

the circuit conform to the structural netlist, with no stuck-at-faults or

other such faults (this is assured since the IC has cleared manufactur-

ing tests). Timing errors must also be avoided for correct restoration,

a goal that can be attained by reducing the clock frequency during

debug operations. Hence this technique is only effective for investi-

gating functional bugs. The key challenge of this process is how to

select which state elements to trace among the thousands of a typical

design to achieve the best possible restoration of internal signals and

other state elements.

3.2 Structure of Signal Selection Algorithms
The signal selection algorithms presented in the literature so far

[7, 8, 10, 4] focus on delivering maximal restoration ratio and share

a common structure. First, a metric is devised to estimate the ca-

pacity of state restoration of a given set of signals; second, a greedy

selection process guided by the metric converges a locally-optimal

selection. Figure 2 summarizes this general structure.

Input: circuit, width of trace buffer w,

restoration capacity metric fC(...)
Output: selected flip-flop set T

while (|T | < w) {
Maximum Visibility maxV = 0
for (each unselected flip-flop s in circuit){

T = T ∪ {s}
Visibility V = fC(T)
T = T − {s}
if(V > maxV){

selected = s

maxV = V

} }
T = T ∪ {selected}

}

Figure 2: Pseudo-code for the general structure of greedy automatic sig-

nal selection algorithms.

For the algorithm to be successful the capacity metric should have

the following properties: (i) it should be proportional to the actual

average SRR that can be obtained with the given set of signals over

many runs, (ii) it should be as computationally inexpensive as pos-

sible, since several such computations will be needed in the final

selection process. The first criterion is especially important for the

greedy selection process to be successful, since it guides the succes-

sive greedy choices towards the optimal subset. The greedy selection

process starts off with the signal which promises the maximum ca-

pacity and then enlarges the set one signal at a time by evaluating the

restoration capacity of all possible candidate sets with one more sig-

nal. In Section 4.1 we will explore how a better capacity metric can

be obtained by simulated restoration, while a critical shortcoming of

the greedy selection process itself is detailed in next section.

3.3 The Problem of Diminishing Return with
Greedy Selection

18.6 18.6 9.8

55.0

3.0 3.0
0

100

200

300

400

500

600

8 16 32 8 16 32
N
u
m
b
e
r
o
f
re
s
to
re
d
 F
lip
-f
lo
p
s

Trace buffer width

average restored FFs per cycle

average gain of restored FFs per extra traced FF

Liu & Xu Basu & Mishra

Figure 3: Diminishing return of number of restored flip-flops with in-

creasing trace buffer size is observed for two previous solutions. The plots
are corresponding to circuit s38417.

The greedy selection process adopted in the previous solutions suf-

fer from another critical problem with regards to the quality of the

final set of signals chosen. Figure 3 plots the average number of

restored flip-flops per cycle for 3 different width of the trace buffer

(8,16,32) for the ISCAS89 benchmark circuit s38417. Alongside the

average number of restored flip-flops gained by addition of each new

traced flip-flop is plotted as well. The plots correspond to the data

reported by Liu and Xu [8] and by Basu and Mishra [4]. Note that

in the result obtained by Liu and Xu, growing the number of ob-

served flip-flops from 8 to 16 increases the average number of re-

stored flip-flops per cycle, from 149 to 298, which is a good rate

((298 − 149)/(16 − 8) = 18.62) of gain of information per added

new trace signal, shown in the adjacent dark bar. However when

the number of traced signals is increased from 16 to 32, the rate of

gain is much lower. This effect is more pronounced in the results

obtained by Basu and Mishra [4], where a much better initial set of

signals is obtained but as the number of trace signals are doubled,

the gain in the average number of restored flip-flops is very minute.

