
ApplicationAware Diagnosis of Runtime Hardware Faults

Andrea Pellegrini and Valeria Bertacco
University of Michigan

{apellegrini, valeria}@umich.edu

ABSTRACT

Extreme technology scaling in silicon devices drastically affects re-

liability, particularly because of runtime failures induced by transis-

tor wearout. Currently available online testing mechanisms focus

on testing all components in the microprocessor, including hard-

ware modules that have not been exercised, and thus have high per-

formance penalties.

We propose a hybrid hardware/software online testing solution

where components that are heavily utilized by the software appli-

cation are tested more thoroughly and frequently. Thus, our online

testing approach focuses on the processor units that most affect ap-

plication correctness, and it achieves high coverage while incurring

minimal performance overhead. We also introduce a new metric,

Application-Aware Fault Coverage, representing test’s capability

to detect faults that might have corrupted the state or the output

of an application. Test coverage is further improved through the

insertion of observation points that augment the coverage of the

testing system. By evaluating our technique on a Sun OpenSPARC

T1, we show that our solution maintains high Application-Aware

Fault Coverage while reducing the performance overhead required

for online testing more than twice compared to previous solutions

oblivious to application behavior. In detail, we found that our solu-

tion can achieve 95% fault coverage while maintaining a minimal

(1.3%) performance overhead and (0.4%) area impact.

1. INTRODUCTION
Continued improvements in semiconductor fabrication technol-

ogy have enabled the manufacturing of microchips comprised of

billions of transistors. While such integration promises major ad-

vantages in terms of cost and performance, industry experts have

raised concerns that it will come at the expense of transistor robust-

ness [5, 6].

Reliability issues may be triggered by a wide range of causes:

manufacturing problems such as optical proximity effects and pro-

cessing material defects, component infant mortality, and transistor

failures at runtime. Among these, runtime failures are the most con-

cerning because they require expensive equipment replacements or,

if undetected, may silently corrupt a computation. Several causes

may lead to permanent hardware defects at runtime [27] including

oxide breakdown [18], hot carrier injection [23], negative bias tem-

perature instability [24], and electromigration [14]. The problem

is further exacerbated by aggressive mainstream testing techniques

such as burn-in [27], where devices are operated in a high temper-

ature and voltage environment to accelerate the failure of weaker

transistors. This reduces the number of system failures due to in-

fant mortality, but impacts all transistors in a device, shortening

their expected lifetime.

The impact of transistor failures on microprocessors have been

detailed in the literature [10, 26]. Faults in current computer sys-

tems heavily affect the reliability of data centers as recently re-

ported by Google [25]. Furthermore, a study from CERN revealed

that thousands of files in their data centers where corrupted by

faults that escaped hardware error detection and correction mecha-

nisms [19]. In most situations hardware faults are known to cause

disruptive software behavior [12] and often corrupt computation

without providing any warning signs. Faults that cause silent alter-

ations to the state or to the output of software applications are par-

ticularly concerning. For instance, silent data corruptions that lead

system outputs to diverge from the expected results may cause fi-

nancial losses or even have safety impacts. Since programs trust the

underlying hardware to correctly execute instructions, software de-

velopers rarely handle unexpected events such as hardware faults,

even for widely adopted, sensitive applications such as cryptographic

routines. However, the effects on these applications can be dra-

matic when hardware infallibility is questioned, as shown in [21].

As transistors’ size decreases with technology, expected fault rates

are projected to increase drastically, causing worrisome concerns

the correctness of computation by any computer system.

Traditionally, multiple modular redundancy has been adopted

for mission critical systems, but the cost of this solution is pro-

hibitive for most commercial applications. More recently, several

researchers have proposed a different, more cost-efficient approach

that does not rely on computation redundancy but, instead, assumes

that the work performed on a processor cannot be trusted until the

integrity of the underlying hardware is confirmed. Computations

are then partitioned in epochs and normal execution is periodically

suspended to execute tests on the microprocessor [8]. Periodic test-

ing of microprocessor’s can be accomplished through the addition

of ad-hoc hardware testing components [8, 15] and/or through the

execution of high-quality software test sequences [7, 13]. Even if

effective at detecting faults, the execution of online tests is a time

consuming task and results in a performance reduction up to 30%

[7]. Independently from their implementation, all current online

testing techniques focus on maximizing the portion of the silicon

area where faults can be detected, striving to provide high fault

coverage throughout the entire device.

