
Cardio: Adaptive CMPs for Reliability through Dynamic

Introspective Operation

Andrea Pellegrini and Valeria Bertacco
University of Michigan

{apellegrini, valeria}@umich.edu

ABSTRACT

Current technology scaling enables the integration of tens of pro-

cessing elements into a single chip, and future technology nodes are

soon expected to reach hundreds of cores per device. While very

powerful, many experts agree that these systems will be prone to a

significant number of permanent and transient faults during the life

of the chip. If not properly handled, the effects of runtime failures

can be dramatic.

In this work, we propose Cardio, a distributed architecture for

reliable chip multiprocessors. Cardio novel approach for on-chip

reliability is based on hardware detectors that spot failures and on

software routines that reorganize the system to work around faulty

components. Compared to previous online reliability solutions,

Cardio can provide failure reactivity comparable to hardware-only

reliable solutions while requiring a much lower area overhead.

Cardio operates a distributed resource manager to collect health

information about components and leverages a robust distributed

control mechanism to manage system-level recovery. Cardio can

offer recovery so long as at least one general purpose processor is

still functional in the chip. We evaluated our design using a cus-

tom simulator and estimate its runtime impact on the SPECMPI

benchmarks to be lower than 3%. With a dynamic reconfiguration

time between 20 and 50 thousand cycles per failure, the distributed

resource manager can detect and setup the system to reconfigure

around broken processor cores or interconnect elements.

1. INTRODUCTION
Current levels of silicon integration allow designers to fit bil-

lions of transistors in a single chip. This steady growth has not

yet reached its limit, with future transistor sizes pushing further

into the nanometer domain. Such technological achievements will

allow next generation digital systems to integrate even more tran-

sistors. We envision future multi-billion transistor chip multipro-

cessors (CMPs) as extremely complex distributed systems, where

processors and memory structures are connected through dedicated

interconnect networks [11]. Unfortunately, according to several ex-

perts, reliability is a major factor that can jeopardize this growth.

Indeed, as transistor sizes reduce, their susceptibility to both tran-

sient and permanent faults is expected to increase significantly,

causing failures in deployed systems [28].

Chip multiprocessors have been widely adopted in a variety of

applications because of their performance advantages and scalabil-

ity. These architectures are particularly interesting from a relia-

bility standpoint, since single cores can be disabled if found to be

faulty. Manufacturers exploit these architectures to maintain high

production yields in the face of fabrication defects, for instance dis-

abling cores that are not fully operational during post-production

testing [19]. However, most of this systems do not have active

mechanisms to overcome runtime faults. Thus, they can face criti-

cal failures when defects manifest during operation. Runtime faults

can reduce system availability, causing significant financial losses.

Furthermore, undetected faults can lead to silent data corruptions,

potentially compromising system security and causing safety haz-

ards [21]. In this landscape, solutions that dynamically overcome

runtime faults are necessary to extend a system’s lifespan.

Several recent works have proposed individual mechanisms to

detect, diagnose, and recover from faults in microprocessors, mem-

ory structures or chip interconnects. Current solutions focus on in-

dividual components, and therefore do not allow the system as a

whole to adapt to runtime failures. Furthermore, most of the reli-

able architectures proposed in the literature rely only on hardware

structures for both fault detection and recovery. Therefore, such

solutions incur significant hardware overheads due to the addition

of components that are rarely triggered.

Cardio, our proposed solution, is a distributed hardware/software

system to manage a CMP’s availability at runtime. Our proposed

solution uses hardware detectors to promptly detect hardware faults

but delegates all system reconfiguration tasks to software routines.

This paradigm for reliable systems allows for a low-cost solution

(only fault detection mechanisms are required in hardware) with-

out compromising its effectiveness in recovering from faults. The

Cardio distributed hardware manager leverages system-level infor-

mation collected from all self-testing hardware components, and

makes global decisions about reconfiguring the system to work

around faults. A CMP architecture equipped with Cardio can also

improve its mean time to repair and mean down time, thus reducing

total system maintenance costs.

1.1 Contributions
We propose a distributed, system-level solution to manage faulty

components in CMPs. The performance impact of Cardio is min-

imal, lower than 3% on average during normal operation. Thanks

to its software support, it requires very few hardware changes to a

baseline system. This work makes the following contributions to

the area of online fault recovery and reconfiguration:

• We introduce a distributed resource manager to handle per-

manent runtime faults on CMPs. Hardware components peri-

odically exchange diagnostic messages to report their state. Di-

agnostic messages are collected at runtime by software routines

running on the general purpose cores. Local resource managers

use these messages to update knowledge about the system and

synchronize to evaluate its health. Cardio does not require any

a-priori knowledge of the CMP and it is based on simple mes-

sage broadcast among its components.

• We propose a novel routing algorithm that targets networks

on chip. In contrast to other fault-adaptive routing solutions,

Cardio relies on hardware mechanisms to detect faults and on

software-driven reconfiguration of the underlying hardware in-

terconnect. Our routing algorithm relies on the exchange of di-

agnostic messages among directly connected network compo-

nents to build a list of reachable network nodes. Interconnect

components then transfer their local knowledge of the directly

reachable nodes to a distributed software layer that builds com-

munication routes.

In this work we target CMPs consisting of up to hundreds of

processors, where communication among components is through

either explicit message passing or shared memory.

2. RELATED WORK

Hardware

Router

Software

Applications

Operating

system
Link

monitor

BIST

Data +

Cardio diagnostic messages

Cardio Distributed

Resource Manager

Functions and

handlers

Live

interconnect graph

Available HW

resources

HW/SW interface
Core B

IS
TLocal cache

Routing table

Configurable

RT logic

Network interface

Counters

Ack

buffers

BIST

Figure 1: Cardio architecture overview. Cardio hardware and

software additions are highlighted in the figure. Communication

endpoints are augmented with acknowledgment buffers and coun-

ters to determine transmission failures; routers are enhanced with

logic to diagnose link-connectivity and to reconfigure routing ta-

bles. Each general purpose core in the system executes an instance

of the distributed manager.

In this section we overview some previously published works,

comparing them against our solution.