This behavior results from inaccuracy in the estimation metric and

due to the very nature of the greedy selection. The greedy selection

algorithm starts off with the flip-flop promising maximum restora-

tion and attempts to grow the set by one flip-flop at a time, and the

average number of restored flip-flops plateaus off when a larger num-

ber of flip-flops are traced. When choosing 2n flip-flops, the choice

is already constrained by previously chosen n flip-flops: We have to

keep the n chosen flip-flops in the set and find additional flip-flops

which when added with the existing set provides maximum restora-

tion possible under this constraint. However the best possible set of

2n flip-flops might not have all the n flip-flops, since there might be

other n + 1 or more flip-flops which when taken together are able

to restore more missing signals, but would not be able to enter the

final selection, since the algorithm only makes greedy choices in the

forward direction trying to grow a pre-decided set of n flip-flops.

Hence for choosing a larger number of traced signals an alternative

approach of making greedy decisions from the backward direction,

i.e. starting off with the set of all flip-flops and then constraining the

set slowly to the required width, can be more successful. We outline

an algorithm to perform this elimination process.

4. SIGNAL SELECTION ALGORITHM
First we derive a more accurate restoration capacity metric and

then use this metric in our proposed alternative algorithm. The key

factor in deciding whether a metric is good, lies in the correlation it

possesses with actual measured SRR.

4.1 Improving Restoration Capacity Metric
As mentioned earlier, a good restoration capacity metric should

possess high degree of correlation with the actual observed SRR ob-

tained with a set of signals. Since, the more accurate the metric, the

more likely it is to arrive at the optimal subset of signals at the end

of selection process. To evaluate the quality of a restoration capacity

metric, we devise the following experiment. For a design we choose

1000 random sets of 8 flip-flops each and measure the average SRR

per group, for a trace buffer depth of 4096, obtained with 100 sim-

ulation runs (using 10 sets of random seeds and 10 different starting

point of tracing i.e. offset from the initial circuit reset state, per seed).

It is ensured that the circuit remains in functional mode during the en-

tire tracing process, by asserting appropriate value at reset and other

control signals. We can now plot the average SRR versus the esti-

mated state visibility obtained with a restoration capacity estimation

metric in a scatter plot to measure the correlation of the metric with

actual measured SRR.

y = 1.1884x - 8.221
R² = 0.1807

0

2

4

6

8

10

12

14

16

18

8 9 10 11 12 13 14 15 16 17

M
e
a
s
u
re
d
 S
ta
te
 R
e
s
to
ra
ti
o
n
 R
a
ti
o

Computed Visibility

Figure 4: Correlation of restoration capacity metric described by Liu

and Xu with measured SRR for circuit s35932. The metric has poor yet
positive correlation with measured SRR. Note that data points in the bottom
right corner represents selection of flip-flops that have a high estimated value
of state visibility but rather poor measured SRR. This behavior can drive the
greedy selection algorithm to sub-optimal selections. A linear regression fit of
the data is shown in the plot, along with square of the correlation coefficient.

We implemented the restoration capacity metric called visibility V,

described by Liu and Xu [8]. Figure 4 shows the correlation of this

metric with observed SRR. As seen in the figure, though this metric

has positive correlation with measured SRR, the extent of correlation

is poor; as indicated by a low value of the correlation coefficient(R).

Also this metric can over-estimate as well as under-estimate the SRR

of certain selections leading to a sub-optimal final selection. The

fundamental reason behind this behavior is lossy information com-

paction in probability based restorability estimates. Consider the

two input AND gate in Figure 5, where the restoration probability

of value 1 at the both inputs are known to be 0.5 and no other knowl-

edge is present. A probability based estimation scheme will infer the

restoration probability of value 1 at the output to be 0.5×0.5 = 0.25.
However if the actual restored value in the two signals over 6 succes-

sive clock cycles are 1X1X1X and X1X1X1, both in accordance

with the estimated restoration probability, though we can not restore

the output for any of the cycles. This flaw is common to all proba-

bility based estimates and the inaccuracy results from compaction of

information that is spread across several cycles into a single number,

and could be avoided if we had a conditional probability distribution

of each signal’s restorability given the value of other signals. How-

ever such detailed probabilistic treatment is infeasible. This example

shows that the restoration probability estimates are not reliable, and

often do not correlate well with actual restoration behavior.

restored X1X1X1

a

b c

V1(a)=0.5

V1(b)=0.5
V1(c)=0.25

restored 1X1X1X

restored

XXXXXX

Figure 5: Restoration probability estimates can be misleading, as seen in
this example.