This work proposes a novel approach on online testing of mi-

croprocessors, emphasizing application sensitivity to runtime hard-

ware faults.

1.1 Contributions
This work provides an adaptive fault detection framework for

periodic on-line testing with high coverage, low performance over-

head, and near-zero area cost. Our solution can diagnose perma-

nent faults in microprocessors at runtime. We make the following

contributions:

• We propose a framework that dynamically tunes a test to

focus on the hardware units that a software application

exercised. As a result, we can limit testing overhead without

compromising test quality. Since our technique tunes tests

to the application, it provides close and careful monitoring

of units that, if faulty, might have corrupted the state or the

outputs of the software.

• We rely on a hybrid hardware/software solution to deliver

this online approach. Software tests are run to check the in-

tegrity of the underlying hardware; the fault coverage pro-

vided by the tests is improved through the insertion of hard-

ware observation points used to collect additional informa-

tion on the outcome of the tests. The hardware integrity is

checked through the execution of software routines, enabling

high fault coverage without any hardware support. Extra

observation nodes are inserted in the microprocessor logic

and yield a significant increase in test coverage for hard-to-

observe components at the price of very little area overhead,

• We propose a new metric called Application-Aware Fault

Coverage (AFC) to measure the quality of a test with re-

gards to the dynamic usage of the underlying hardware. Most

software applications only leverage a portion of the system’s

hardware components for their execution, so it makes sense

for online test solutions to focus only on these relevant units.

AFC takes into account the dynamic usage of hardware units,

thus evaluating the effective fault protection that the user ex-

periences.

We evaluated test quality, performance overhead, and area im-

pact of our diagnosis mechanism on a microprocessor based on a

OpenSPARC T1 core [28]. We found that the area overhead of our

design is negligible (approximately 0.8%), and can provide very

high Application-Aware Fault Coverage (95.5%) with extremely

low runtime overhead (only 1.3% slowdown). Additionally, to the

best of our knowledge, we are the first to analyze and detail the

fault coverage achievable by software testing on a multi-threaded

microprocessor.

In the reminder of the paper, we first introduce our proposed dy-

namic coverage metric, called Application-Aware Fault Coverage

(AFC). We then overview the architecture of our testing framework

and discuss in detail its dynamic software test selection and hard-

ware mechanisms. We evaluate the framework for its fault protec-

tion capabilities, performance and area impact. Then we compare

our solution against previous works and conclude discussing future

research directions.

2. RELATED WORK
Classic runtime testing techniques focus on achieving a high

overall area fault coverage on the microprocessor, regardless of its

utilization. In these solutions a constant runtime overhead is in-

curred to apply the tests at regular intervals.

Hardware-based detection mechanisms insert extra microarchi-

tectural features in order to detect faulty transistors on the chip. For

example, Costantinides, et al. , [8] and Mehrara, et al. , [15] pro-

pose embedding Built-In-Self-Test units and checkers to test the

integrity of VLIW microprocessors. These hardware additions ac-

count for a significant area overhead, 5.8% and 14%, respectively,

and provide limited coverage against permanent faults (89% and

95%). Structural testing has recently been proposed as a viable

way to perform runtime fault detection [7, 13]. Structural test-

ing is able to achieve the highest fault coverage in digital systems.

However, its area and performance overhead limits its viability for

online reliability schemes. Structural testing requires significant

area overhead, approximately 5%, to implement the logic neces-

sary to dynamically load and unload scan chains in the micropro-

cessor. Processor down time for these testing mechanisms can be

extremely high, up to few seconds for the solution proposed in

[13]. Software-based hardware integrity checks utilize software

routines achieving high fault coverage with no hardware additions

[4, 22]. Their focus is to achieve an elevated fault coverage across

all structures of the CPU, which poses a significant test overhead,

regardless of the dynamic usage and health of the processor. How-

ever, our hybrid solution takes advantage of the low cost of soft-

ware testing, but improves its test quality through the addition of

extra observation points. Gupta, et al. [9] suggested tuning the ex-

ecution of software-based hardware routines based on the health of

the silicon elements within the processor. Hardware health is es-

timated only through in-situ oxide breakdown and NBTI sensors

spread throughout the silicon, occupying an overall area of about

2.6% [11]. Based on the information collected from the sensors,

their solution strives to test weaker units for longer periods of time.