CMP reliability through dedicated hardware. A solution for

reliability in systems composed of hundreds of cores connected

through NoCs has been proposed by Zajac, et al. [29]. This de-

sign targets systems organized in homogeneous self-testing com-

putation tiles composed of a core and a router. Special hardware

cores, called input/output port (IOP) are in charge of discovering

and allocating jobs to system’s computational tiles. We recognize

three majors drawbacks in this solution: i) it incurs in the extra

area necessary to deploy the IOP elements; ii) IOPs are dedicated

to manage hardware components and are single point of failures in

the system; iii) the proposed architecture does not distinguish be-

tween cores and interconnect, thus causing a whole computational

tile to become inactive even if it is only partially defective.

In contrast, our solution relies on the general purpose cores present

in the system to manage the hardware and distinguishes the discov-

ery procedure between interconnect and core, thus avoiding the cost

of disabling operational hardware.

Autonomic and organic hardware. Autonomic and organic com-

puting has been envisioned as a solution to create self-organizing

and self-managing computer systems [12]. For instance, DodOrg

is a project for autonomic robots inspired by biological organisms,

organizing the system in three levels: cells, organs, and brain [2].

Other works focused on developing network components that can

be used in organic systems, with particular focus on communica-

tion quality of service [1, 8, 25]. Researchers have studied the pos-

sibility of developing autonomic systems on chip, proposing the

insertion of autonomic hardware elements to observe and control

each SoC functional unit [16]. However, this design adds signif-

icant complexity to the system and requires special-purpose hard-

ware to manage the SoC.

Even though Cardio shares a theoretical base with these works,

it extends their principles proposing a concrete and viable solution

to manage dynamic failures of CMP components.

Reliability in NoCs. In recent years, several researchers have pro-

posed low cost solutions that focus only on reliable intra-chip com-

munication, including network on chip routers capable of detect-

ing and recovering from faults [4]. These solutions usually incur

in high hardware overheads, proportional to their degree of adapt-

ability to faults and their capability to work on arbitrary topolo-

gies. Numerous solutions for adaptive routing algorithms in simple

topologies such as meshes and tori are available. However their

adoption to other topologies, when possible, is extremely challeng-

ing [9].

Stochastic routing has been proposed as a low cost solution for

reliable on-chip communication, but its impact on traffic makes

such solution viable only for lightly loaded networks [7]. Cardio,

on the other hand, is agnostic to the topology and routing algo-

rithm. An example of distributed discovery algorithm for reliable

NoCs completely developed in hardware is Immunet [23]. This so-

lution can quickly adapt to hardware faults, with a recovery time

estimated in less 10,000 cycles for a 8x8 mesh, but demands to the

routers to perform complex algorithms to update their local routing

tables. Immunet’s algorithm dynamically adapts to faults through

a chain of updates that involves all nodes in the network. When a

fault is detected, it floods the network with a number of diagnos-

tic messages that grows exponentially with the number of nodes.

Cardio, instead, is somewhat slower in reacting to hardware faults

in the interconnect, between 20,000 and 50,000 cycles, but relies

on much simpler routers and requires the transmission of a limited

number of diagnostic messages to recover from a failure.

Since network reconfiguration in Cardio is managed in software,

it can support sophisticated routing schemes without burdening NoC

components with the extra logic needed to support such algorithms.

Furthermore, our solution has a system-level knowledge of the cur-

rent state of the CMP, thus even allowing application-aware tuning

of packet routes. Neither these capabilities are achievable by the

hardware-only NoC reconfiguration algorithms proposed in previ-

ous works.

Fault-tolerant microprocessors. Several solutions for online test-

ing and dynamic recovery of microprocessors are available in the

literature [5, 6, 10, 15, 20]. However, these works focus on the in-

dividual hardware components, and lack system-level solutions to

the challenges posed by runtime failures in future CMPs. Detect-

ing a failing component is only a first step towards ensuring that

the whole CMP can be still functional and these works are thus

orthogonal to our solution.

Reliability via middleware. The idea to adopt a middleware layer

to support hardware reliability was first investigated by Bressoud,

et al. [3]. Their work provides a high cost (100% performance

overhead) reliability solution through software execution replica-

tion. Cardio, on the other hand, utilizes hardware fault detectors to

quickly recognize a failure and sporadically triggers the execution

of software routines to react to hardware failures.

3. CARDIO ARCHITECTURE
Cardio follows an event notification-reaction paradigmwell-suited

to the reliability needs of future CMPs. Two problems need to be

addressed to ensure that a CMP system subjected to hardware fail-

ures can remain operational. First, enough functional hardware re-

sources must be present to achieve a determined task. Given that

enough hardware components are available in the CMP, the next

issue is to determine how these components are connected and how

they can communicate with each other. Typical on-chip reliability

solutions rely on hardware structures to achieve both these goals.

In contrast, Cardio is based on the capability of hardware compo-

nents in the CMP to self-test their functionalities and share such

information with the rest of the system. The hardware fault detec-

tors interact with a lightweight software layer, the resource man-

ager. Each general purpose core runs an instance of the resource

manager, and is in charge of maintaining and organizing informa-

tion about the on-chip hardware components. Figure 1 shows a

high level schematic of the additional components required for a

Cardio-enabled CMP design.

During normal operation, application execution is divided in ex-

ecution epochs whose length is established by the period of the tests

executed on the hardware. Current executions are always consid-

ered speculative. Output and state of an epoch are committed to a

safe checkpoint only when all the hardware components that con-

tributed to the outcome of the application are detected as healthy.

In-flight communications are temporarily stored in buffers to allow

packet retransmission in case of data loss.

While the application is speculatively executing an epoch, local

hardware components, such as processors and NoC routers, peri-

odically and independently pause their tasks to test the integrity of

their hardware. Hardware tests on NoC components are not limited

to their internal logic but are also performed to their local connec-

tions. These local tests are not globally synchronized, and at least

one hardware self-test needs to be performed within the duration of

an epoch.

The outcome of the local hardware tests is then sent to the rest

of the system. Not all local tests require a full-system result broad-

cast: for instance, if two neighboring NoC routers do not see any

alteration in the status of the link connecting them, there is no need

to update the resource managers. For more complex components

such as processor cores, on the other hand, test results are broad-

casted to the rest of the system to update the operating system about

the state of the available computing elements. More frequent diag-

nostic tests lead to more reactive systems but also cause higher per-

formance impact and diagnostic message proliferation. Thus their

frequency is a design trade-off between extra traffic experienced in

the system and reactivity to faults (analyzed in Section 5).