Keeping the ideal characteristics of a restoration capacity metric

in mind, we investigated whether a metric of restoration capacity can

be constructed out of simulation of restoration itself. The best esti-

mate of SRR for a group of traced signals and trace depth in a circuit

can be obtained by performing a large number of simulations with

different random seeds (for generating inputs) and starting tracing

at several random offsets from the initial reset state, then performing

the restoration process for the circuit, finally taking the average of the

SRR values from each individual simulation. This is effectively anal-

ogous to performing Monte-Carlo simulations for obtaining an esti-

mate of SRR for a group of traced signals. However, even though this

estimate would be extremely accurate, each of the individual simula-

tions (also includes the restoration process per simulation) takes up

a considerable amount of execution time when performed for typical

trace buffer depth (∼4K clock cycles) and also several such simula-

tions will be needed to establish a single estimate. This violates the

second criterion of an ideal capacity estimation metric. A selection

algorithm will need a large number of such estimates to converge on

to the final set of signals, hence if each of the individual estimations

are computationally intensive the overall selection process would de-

mand an inordinate amount of time for any realistic circuit size.

A key insight to solve this problem is the fact that the estimate of

state restoration capacity does not need to exactly match observed

SRR, it only has to be highly correlated with the actual SRR that

can be obtained with the same group of traced signals. A common

method of reducing effort in simulation based estimation is to per-

form several short simulations and average their results. In this par-

ticular case which amounts to performing the state restoration pro-

cess but for a smaller length of the trace buffer. This observation lead

us to carry out a study about sensitivity of SRR on varying depth of

the trace buffer. The results for a certain selection of 8 flip-flops in

s35932 circuit is shown in Figure 6. For purpose of legible represen-

tation only 9 random samples per trace buffer depth are displayed: 3

different random offsets and 3 random seeds per offset. The main ob-

servation from this study is that the value of the SRR obtained from

a certain group of traced signals is fairly insensitive to depth of the

trace buffer. In fact, there is very little variation beyond the depth of

64 cycles. Similar behavior is observed for all other circuits, as well

as when more random samples are obtained. This observation sug-

gests that measured SRR from simulated restoration for small depths

8

10

12

14

012

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

32 64 128 256 512 1024 2048 4096

S
ta
te

R
e
s
to
ra
ti
o
n

R
a
ti
o

seed(x100)

offset(x6000)

buffer depth

Figure 6: Variation of SRR with trace buffer depth (3 random offsets per case, 3 random simulation seeds per offset for the s35932 circuit). The value of the
observed SRR for a group of signals is fairly insensitive to buffer depth beyond 64.

(∼64) can serve as an estimation metric of restoration capacity.

y = 1.028x - 0.2983

R² = 0.9774

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

y = 0.9246x + 0.1263

R² = 0.9782

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16

State restoration ratio computed from mock simulation

M
e
a
s
u
re
d
 S
ta
te
 R
e
s
to
ra
ti
o
n
 R
a
ti
o

s38417 s35932

Figure 7: Correlation of observed SRR with our proposed restoration ca-

pacity metric namely, SRR obtained from mock simulation with 64 cycle
of buffer depth. Correlation is shown for two circuits: s38417 and s35932.
The proposed metric bears strong positive correlation with the observed SRR
indicated by the value of the correlation coefficient.