Gupta, et al. focus only on a single type silicon defect: extending

their approach to handle other sources of silicon degradation re-

quires the development and the deployment of specialized sensors.

All these solutions are oblivious to application behavior; our hy-

brid solution, in contrast, proposes to monitor the utilization of pro-

cessor’s structures. By doing so, we can tune our tests to specifi-

cally target those structures that have been subjected to high activ-

ity, and thus have a higher risk of corrupting the application. As

a result, we can deliver high confidence that faults that corrupt the

application will be detected.

40%

50%

60%

70%

80%

90%

100%

FPU

Load/Store Branch/Call

Branch/Call

Load/Store

0%

10%

20%

30%

40%

Millions of Instructions

ALU/Shifter

Branch/Call

Figure 1: Dynamic instructions in theNASFTbenchmark. This
application solves differential equations using Fourier transforms.
The figure shows the type of dynamic instructions executed over a
window of of 2 billion instructions and their distribution by type.
The goal of our adaptive diagnosis mechanism is to test only those
units that have been activated during the software execution interval
preceding the test.

3. APPLICATIONAWARE FAULT

COVERAGE
The quality of fault detection tests has traditionally been mea-

sured by the fraction of transistors in the systems for which a failure

would be detected by a given test.

However, we note that the usage of different functional units by a

software application varies greatly during execution. Consequently,

the fault locations that might corrupt the state or the outputs of

an application tend to change over time. For example, Figure 1

shows the type of dynamic instructions executed over a window

of 2 billion instructions by a scientific benchmark application, Fast

Fourier Transform from the NAS suite. Note that the execution is

characterized by long phases where instructions requiring only a

portion of the hardware units are being executed. These patterns

of utilization are not unique to this benchmark, but are common to

most applications.

Researchers have shown that applications are only susceptible

to faults that occur in the hardware units contributing to the com-

putation of the program’s outcome [12, 16]. Thus, since software

leverages different components at different times of the execution,

the hardware units for which fault detection is relevant, for the sake

of correct software computation, also change over time.

This metric is inspired by software testing techniques such as op-

erational profile [17] and PathScore [2]. In these works, the code

is profiled at design time and the software functions that are of-

ten executed by users are determined. Testing and debugging is

then dictated by the results of these analyses such that more thor-

ough tests are performed on the portions of the code that are highly

stressed by a users’ population. This approach is very powerful and

widely adopted in the software industry due to its high benefit-to-

cost ratio. Online hardware testing, on the other hand, is typically

ignorant of customers’s usage of the hardware components and thus

targets high area coverage across the entire system.

To evaluate fault coverage in the context of an application’s dy-

namic behavior, we introduce a new metric, called Application-

Aware Fault Coverage - AFC. AFC measures the quality of a test

with respect to its ability to detect a fault in hardware units that the

application exercised. For instance, if an application only uses the

integer pipeline of the processor, a test that detects faults occurring

exclusively in the floating point unit (FPU) would provide an AFC

of 0%. If an application were to use the FPU during half of its ex-

ecution cycles, a test that exclusively provides 80% coverage over

the FPU unit’s transistors would have an AFC of 40%. In other

words, instead of measuring the fraction of transistors that a test

covers, AFC measures the likelihood of detecting a hardware fault

that might have corrupted the software computation.

In the presentation below, we first analyze the relevance of a fail-

ure manifesting at the transistor level, the hardware unit level, and

the chip level. We then consider the area fault coverage provided

by a given test to define the AFC metric.

Let Pf represent the probability of a single transistor failing

when it switches. Then the probability of that transistor not fail-

ing is 1−Pf . We call the number of switching events between two

testing intervals s, so the probability of a transistor not failing after
s switching events is (1 − Pf)

s, and the probability that the same

transistor fails within s switching events is 1− (1− Pf)
s.