Diagnostic messages broadcasted to the system are collected by

the local distributed managers, updating two software structures

that maintain hardware state: a list of available hardware resources

and a live interconnect graph. The first lists all hardware resources

currently available in the CMP, and is used by the operating system

to allocate hardware resources to the running applications. The sec-

ond structure is the live interconnect graph, and is used to map the

active links and NoC components in the design. This latter struc-

ture is used to compute the routes that NoC packets will follow.

Local managers synchronize among each other to make sure they

have a coherent vision of the system. If no failures are detected,

the local managers allow the checkpoint system to commit the pre-

viously executed epoch. Otherwise, if the local managers detect

changes in the hardware of the CMP, current speculative execu-

tions are discarded and the operating system is updated to allow

the running applications to be remapped on the available resources

and to trigger system reconfiguration.

Note that, after a hardware failure, the state of each active com-

ponent comprising the CMP system needs to be recovered to restart

software execution. For this purpose, Cardio can rely on either

software or hardware full-system checkpoint techniques [22, 27].

The notification-reaction paradigm that Cardio develops can also

be used to maintain an accurate state of network traffic, local com-

ponents usage and temperature. As we show in this work, dynamic

reaction mechanisms based on diagnostic message broadcast can

be very responsive without severely hinder system’s performance.

4. CARDIO OPERATION
Cardio is based on periodic exchanges of diagnostic messages

among the CMP’s hardware modules. When a failure occurs, the

distributed resource manager is notified of the problem and soft-

ware routines to reconfigure the hardware are triggered. The prob-

lem of reaching a common decision among several components is

an instance of the Byzantine generals’ problem [14]. Solving such

a problem in this case consists of providing a common knowledge

of the system’s healthy resources among all the instances of the

distributed resource manager. In Cardio, the discovery and recon-

figuration proceeds depending on whether the failed unit is a core

or a router link.

4.1 Core Monitoring
To gather and distribute system-level knowledge about the health

of the cores’ in a CMP, the processors follow the sequence of oper-

ations illustrated in Figure 2.

Each core independently and periodically suspends its normal

execution to perform self-tests (step 2 in Figure 2) [5]. If the self-

tests succeed, a checkpoint of the local state of the hardware is

taken, as shown in the step 3 in Figure 2. Test outcomes are then

enveloped in diagnostic messages that are broadcasted to the whole

system - step 4 in Figure 2. Each diagnostic message is marked

with an identifier that is unique to the core that generated it. De-

pending on the granularity of the tests performed on the cores, more

detailed information about faulty cores’ capability can be provided.

For instance, a core which floating point unit is not functional might

still be reported as active, but only capable of executing integer in-

structions. Since diagnostic messages are broadcasted throughout

the system, every node will eventually receive at least one diagnos-

tic message from another core in the same connected region of the

chip.

Still, local checkpoints require to be synchronized to allow for

the system to be recoverable to a coherent state in case some other

core failed. Differently from SafetyNet [27], checkpoints are coor-

dinated across the system periodically. Local checkpoints are com-

mitted only when diagnostic information generated from all gen-

eral purpose cores that contributed to application’s execution are

received by each core’s local resource managers. Note that, while

waiting for the diagnostic messages, the cores can speculatively

proceed with their computations. For instance, in step 5 of Figure

2 core 0 is waiting for the health message from core 3 to commit its

local checkpoint. Note that if n is the number of healthy cores in

the CMP, each core can receive a maximum of n − 1 unique diag-

nostic messages from other cores. Only when all of the diagnostic

messages from the cores that contributed to the application are re-

ceived a core can safely commit its checkpoint, as shown in step 6

of Figure 2. If some cores do not receive one or more diagnostic

messages by the beginning of the next epoch, a message is sent to

all cores in the CMP to discard their speculative execution and roll

back to a previous safe checkpoint.

To update the knowledge of the healthy hardware, each resource

manager builds a new list of available cores from the diagnostic

messages received. Moreover, the diagnostic messages require a

synchronization mechanism to avoid receiving them after the dead-

line imposed by the periodic hardware test. Since self-test and di-

agnostic message generation are handled in software, such events

can be synchronized through real-time counters. The introspective

operations performed by Cardio rely heavily on such timers, and

their hardware should be tested throughly and frequently or even

duplicated to ensure their functionality. In order to avoid problems

related to the skew of having multiple real time counters in the sys-

tem, in our design we allow diagnostic messages to be broadcasted

with a period which is half the checkpoint interval.

To guarantee that all diagnostic messages will meet the deadline

imposed by the resource manager updates, diagnostic messages’

arrival needs to precede such a deadline by at least the longest time

needed for a messages to reach all cores in the system. Table up-

dates for healthy hardware components can be synchronized among

all cores based on the arrival time of the last diagnostic message.

Note that a faulty core is not required to advertise its status to the

rest of the system: in this case, it will not be reported as available

and the other local resource managers will detect the failure at the

beginning of their next self-test period.

4.2 Interconnect Monitoring

3. Checkpoint program state 4. Health state broadcasting 5. Speculative execution while

waiting for other cores’ state

2. Core health test1. Normal execution

Core 1

BIST

NI

Router

6. Once all health states are received,

commit previous checkpoint

Core 0

BIST

NI

Router

Core 3

BIST

NI

Core 2

BIST

NI

RouterRouter

Normal

execution

Core 1

BIST

NI

Router

Core 0

BIST

NI

Router

Core 3

BIST

NI

Core 2

BIST

NI

RouterRouter

Core 1

BIST

NI

Router

Core 0

BIST

NI

Router

Core 3

BIST

NI

Core 2

BIST

NI

RouterRouter

Core 1

BIST

NI

Router

Core 0

BIST

NI

Router

Core 3

BIST

NI

Core 2

BIST

NI

RouterRouter

Core 1

BIST

NI

Router

Core 0

BIST

NI

Router

Core 3

BIST

NI

Core 2

BIST

NI

RouterRouter

Core 1

BIST

NI

Router

Core 0

BIST

NI

Router

Core 3

BIST

NI

Core 2

BIST

NI

RouterRouter

Running

self�test
Take

checkpoint

Core 0: OK

Core 1: Wait

Core 3: Wait

Core 0: OK

Core 2: OK

Core 3: Wait

Core 0: OK

Core 1: Wait

Core 2: OK

C
ore 0

healthy

Speculative

execution

C
o

re
 3

h
e

a
lt
h
y

Core 1: OK

Core 2: OK

Core 3: Wait

Commit check

point

Core 1: OK

Core 2: OK

Core 3: OK

Figure 2: Core monitoring and recovery in Cardio. To maintain an updated state of the available cores in the system, Cardio relies on a