The hypothesis that SRR obtained from mock simulated restora-

tion for small depths has good correlation with the observed SRR is

further validated by repeating the earlier correlation study except for

plotting the simulation based metric on the X axis in this case for two

benchmark circuits. The mock simulation uses depth of only 64 cy-

cles with one random seed and one random offset, a convention used

for all estimation purposes described in the rest of the paper. The

resultant scatter plot for circuits s38417 and s35932 is shown in Fig-

ure 7. The simulation based capacity estimation evidently shows an

extremely high degree of linear correlation with the observed SRR.

Similar strong correlation was found for other circuits as well. This

observation confirms the viability of using SRR obtained from mock

simulation of restoration for a small depth as an accurate estimate

of restorability of state elements. Note that, a larger depth and av-

eraging over more random seeds and offset values will make the es-

timate even more accurate and should be deployed if more compute

resources are available.

4.2 Algorithm Details
The problem of selecting the optimal set of flip-flops can be viewed

as a problem of retaining the maximum amount of information in the

unrolled circuit graph. We start off with all flip-flops in the circuit

(which will restore almost all signals and states), and then we try to

constrain this set by removing flip-flops. This will ensure that we do

not get constrained by our sub-selections when selecting a larger set

of trace signals as pointed out in Section 3.3. The flip-flops whose

knowledge contribute least to restoring others should get eliminated

earlier. When all but the desired number of flip-flops are eliminated,

this process terminates. We use the previously proposed simulation

based metric, as an estimate of the information retained by the re-

maining set of flip-flops. If elimination of two or more candidate

flip-flops result in same amount of state restoration in mock simula-

tion, we break the tie by comparing total number of signals restored.

If a tie still exists then it is broken by considering the number of other

flip-flops, that the candidate flip-flop is connected with via a forward

or backward path in the circuit graph. The flip-flop with less con-

nections will get eliminated, if a tie still remains it will be broken by

random choice.

Figure 8: The flip-flop selection process . The flip-flop whose elimination
leads to maximum retention of restored states according to the estimation
metric is decided to be removed in next round. The blackened out flip-flops
has been already eliminated, while we have to try out all elimination possi-
bilities(shown by crossed) before deciding upon the next elimination. In this
example the trace buffer width is 2, so 2 flip-flops are selected out of 5.

This method is shown in Figure 8. Note that if we start with N
flip-flops, it takes O(N2) steps to converge at the final set. Hence,

for large circuits the procedure might become very computationally

demanding. We noticed that in typical circuits some flip-flops are

always restorable from the knowledge of other flip-flops and hence

they do not carry any information. We take advantage of this by per-

forming a fast pruning on a large number of flip-flops, to reduce this

size of the set to an extent that application of an O(N2) algorithm

will be feasible. To perform this pruning, we consider the SRR esti-

mate of each possible set by removal of one flip-flop, however instead

of only removing the flip-flop whose elimination leads to maximum

estimated SRR and repeating the process, we remove a set of flip-

flops which have poor information content, in one step. We consider

all possible eliminations in sorted order of SRR estimate values (as

RCW [] in 9). The flip-flops whose elimination lead to the top few

SRR estimate values are the candidates to be in the final elimination

set. The size of the set is a parameter called step-size d. For our ex-
periments this parameter was set as 50. To limit the extent to which

this coarse grain pruning is done on a circuit, we can specify a prun-

ing termination parameter PT such that if the average number of

restored flip-flops in the mock simulation drops below that value, the

coarse grain pruning will stop and the actual elimination algorithm

will work on the residual set. This parameter can create a trade-off

Input: circuit, width of trace buffer w,

mock simulation based SRR estimator fSRR(...)
Output: selected flip-flop set T

Parameter: step-size d,

pruning termination parameter PT

The set of all flip-flops in the circuit S

Current visibility V = fSRR(S) × |S|
Start with all flip-flops T = S

while (V > PT) {
for(each flip-flop s in T){

T = T − {s}
Visibility V = fSRR(T) × |T |
Restoration capacity without s RCW [s] = V

T = T ∪ {s}
}
T = T−{s | RCW [s] is within top d values }
V = fSRR(T) × |T |

} //end of pruning

while (|T | > w) {
Maximum Visibility maxV = 0
for (each s in T){

T = T − {s}
Visibility V = fSRR(T) × |T |
T = T ∪ {s}
if(V > maxV){

selected = s

maxV = V

} }
T = T − {selected}

}

Figure 9: Pseudo-code for the final algorithm.

between quality of selection and the execution performance of the

algorithm. It was chosen as 95 percent of the total number of flip-

flops in the circuit to assure good quality of signal selection for our

experiments. The final algorithm is illustrated in Figure 9.

5. EXPERIMENTAL RESULTS
We evaluate the quality of the trace signals selected by the pro-

posed algorithm by comparing SRR obtained on six ISCAS89 bench-

mark circuits, which were used in previous works that strive to maxi-

mize restoration [7, 8, 10, 4]. The number of flip-flops in the circuits

and other circuit characteristics are presented in Table 1. The bench-

marks are re-synthesized using Synopsys Design Compiler targeting

the GTECH gate library, to conform with the quality of optimization

performed on netlists used in industry currently (re-synthesis is per-

formed in[11] as well). Note that, some redundant flip-flops in these

designs are removed by the synthesis tool.

Circuit
Flip-flops # Flip-flops # Gates

before synthesis after synthesis after synthesis

s5378 179 164 1,058

s9234 211 145 920

s15850 534 524 3,619

s38584 1,426 1,426 12,560

s38417 1,636 1,564 10,564

s35932 1,728 1,728 4,981

Table 1: Benchmark circuits used to evaluate proposed signal selection

algorithm

The X-simulator which restores the value of non-traced signals

and states forms an integral part of our solution since it is used to

compute the estimation metric through mock simulations, as well as

for measuring SRR attained by the algorithm. The 3-input or larger

gates are internally de-composed into elementary 2-input gates in

the X-simulator for efficient computation, a transformation that has

no other consequence since the trace signals are only flip-flop values.

We implemented our X-simulator using the efficient event-driven bit-

parallel forward and backward propagation technique described in

[7]. All the experiments were run on a quad core Intel processor

running at 2.4 GHz. The width of the bit-parallel operations in the

restoration process was extended to 64 bits from the 32 bits described

in the original, to utilize the 64 bit word size of the processor, which

greatly increases the performance of individual mock simulations,

performed for a depth of 64 cycles.

During the tracing operation each circuit was kept in the func-

tional mode, by keeping global reset signals de-asserted and forcing

fixed values at other control inputs while feeding random values at

other primary inputs. This input restriction is referred as “determin-

istic random” in several previous works [7, 4]. This restriction at

the inputs is very important to evaluate the quality of trace signal

selection. If control inputs are allowed to toggle, the circuit might

intermittently enter the reset state and the reset signal itself might

be traced, leading to a large amount of state restoration. However,

during debug this scenario is unlikely to happen and the circuit will

remain in the functional mode most of the time, so the state restora-

tion ratio obtained when control signals are allowed to toggle is not

representative of actual restoration capacity of the trace signals. This

issue has been pointed out in [7, 8]. All our experimental results cor-

respond to the circuit operation in functional mode, and all the mock

simulation estimates are also obtained under this constraint.

5.1 Restoration Quality

Circuit
trace Ko & Liu & Basu & Proposed Improv.(%)