five step sequence. 1) The cores perform their normal functions. 2) Core 0, independently from any other core, executes a self-test procedure

to detect potential permanent failures. 3) If the test completes successfully, a local checkpoint of the current CPU state is taken. 4) A

diagnostic message is broadcasted to the other cores to signal that core 0 is functional. 5) Before core 0 can commit its checkpoint, it needs

to receive successful health acknowledgments from all cores that were functional in the previous execution period. Still, it can speculatively

continue its execution. 6) Finally core 0 receives the last positive health acknowledgment from core 3 and commits its previous checkpoint.4. Collect link responses 5. Update local link table1. Normal operation 2. Check router logic 6. Advertise change3. Request link check

Core 1

NI

Core 0

NI

Router 0

Link

monitor

BIST

Router 1

Link

monitor

BIST

Core 3

NI

Core 2

NI

Router 2

Link

monitor

BIST

Router 3

Link

monitor

BIST

Core 1

NI

Core 0

NI

Router 0

Link

monitor

BIST

Router 1

Link

monitor

BIST

Core 3

NI

Core 2

NI

Router 2

Link

monitor

BIST

Router 3

Link

monitor

BIST

Core 1

NI

Core 0

NI

Router 0

Link

monitor

BIST

Router 1

Link

monitor

BIST

Core 3

NI

Core 2

NI

Router 2

Link

monitor

BIST

Router 3

Link

monitor

BIST

Core 1

NI

Core 0

NI

Router 0

Link

monitor

BIST

Router 1

Link

monitor

BIST

Core 3

NI

Core 2

NI

Router 2

Link

monitor

BIST

Router 3

Link

monitor

BIST

Core 1

NI

Core 0

NI

Router 0

Link

monitor

BIST

Router 1

Link

monitor

BIST

Core 3

NI

Core 2

NI

Router 2

Link

monitor

BIST

Router 3

Link

monitor

BIST

Core 1

NI

Core 0

NI

Router 0

Link

monitor

BIST

Router 1

Link

monitor

BIST

Core 3

NI

Core 2

NI

Router 2

Link

monitor

BIST

Router 3

Link

monitor

BIST

Running

self
test

R
e
q
u
e
s
t

R
e
s
p
o
n
s
e

ID
Core: OK

West: OK

South: OK

East: Timeout

Reconfigure

network

Reconfigure

network

R
outer 0

update

Reconfigure

network

Request

Figure 4: Dynamic interconnect management in Cardio. Self-discovery and reconfiguration in the interconnect are organized in five

steps. To reduce the amount of extra traffic in the CMP, only topology changes are advertised. In the figure: 1) The NoC performs its normal

functions. 2) Router 0 pauses its execution to perform a self-test routine. 3) Since its hardware is still functional, discovery messages are

sent to all output links. 4) Router 2 replies to the request attaching, its router ID. 5) No response is received from router 1 within the deadline

imposed by the timeout, thus detecting the failed link. 6) Because of this topology change Router 0 broadcasts a diagnostic update that is

received by all connected resource managers to reconfigure the network.

1: Drain output links

2: Test Router logic through BIST

3: For each output link:

4: Send discovery request

5: For each output link until timeout

6: If discovery response received

7: Update link table

8: If link table changed

9: Broadcast updated link table

10: Resume operations

Figure 3: Router periodic test procedure. First, the online testing

algorithm on the router consists of a health check of the hardware

of the component. Then the state of the direct links between the

router and its neighbors is checked. Directly connected neighbors

that do not respond within a certain time threshold are considered

not available. Note that only changes to the local link table are

broadcast to the system.

Correct functionality of the interconnect is vital for any digital

design. Cardio can be successfully adopted in any NoC topology,

and knowledge about the interconnect is maintained by the Cardio’s

local resource managers. We propose a routing algorithm that dy-

namically discovers network topology and updates communication

routes. Two families of routing algorithms are available to dynam-

ically discover and configure an arbitrary network: link-state and

distance-vector [13]. For our on-chip dynamic discovery system,

we decided to adopt a routing algorithm inspired by link-state so-

lutions. These protocols converge more quickly and are more scal-

able than those based on distance vector, even though they are also

more complex and have larger memory footprints.

Figure 3 shows the built-in-self-test steps performed by each

router when the online testing procedure is activated. As a first step,

each network router independently pauses and performs a self-test

of its own hardware (step 2 in Figure 4). The outcome of this first

test determines if router’s hardware can operate on each input and

output link. The next step performed by the router is to dynam-

ically discover which nodes are connect at the end of each link.

Local link discovery is performed in hardware, independently for

each node in the NoC. The link monitors, local to each intercon-

nect node, are dynamically updated through a distributed discovery

routine: periodically they generate a discovery “heart beat” that is

forwarded through the interconnect to all adjacent nodes to check

link integrity, as illustrated in step 3 of Figure 4. The heartbeats

consist of a discovery request message to which recipients respond

with a discovery response and a node ID (step 4 in Figure). Col-

lecting these responses, link monitors populate a table where each

local link is associated with the ID of the node directly connected

to it (step 5 in Figure). Note that each NoC endpoint needs an extra

entry for the unique identifier of the core directly connected to it.

If, after a user-configured amount of time, a link monitor detects

that its list of directly connected nodes is missing an entry (per-

haps because communication through one link is obstructed due to

a fault), it drops all packets that were directed towards that link and

broadcasts its updated local link table to the rest of the system (step

6 in Figure 4). Due to storage and performance constraints, the

interval between interconnect checks should be at least a few thou-

sand cycles long, because of its otherwise adverse impact on sys-

tem performance, as discussed in our Section 5.3. Advertisements

about changes in a local link table signal to the general purpose

cores that the network topology was altered. Since congested links

can be detected as broken, the discovery procedure is always run on

all links, to detect those that were previously congested. This also

allows parts of the network that were previously temporarily not

operational (for example due to intermittent faults) to later mani-

fest as available.