width Nicolici [7] Xu [8] Mishra [4] Solution over best

s5378

8 - 14.67 - 13.24 -9.75

16 - 8.99 - 7.83 -12.93

32 - 4.72 - 4.89 +3.60

s9234

8 - 4.76 - 10.68 +24.36

16 - 7.18 - 7.16 -0.27

32 - 4.67 - 4.18 -10.49

s15850

8 - 19.93 - 39.54 +98.39

16 - 24.22 - 24.85 +2.60

32 - 13.30 - 13.60 +2.25

s38584

8 19.00 19.23 78.00 84.10 +7.82

16 10.56 13.96 40.00 47.04 +17.60

32 6.32 8.68 20.00 26.97 +34.85

s38417

8 19.62 18.63 55.00 45.21 -17.80

16 11.22 18.62 29.00 30.77 +6.10

32 6.73 14.20 16.00 20.25 +26.56

s35932

8 41.45 64.00 95.00 96.12 +1.17

16 39.31 38.13 60.00 67.45 +12.41

32 24.76 21.06 35.00 43.23 +23.51

Table 2: State restoration ratio without input knowledge for ISCAS89

circuits. Only traced state elements are used for restoration. SRR obtained
by previous solutions which only use the knowledge of traced signals are
presented for comparison. The last column represents percentage change over
the best reported in literature.

Table 2 compares the state restoration ratio obtained by several

previous solutions with our proposed technique on the ISCAS89 bench-

marks. As in [8, 4], the trace buffer widths used in the experiments

are 8,16 and 32, while the depth is kept at 4096 cycles and corre-

sponding SRR for each solution (wherever known) is reported. The

percentage improvement of SRR obtained by the proposed algorithm

over the best reported value is reported in last column. Each reported

restoration ratio for the proposed algorithm is the average over 100

simulations, with 10 different seeds (to generate random values at

non-control primary inputs), and 10 different cycle offsets from the

initial reset state, per seed. For certain buffer sizes, especially in

the case of smaller sized ISCAS89 circuits the SRR obtained by our

solution is less than that of the best reported. This anomalous be-

havior is primarily caused by the fact that the optimized ISCAS89

circuits have a reduced number of flip-flops. Hence, even though our

technique actually restores higher percentage of flip-flops on aver-

age per cycle the reported SRR of previous solutions is often boosted

by restoration of the redundant flip-flops. As an example, for buffer

size of 32 in the case of s9234 circuit, our algorithm restores 4.18x32

= 134(approx.) flip-flops on average per cycle out of 145, which is

92 percent of all flip-flops, where as the best reported solution only

restores 4.67x32=149(approx.) out of 211, which is only about 70

percent. For the larger circuits, which are better representative of the

cases encountered in post-silicon debug, our solution achieves up to

34.85 percent (for s38584) better state restoration ratio.

Circuit
trace Prabhakar Basu & Proposed Improv.(%)

width & Hsiao [10] Mishra [4] Solution over best

s5378

8 19.30 19.00 20.25 +6.58

16 9.70 9.90 10.21 +3.13

32 4.84 5.00 5.12 +2.40

s9234

8 20.30 23.30 14.34 -38.45

16 10.30 11.80 7.80 -33.89

32 5.20 6.00 4.21 -29.83

s15850

8 55.60 55.10 55.89 +1.43

16 27.80 29.80 31.01 +4.06

32 13.90 15.80 16.36 +3.54

s38584

8 130.10 151.20 176.84 +16.95

16 66.02 78.40 88.47 +12.84

32 34.80 40.50 44.32 +9.43

s35932

8 209.60 209.40 215.94 +3.12

16 104.80 105.80 107.97 +2.05

32 52.40 53.30 53.98 +1.27

Table 3: State restoration ratio with input knowledge for ISCAS89 cir-
cuits. SRR obtained by previous solutions which also use inputs are presented
for comparison. The last column represents percentage change over the best
reported in literature.

We also compare restoration quality of our approach to [10], where

it is assumed that all the primary input values are known at every

clock cycle along with the traced flip-flops. Though this assump-

tion is not realistic, since in a real IC design the circuit blocks under

study will be embedded inside a larger design, hence the inputs to the

circuit block will also need a trace buffer. However for the sake of

completeness, we compare the performance of our algorithm versus

[10], as it was done by [4] as well. Note that in this case almost 100

percent flip-flops are restored by previous algorithms, so the scope

of improvement is very limited. The results are presented in Table

3, the reported SRR for the proposed algorithm is averaged over 100

simulations as described before. We observe better restoration ra-

tio than both previous solutions for all circuits except s9234. This

anomalous behavior is again caused by the same reason of different

number of flip-flops, as our algorithm actually restores even closer to

100 percent flip-flops.

5.2 Effect of Pruning
We studied the effect of the pruning optimization (discussed in

Section 4.2) on top of our elimination based algorithm. The effect of

pruning is shown in Figure 10. This data corresponds to execution

of the proposed algorithm for circuit s15850, when the fSRR() met-

ric is using a mock simulation of depth 32 (instead of usual 64, for

purposes of visible fine granularity), and the trace buffer width is set

at 32. Hence the algorithm terminates at trace set size of 32. A total

of 524x32=16768 flip-flop values are present in the window of mock

simulation (s15850 has 524 flip-flops refer Table 1). The y-axis ef-

fectively plots the value of fSRR(T)×|T |×32 during each iteration
in the execution of our signal selection algorithm. Note that the no-

pruning line is smooth as only one flip-flop is removed per iteration,

and the total number of restored flip-flops in the mock simulation

gradually decreases. On the other hand, pruning uses a step-size(d)
of 50 flip-flops, hence during the pruning phase total number of re-

stored flip-flops drop as a step function at each 50 interval. In this

example pruning termination(PT) was set at 93 percent of all flip-

flop values i.e. 16768x0.93=15594, by which point the whole set of

524 has already been reduced to around 200. Note that the pruning

produces only slightly lesser quality signal selection than exact ver-

sion, as the with-pruning line ends slightly lower than the no-pruning

line. Thus pruning sacrifices accuracy to a small degree for faster ex-

ecution of signal selection algorithm.

12500

13000

13500

14000

14500

15000

15500

16000

16500

17000

523 473 423 373 323 273 223 173 123 73

T
o
ta
l
n
u
m
b
e
r
o
f
fl
ip
-f
lo
p
s
 r
e
s
to
re
d

Number of flip-flops remaining in trace set T

no pruning

with pruning

Figure 10: The effect of pruning during execution of trace signal selection

algorithm is shown for circuit s15850.

5.3 Gain per Additional Trace Signal

45.2
16.3 9.8

0

100

200

300

400

500

600

700

8 16 32

A
v
e
ra
g
e
 n
u
m
b
e
r
o
f
re
s
to
re
d

F
lip
-f
lo
p
s

Trace buffer width

average restored FFs per cycle

average gain of restored FFs per extra traced FF

Figure 11: Restored flip-flops vs. trace buffer size for circuit s38417. A
moderately steady rate of increase of the number of restored flip-flops with
increasing trace-buffer size is observed for the proposed solution. While it is
also able to restore more flip-flops on average than all previous solutions for
buffer sizes of 16 and 32.

Diminishing gain in the number of restored flip-flops per addi-

tional traced flip-flop was pointed out as a shortcoming of the greedy

algorithms in Section 3.3. The proposed algorithm alleviates this

issue to a large extent. The s38417 circuit is again used as a repre-

sentative case in Figure 11, as it was used in Figure 3. The selection

produced by our solution is able to restore more flip-flops on aver-

age compared to that of all previous solutions for buffer sizes of 16

and 32. Moreover far more steady gain in the number of restored

flip-flops per additional traced signal is observed, compared to the

solution by Basu and Mishra [4] (the best previous solution so far

in terms of total restoration). Similar trends are observed for other

benchmarks as well.