Since network failures might cause some packets in flight to be

dropped, a retry mechanism is necessary to avoid communication

loss. Cardio tackles runtime communication failures through an ac-

knowledgment protocol: every time a message successfully reaches

its destination, the receiver notifies the sender. All interconnect

endpoints maintain hardware counters and buffer all pending com-

munications waiting for acknowledgment. These counter are incre-

mented at every cycle and trigger time-out signals. In case of time-

out, the network interface will retransmit the failed message; if the

second attempt is also unsuccessful, the cores are notified of the

problem via an exception. Acknowledgments may be sent through

specialized packets or may be piggybacked to regular data pack-

ets. The size of the acknowledgment buffers is a trade-off between

storage and performance that we evaluate in our experimental eval-

uation in Section 5.

4.3 Cardio Distributed Resource Manager
In Cardio, the distributed resource manager is in charge of moni-

toring and managing the system’s reconfigurable hardware. With

the information collected from the local hardware tests, a light-

weight software layer is able to evaluate which resources are avail-

able in the device and how to access them.

The resource managers use the information about local connec-

tions broadcasted by the link monitors to create a graph of the en-

tire interconnect. All cores in a connected region will reconstruct

the same topology: if the interconnect is partitioned into multiple

disconnected regions, each core running an instance of the Cardio

local resource manager can only reconstruct the topology of the

region to which it belongs. Given an interconnect graph, the lo-

cal resource manager computes all routing paths, thus configuring

the system to allow communication among the available hardware;

then, from the diagnostic messages sent by the individual cores,

each resource manager reconstructs the list of operational proces-

sors. Each local resource manager generates the list of the avail-

able hardware and the interconnect graph with the same algorithm.

A checksum of the two data structures can be transmitted to all

cores in the design to verify that each instance of the resource man-

ager agrees on the current state of the system. If some resource

managers disagree on the available hardware components, a fur-

ther negotiation among the components of the distributed resource

manager can be initiated.

The resource manager shares processor resources with other ap-

plications running in the system: each different instance of the re-

source manager periodically interrupts the core’s functionality to

allow the execution of hardware tests on the core. If no fault is

detected in the underlying hardware, the hardware state is check-

pointed and the manager advertises test success to all the other

cores. The manager then allows computations in the core to specu-

latively continue while it monitors for notifications about hardware

test success from other healthy cores in the system, but the next

checkpoint is not taken unless advertisements from all previously

healthy cores have been received.

Note that cores and routers advertise their state to the rest of the

system when the self-tests succeed. Based on the fault coverage

achieved by the online testing mechanism deployed for each com-

ponent, there might be the possibility that a fault causes a corrupted

component to incorrectly advertise its state as correct. The proba-

bility of such event can be arbitrarily reduced based on the quality

of the periodic tests applied to the hardware.

If a core does not successfully report as healthy at the time a new

system-level checkpoint needs to be takes, a special message is sent

to all cores in the system to rollback to the previous synchronized

checkpoint to prevent other processors from committing specula-

tive executions that could have been affected by the faulty core.

A reliability-aware operating system will then migrate the running

application to map the available resources to avoid the usage of the

faulty component. Note that if a region of the system becomes iso-

lated due to a failure in the interconnect, the checkpointed state of

the cores in that region cannot be retrieved. Solutions to recover

the memory content of isolated nodes are beyond the scope of this

paper and will be the focus of future research.

4.4 Applicability
The distributed algorithms used by Cardio and the hybrid hard-

ware/software system-level reliability solution proposed in this work

are general concepts that can be extended to various CMP architec-

tures. Cardio relies on the ability of hardware components’ broad-

cast of diagnostic messages and on point-to-point communication

to synchronize the distributed resource manager and reconfigure the

healthy modules. Finally, to ensure Cardio’s functionality, at least

one general purpose core in the design must be able to execute the

software routines needed to manage the hardware components at

runtime.

5. EXPERIMENTAL RESULTS
We developed a distributed mechanism to manage and organize

on-chip runtime faults. Our solution adds extra traffic due to the di-

agnostic messages exchanged by the self-checking hardware com-

ponents. Therefore, our experiments focus on measuring Cardio’s

impact on the system interconnect, considering a variety of topolo-

gies and workloads. We first focus on finding the optimal size of

the acknowledgment buffers at the NoC endpoints and the ideal

interconnect discovery period for the nodes constituting the inter-

connect. We then evaluate the capability of our solution to dynami-

cally overcome failures. Finally, we measure its runtime impact on

several application.

In order to examine how Cardio reacts to failures, we measure

how communication latency is affected by the occurrence and pres-

ence of hardware faults. Finally, we report the impact of our solu-

tion on interconnect performance and energy, measuring the num-

ber of extra communications exchanged in the system.

5.1 Experimental Setup
We perform our experiments using a fault-aware system-level

C++-based simulator working at the transaction-level model, where

communication details are separated from the implementation de-

tails of functional units. Functional units are modeled through

clock counters, and the interconnect implements a packet-switching

system: interconnect components are cycle-accurate at the packet

granularity (we do not consider flit-level structures). Two fault

models have been developed on the interconnect links: all packets

attempting to traverse a broken link can be dropped (drop-packets),

or the communication path can be blocked, stalling all packets at

the broken link’s source (hold-packets).

The CMP simulated in our experiments consists of 16 cores,

each connected to a dedicated network interface. We considered

four different interconnect topologies: ring, mesh, torus and cross-

bar. The system frequency is set at 2.4GHz, with five-stage routers

transferring packets up to 32 bytes in size. Packets are buffered

at every router; routers can store up to two packets at the time. In

our experimental evaluation we adopted source routing, embedding

routing information in the packet itself. Routing tables are stored

in the network interfaces and communication paths are computed

by the resource manager using the up*/down* algorithm [24].

Both uniform random traffic and traces from the SPECMPI bench-

mark suite [18] are used as input stimuli. On one hand, random

traffic ensures uniform link utilization so that packet latency and

fault impacts are not biased by traffic patterns imposed by a bench-

mark’s characteristics. On the other hand, traffic patterns from

the SPECMPI benchmarks offer a more realistic model to eval-

uate Cardio’s performance and traffic overhead. For the random

benchmarks we report the packet injection rate as the probability

that a core can inject a new packet in the network (in percentage).