5.4 Algorithm Execution Performance
The trace signal selection is done only once during design phase of

the circuit blocks, to be included in signal list for the ELA. Hence the

run-time of the selection algorithms is of lesser importance than the

quality of selected signals. However if an inordinate amount of time

is needed for moderately sized circuit blocks, it might become a bot-

tleneck. In our algorithm the pruning phase was devised especially

for this reason. A comparison of the execution time of previous so-

lutions and our solution is presented in Table 4. Note that, especially

for small designs the execution performance of the proposed algo-

rithm is often worse, this is due to the number of simulations needed

Circuit
trace Ko & Liu & Basu & Proposed

width Nicolici [7] Xu [8] Mishra [4] Solution

s5378

8 - 14 - 656

16 - 36 - 634

32 - 75 - 600

s9234

8 - 26 - 456

16 - 75 - 441

32 - 148 - 433

s15850

8 - 298 - 3,877

16 - 764 - 3,823

32 - 1,656 - 3,781

s38584

8 34,440 388 1,200 18,143

16 73,500 802 2,600 18,091

32 149,580 2,826 5,500 18,003

s38417

8 28,200 2,319 2,200 24,943

16 69,060 5,285 4,500 24,819

32 149,940 11,732 9,100 24,734

s35932

8 31,440 1,407 2,200 19,857

16 68,700 5,251 4,400 19,832

32 142,800 10,496 8,900 19,801

Table 4: Comparison of execution performance for the algorithms con-

sidered. All execution times are reported in seconds. Unreported results
create the blank cells.

in our selection process. However, these simulations are for restora-

tion estimation, and they are independent of each other during each

iteration of the selection algorithm. A possible way to speed this up

is to use pattern parallelism often used in GPU platforms, where the

same execution is applied on different data sets.

6. CONCLUSION
In this work, we have presented a trace signal selection algorithm

that strives to maximize state restoration ratio. Our algorithm is

guided by a more accurate simulation based restoration capacity met-

ric and achieves better state restoration ratio than previous solutions.

It also achieves better trends of restoration per additional traced sig-

nal while restoring higher average number of states.

7. REFERENCES
[1] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and

D. Miller. A reconfigurable design-for-debug infrastructure for SoCs.
In Proc. DAC, pages 7–12, 2006.

[2] Altera Verification Tool. SignalTap II Embedded Logic Analyzer, 2006.
http:

//www.altera.com/products/software/products/

quartus2/verification/signaltap2/sig-index.html.

[3] ARM limited. Embedded Trace Macrocells, 2007.
http://www.arm.com/products/solutions/ETM.html.

[4] K. Basu and P. Mishra. Efficient trace signal selection for post silicon
validation and debug. In Proc. VLSI design, pages 352–357, 2011.

[5] Y.-C. Hsu, F. Tsai, W. Jong, and Y.-T. Chang. Visibility enhancement
for silicon debug. In Proc. DAC, pages 13–18, 2006.

[6] H. F. Ko and N. Nicolici. Automated trace signals identification and
state restoration for improving observability in post-silicon validation.
In Proc. DATE, pages 1298–1303, 2008.

[7] H. F. Ko and N. Nicolici. Algorithms for state restoration and
trace-signal selection for data acquisition in silicon debug. IEEE Trans.

on CAD, 28(2):285–297, 2009.

[8] X. Liu and Q. Xu. Trace signal selection for visibility enhancement in
post-silicon validation. In Proc. DATE, pages 1338–1343, 2009.

[9] N. Nataraj, T. Lundquist, and K. Shah. Fault localization using time
resolved photon emission and STIL waveforms. In Proc. ITC, pages
254 – 263, 2003.

[10] S. Prabhakar and M. Hsiao. Using non-trivial logic implications for
trace buffer-based silicon debug. In Proc. ATS, pages 131–136, 2009.

[11] H. Shojaei and A. Davoodi. Trace signal selection to enhance timing
and logic visibility in post-silicon validation. In Proc. ICCAD, pages
168–172, 2010.

[12] B. Vermeulen, T. Waayers, and S. Bakker. IEEE 1149.1-compliant
access architecture for multiple core debug on digital system chips. In
Proc. ITC, pages 55 – 63, 2002.

[13] Xilinx Verification Tool. ChipScope Pro, 2006. http:
//www.xilinx.com/ise/optional_prod/cspro.html.

[14] J.-S. Yang and N. A. Touba. Automated selection of signals to observe
for efficient silicon debug. In Proc. VTS, pages 79–84, 2009.