For the latter benchmarks, SPECMPI applications are instrumented

through the Tuning and Analysis Utilities to obtain traces of the

communication patterns among the cores executing the applica-

tions [26]. To contain simulation time, we reduced the number of

cycles between MPI transactions, thus the performance overhead

we report for these benchmarks is worse than it would be when

running the native application in its original form.

5.2 Acknowledgment Buffer Sizing

0

1,000

2,000

3,000

4,000

0 1 2 3 4 5 6 7 8 9 10 11 12

L
at

en
cy

Injection rate

0

1,000

2,000

3,000

4,000

5,000

6,000

0 1 2 3 4 5 6 7 8 9 10 11 12

L
at

en
cy

Injection rate

0

1,000

2,000

3,000

4,000

5,000

6,000

0 1 2 3 4 5 6 7 8 9 10 11 12

L
at

en
cy

Injection rate

1.00 2.00 5.00 10.00 20.00 100.00Acknowledgment buffer size:

0

1,000

2,000

3,000

4,000

5,000

0 1 2 3 4 5 6 7 8 9 10 11 12

L
at

en
cy

Injection rate

Crossbar Mesh

TorusRing

Figure 5: Packet latency vs. injection rate for different ac-

knowledgment buffer sizes. Each curve represents a different ac-

knowledgment buffer size as indicated in the legend. Packet buffers

of size 10 provide the best trade-off between storage requirements

and packet latency for all analyzed topologies.

Cardio considers all in flight point-to-point communication to

be speculative until the sender receives a confirmation from the

receiver. Thus, each transmitted packet that is not broadcasted is

temporarily stored in an acknowledgment buffer until a confirma-

tion message is received. The goal of our first experiment is to

study the trade-off between storage and average traffic latency due

to the insertion of packet acknowledgment buffers in the network

interfaces. We evaluate several buffer sizes, ranging from 1 data

packet (that is, the network interface must receive acknowledgment

for one packet before transmitting the next), up to 100 outstand-

ing packets. No faults were injected for this experiment. Figure

4 shows the relation between the number of outstanding messages

and average packet latency. Traffic injection rate is measured as

the probability of each network interface injecting a new message

in the interconnect at any given clock cycle, while packet latency is

measured as the number of cycles from when a data packet is trans-

mitted to when it is received by the destination. We found that, for

all topologies, an acknowledgment buffer of 10 packets is a reason-

able compromise between storage requirements and packet latency.

Indeed, acknowledgment buffers of less than 10 data packets sig-

nificantly hinder the average latency, while even doubling their size

provides minimal benefits. Thus, in all subsequent experiments we

set the acknowledgment buffer to store 10 outstanding packets.

5.3 Dynamic Discovery Period
We then analyzed the amount of overhead imposed by the dis-

covery packets exchanged in the interconnect. To do so, we varied

the interconnect discovery period from 1,000 to 20,000 cycles. No

faults were enabled in this experiment and the interconnect was

subjected to a moderate amount of load: at a traffic injection rate of

5%. We selected this value because, from the data gathered in our

analyses, we observed that resource contention in the network starts

to impact packet latency at higher rates. As expected, as the period

between interconnect discoveries increases, average packet latency

decreases because to bandwidth limitations. As shown in Figure 6,

the trend is steeper for topologies such as mesh and ring, where

links are subjected to a higher baseline latency and contention.

Given the results obtained in this test, the network discovery fre-

quency for our subsequent analyses is based on three different dis-

covery periods, from a very frequent periodic test of 5,000 cycles

to a much slower discovery period of 20,000 cycles.

0

10

20

30

40

0 5,000 10,000 15,000 20,000

L
at

en
cy

Interconnect discovery period

Ring

Mesh

Torus

Crossbar

Figure 6: Packet latency vs. discovery period. The impact of the

discovery period differs for different topologies: mesh and ring are

more sensitive to variations due to a smaller network bisection.

5.4 Dynamic Fault Behavior
In this section we study the dynamic behavior of Cardio on a

mesh at the time of occurrence of a permanent fault, evaluating its

reactivity in detecting and overcoming the failure. For this experi-

ment, a system with no faults executes for 150,000 cycles to reach

a steady state, and then a link is randomly selected and marked as

faulty. Two link fault models were considered for this study: the

first causes the broken link to drop all packets traversing it (drop-

packets), while the second causes packets to stop at the link, clog-

ging the network (hold-packets). To provide insights on the dy-

namic behavior of Cardio, we analyze the system at 500-cycles in-

tervals and report, on the Y-axis, the average latency incurred by

all packets generated during each window. In this experiment we

consider discovery periods of 5,000, 10,000, and 20,000 cycles. To

stress the interconnect with a moderate amount of traffic, we set the

packet injection rate at 5%. Through native execution profiling, we

found that the time required for the distributed resource manager to

recompute the routing tables is approximately constant at 10,000

cycles. We also computed that each routing table requires 450 cy-

cles to update, representing a serial write process for 15 routes of 15

hops each, writing 2 bits per hop [17]. We began the network dis-

covery period at the time of fault injection to demonstrate the worst-

case performance of our solution. In our evaluation, we disregard

the extra traffic introduced by core diagnostic messages, since their

transmission frequency is three orders of magnitude lower than that

of the interconnect components [4].

Results from the drop-packet fault model, are reported in Figure

7.a), where we distinguish a minimum of two and a maximum of

three latency peaks, depending on the discovery period. The first

peak is caused by the occurrence of the fault, and affects all packets

that need to be re-transmitted due to the faulty link. After a certain

amount of time, directly related to the network discovery period,

Cardio detects the problem and advertises the new system’s state.

The first interconnect reconfiguration process causes the network

to temporarily stall, resulting in the second peak observable in the

graph. The third peak observable in the graph is caused by a sec-

ond system reconfiguration, triggered by nodes connected through

a faulty link that may detect the problem at different times.

0

500

1,000

1,500

2,000

2,500

3,000

140,000 150,000 160,000 170,000 180,000 190,000

L
at

en
cy

Cycles

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

140,000 150,000 160,000 170,000 180,000 190,000

L
at

en
cy

Cycles

a) b)

20,0005,000 10,000Discovery period [cycles]:

Figure 7: Effect of a runtime fault on a link. This graph plots the

average time necessary for a packet to reach its destination; packet

latency is averaged between all packets generated in a window of

500 cycles. In this scenarios the link is broken at cycle 150,000 and

two fault models are considered: a) drop-packet; b) hold-packet.

We then analyze the behavior under the hold-packets fault model.

The impact under this model is more dramatic: a fault’s effect is

not limited to packets in transit between two nodes, but quickly

propagates to a vast portion of the CMP, as shown by the much

higher and longer average latency experienced. Indeed, the fault

causes congestion among several nodes: the buffers at the nodes

connected through the broken link fill up and cause a domino effect

back to their neighbors and to the rest of the network. As reported

in Figure 7.b), the longer the system takes to detect and address the

fault, the more dramatic the fault’s effects on the overall system.

5.5 Performance and Traffic Impact
We then study the impact of our solution on interconnect per-

formance and communication overhead. For this last study we re-

port the extra execution time experienced when running SPECMPI

benchmarks and the percentage of extra packets that must be trans-

mitted for diagnostic purposes. During this experiment all topolo-

gies are fault-free. We show in Figure 8.a) that, for most bench-

marks, the performance impact, even for very frequent discovery

intervals is lower than 3% and almost uniform over all topologies.

We report a very high performance impact of our solution on the

104.milc benchmark for the mesh topology. This is because each

core in that benchmark relies on very frequent and long data trans-

fers with a single thread, mapped to the core on the top left cor-

ner of the mesh, which can access less bandwidth than the central

nodes. The performance impact measured in this scenario is then

particularly pessimistic.

Figure 8.b) shows the percentage of extra traffic introduced by

our system. This graph also shows a rough estimate of the energy

Crossbar Mesh Ring Torus8.4% 8.8%

Crossbar Mesh Ring Torus

0

5

10

15

20

25

10
4.

m
ilc

10
7.

le
sl

ie
3d

12
2.

ta
ch

yo
n

12
6.

la
m

m
p

s

12
8.

G
A

P
g

eo
fe

m

13
2.

ze
u

sm
p

2

13
7.

lu

10
4.

m
ilc

10
7.

le
sl

ie
3d

12
2.

ta
ch

yo
n

12
6.

la
m

m
p

s

12
8.

G
A

P
g

eo
fe

m

13
2.

ze
u

sm
p

2

13
7.

lu

10
4.

m
ilc

10
7.

le
sl

ie
3d

12
2.

ta
ch

yo
n

12
6.

la
m

m
p

s

12
8.

G
A

P
g

eo
fe

m

13
2.

ze
u

sm
p

2

13
7.

lu

10
4.

m
ilc

10
7.

le
sl

ie
3d

12
2.

ta
ch

yo
n

12
6.

la
m

m
p

s

12
8.

G
A

P
g

eo
fe

m

13
2.

ze
u

sm
p

2

13
7.

lu

Tr
af

fi
c

o
ve

rh
ea

d
 (

%
)

Benchmark

Discovery Period 20000 Discovery Period 10000 Discovery Period 5000Discovery period 20,000 Discovery period 5,000Discovery period 10,000

0

1

2

3

4

5

10
4.

m
ilc

10
7.

le
sl

ie
3d

12
2.

ta
ch

yo
n

12
6.

la
m

m
p

s

12
8.

G
A

P
g

eo
fe

m

13
2.

ze
u

sm
p

2

13
7.

lu

10
4.

m
ilc

10
7.

le
sl

ie
3d

12
2.

ta
ch

yo
n

12
6.

la
m

m
p

s

12
8.

G
A

P
g

eo
fe

m

13
2.

ze
u

sm
p

2

13
7.

lu

10
4.

m
ilc

10
7.

le
sl

ie
3d

12
2.

ta
ch

yo
n

12
6.

la
m

m
p

s

12
8.

G
A

P
g

eo
fe

m

13
2.

ze
u

sm
p

2

13
7.

lu

10
4.

m
ilc

10
7.

le
sl

ie
3d

12
2.

ta
ch

yo
n

12
6.

la
m

m
p

s

12
8.

G
A

P
g

eo
fe

m

13
2.

ze
u

sm
p

2

13
7.

lu

P
er

fo
rm

an
ce

 o
ve

rh
ea

d
 (

%
)

Benchmark

Figure 8: Performance impact and extra traffic (measured

in message*hop) due to interconnect discovery on SPECMPI

benchmarks. a) The performance impact for the considered appli-

cations is limited for most benchmarks (3%) and almost uniform

over the 4 topologies. b) For most applications and topologies the

extra communication is very limited (5% on average), and both ap-

plication behavior and topology impact the traffic overhead.

overhead caused by Cardio in terms of number of extra messages

transmitted and received for each benchmark. For most bench-

marks and topologies, the number of extra packets due to Cardio’s

diagnostic messages is less than 10%, and it varies greatly based

on the benchmark considered. The impact of discovery messages

in the system is higher for applications with little inter-core com-

munication (such as 126.lammps and 128.GAPgeofem).

Other solutions for reliable interconnect, such as Immunet and

Vicis, have no performance impact during fault-free operations,

but they impose much larger silicon area overhead. Immunet re-

quires three different routing table per node [23], while the over-

head for Vicis is more than 40% of the design’s baseline area [9].

Furthermore, Cardio provides global knowledge of hardware state

to a middleware layer, thus enabling the development of tunable

system level policies for hardware reliability.

5.6 Area Overhead
Compared to a typical CMP system with precomputed routing

tables, Cardio requires the addition of a few hardware components

throughout the interconnect. Considering the baseline design used

in our evaluation, each network interface must to be enhanced with

10 buffers (Section 5.2) of 32 bytes each (size of 1 packet). In

addition, we require 10 counters associated with the buffers to track

timeouts, and each counter should be 20 bits wide to allow for a

wide range of timeout values. Thus, the total storage overhead for

each network interface is 345 bytes. Note that this latter overhead

is common to all solution that need to recover messages that might

be in flight when a fault occurs.

Moreover, the total storage requirements at each router is 6 bytes.

Logic for handling the dynamic discovery protocol and reconfigur-

ing the routing tables is also required. For comparison, each router

in Immunet demands 28 bytes of additional storage. With larger in-

terconnects both these trends grow linearly, so the benefits of Car-

dio are even more marked.

6. CONCLUSIONS
In this work we presented Cardio, a novel architecture hard-

ware/software architecture to manage reliability in complex CMP

systems. Cardio is a system-level solution based on periodic ex-

changes of diagnostic messages among system’s components to

maintain coherent knowledge of hardware health among all its com-

ponents. We evaluated Cardio on a custom, fault-aware simulator

for chip multiprocessors and studied the dynamic capability of Car-

dio to overcome permanent faults, showing that its reconfiguration

time is comprised between 20,000 and 50,000 cycles. Finally, we

showed that Cardio has a very low impact on performance (3%)

and introduces minimal additional traffic (5%) during normal sys-

tem operation. The additional storage required by Cardio in a 4x4

mesh CMP is only 345 bytes for each network interface and 6 bytes

for each router.

7. REFERENCES
[1] M. Al Faruque, T. Ebi, and J. Henkel. Configurable links for

runtime adaptive on-chip communication. In Proc. of the

Design, Automation and Test in Europe Conference, Apr

2009.

[2] J. Becker, K. Bra̋ndle, U. Brinkschulte, J. Henkel, W. Karl,

T. Kőster, M. Wenz, and H. Wőrn. Digital on-demand

computing organism for real-time systems. In International

Conference on Architecture of Computing Systems, Mar

2006.

[3] T. Bressoud and F. Schneider. Hypervisor-based fault

tolerance. In Proc. of the Symposium on Operating Systems

Principles, Dec 1995.

[4] K. Constantinides, J. Blome, S. Plaza, B. Zhang, V. Bertacco,

S. Mahlke, T. Austin, and M. Orshansky. BulletProof: a

defect-tolerant CMP switch architecture. In Proc. of the

International Symposium on High-Performance Computer

Architecture, Feb. 2006.

[5] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco.

Software-based defect tolerance for chip-multiprocessors. In

Proc. of the International Symposium on Microarchitecture,

Dec. 2007.

[6] K. Constantinides, S. Shyam, S. Phadke, V. Bertacco, and

T. Austin. Ultra low-cost defect protection for

microprocessor pipelines. In Proc. of the International

Conference on Architectural Support for Programming

Languages and Operating Systems, Oct. 2006.

[7] T. Dumitras and R. Marculescu. On-chip stochastic

communication. In Proc. of the Design, Automation and Test

in Europe Conference, Mar 2003.

[8] T. Ebi, M. Al Faruque, and J. Henkel. Neuronoc: neural

network inspired runtime adaptation for an on-chip

communication architecture. In Proc. of the conference on

hardware/software codesign and system synthesis, Oct 2010.

[9] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and

D. Sylvester. Vicis: a reliable network for unreliable silicon.

In Proc. of the Design Automation Conference, Jul 2009.

[10] S. Gupta, S. Feng, A. Ansari, B. Jason, and S. Mahlke. The

stagenet fabric for constructing resilient multicore systems.

In Proc. of the International Symposium on

Microarchitecture, Dec 2008.

[11] J. Howard and et al. A 48-core IA-32 message-passing

processor with DVFS in 45nm CMOS. In Proc. of the

Solid-State Circuits Conference, Feb 2010.

[12] J. O. Kephart and D. M. Chess. The vision of autonomic

computing. IEEE Computer, Jan 2003.

[13] J. F. Kurose and K. W. Ross. Computer Networking: A

Top-Down Approach. Addison-Wesley Publishing Company,

USA, 5th edition, 2009.

[14] L. Lamport, R. Shostak, and M. Pease. The byzantine

generals problem. ACM Transactions on Programming

Languages and Systems, Jul 1982.

[15] Y. Li, M. Samy, and S. Mitra. CASP: Concurrent

autonomous chip self-test using stored test patterns. In Proc.

of the Design, Automation and Test in Europe Conference,

Mar 2008.

[16] G. Lipsa and A. Herkersdorf. Towards a framework and a

design methodology for autonomic SoC. In Proc. of the

International Conference on Autonomic Computing, Jun

2005.

[17] I. Loi, F. Angiolini, and L. Benini. Synthesis of

low-overhead configurable source routing tables for network

interfaces. In Proc. of the Design, Automation and Test in

Europe Conference, Apr 2009.

[18] M. S. Muller, K. Kalyanasundaram, G. Gaertner, W. Jones,

R. Eigenmann, R. Lieberman, M. V. Waveren, and

B. Whitney. SPEC HPG benchmarks for high-performance

systems. International Journal of High Performance

Computing and Networking, Jan 2004.

[19] E. Musoll. Mesh-based many-core performance under

process variations: a core yield perspective. ACM SIGARCH

Computer Architecture News, Sep 2009.

[20] A. Pellegrini and V. Bertacco. Application-Aware diagnosis

of runtime hardware faults. In Proc. of the International

Conference on Computer-Aided Design, Oct 2010.

[21] A. Pellegrini, V. Bertacco, and T. Austin. Fault-based attack

of RSA authentication. In Proc. of the Design, Automation

and Test in Europe Conference, Mar 2010.

[22] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive:

cost-effective architectural support for rollback recovery in

shared-memory multiprocessors. In Proc. of the International

Symposium on Computer Architecture, May 2002.

[23] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide.

Immunet: A cheap and robust fault-tolerant packet routing

mechanism. ACM SIGARCH Computer Architecture News,

Mar 2004.

[24] M. Schroeder, A. Birrell, M. Burrows, H. Murray,

R. Needham, T. Rodeheffer, E. Satterthwaite, and

C. Thacker. Autonet: a high-speed, self-configuring local

area network using point-to-point links. IEEE Journal on

Selected Areas in Communications, Oct 1991.

[25] C. Schuck, S. Lamparth, and J. Becker. artNoC - a novel

multi-functional router architecture for organic computing.

In International Conference on Field Programmable Logic

and Applications, Aug 2007.

[26] S. Shende and A. Malony. The Tau parallel performance

system. International Journal of High Performance

Computing Applications, May 2006.

[27] D. Sorin, M. Martin, M. Hill, and D. Wood. SafetyNet:

improving the availability of shared memory multiprocessors

with global checkpoint/recovery. In Proc. of the International

Symposium on Computer Architecture, May 2002.

[28] A. Strong, E. Wu, R.-P. Vollertsen, J. Sune, G. LaRosa, and

T. Sullivan. Reliability Wearout Mechanisms in Advanced

CMOS Technologies. Wiley Press, 2009.

[29] P. Zajac, J. Collet, and A. Napieralski. Self-configuration and

reachability metrics in massively defective multiport chips.

In Proc. of the International On-Line Testing Symposium, Jul

2008.