Consider then a hardware unit comprising n transistors and, for

sake of simplicity, assume that they are all subject to the same

switching activity. Assuming that the probabilies of two transistors

failing are independent from each other, then the probability that at

least one error has occurred in the unit after s switching activities

is 1 − (1 − Pf)
sn. By applying the Taylor binomial expansion to

this expression, we obtain:

1 − (1 − Pf)
sn = snPf +

(

sn

2

)

P 2

f − · · ·

If Pf is negligible when compared to s and n, the expression

above can be approximated with snPf . This is the case in all prac-

tical situations because the probability of a transistor failure due to

a single switching event is extremely low. For example, if a 5GHz

processor composed of 10 billion transistors has a Mean Time Be-

tween Failures of one day, and a hardware test is triggered every

second, the value 1/Pf is 5 orders of magnitude greater than the

product sn. For a conservative assumption, we consider that all

transistors switch as often as the one that switches the most.

At the chip level, a processor is composed of i units. We assume

a negligible probability of having two faults manifesting in the pro-

cessor in the time frame delimited by two subsequent tests. Then

the total probability of a chip incurring in a fault is given by the

sum of the individual probabilities that any of its modules incurred

in a fault:

P (chip fails) ≈
∑

i

siniPf

Finally, we must take into account the ability of a test to detect

these faults. Assuming that a test covers a fraction ci of the tran-

sistors in each module i, the probability that it can detect a fault is:
∑

i
(siniciPf). We therefore define Application-Aware Fault Cov-

erage of the test to be the ratio between faults that can be detected

by the test and all possible occurring faults. Because Pf is common

to all terms, it can be removed from the expression, yielding:

AFC =

∑

i
(sinici)

∑

i
(sini)

Note that our AFC metric takes into account usage of hardware

modules due to a particular workload. For example, assume that

a simple processor consists of only two modules that occupy the

same area on the chip: an integer pipeline and a floating point unit;

and consider two tests: one achieves 90% fault coverage over the

entire processor area, while the other provides 95% coverage for

the integer pipeline and 65% for the floating point unit. If we com-

pare the two tests in terms of fault coverage of the silicon area,

the latter provides significantly lower coverage (80%) than the for-

mer. However, if an application does not utilize the floating point

unit, we attain much better protection from the second test. Taking

the dynamic behavior into account, our AFC metric reports a 90%

coverage for the first test, against a 95% for the second. We use

the AFC metric in this work to evaluate the effectiveness of tests

in protecting a system against failures that can affect a software

application running on the system.

4. APPLICATIONAWARE DIAGNOSIS
Our diagnosis framework takes advantage of dynamic program

behavior to reduce the overhead required for periodic testing with-

out affecting AFC. Classic online testing technologies invest sig-

nificant effort to thoroughly test all components of a processor. In

contrast we propose to constantly monitor the activity of all func-

tional units of the CPU and test only those contributing to the out-

come of the user’s application. With reference to Figure 1, note

how the FPU is used steadily in the first part of the benchmark’s

execution, while the last portion only exercises the integer pipeline.

Correspondingly, a test that optimizes performance without affect-

ing AFC would invest time to check the FPU unit during the first

part of the benchmark’s execution, but would only focus on the in-

teger pipeline in the last portion.

Application utilization of the hardware is assessed through hard-

ware counters, called activity monitors. An activity monitor is

associated to each functional unit in the processor. Every time

an instruction exercises a particular functional unit the associated

counter is incremented. To characterize the dynamic behavior of

the application the activity monitors are reset at the beginning of

every epoch. At the end of the epoch, our proposed framework

evaluates the values of the activity monitors to decide which hard-

ware needs to be tested. To optimize the overhead imposed by our

detection mechanism, we develop a fully-adaptive framework, so

that unit-focused tests are triggered on demand. Specifically, dur-

ing each testing phase, we execute several test routines, each exer-

cising a specific unit that was utilized during the last execution in-

terval of the software application. Units which did not experience

utilization, based on the information from the activity monitors, are

not tested since they would not improve the test’s AFC.

This approach is beneficial for two reasons. First, the units that

have been exercised by the application, and might have corrupted

it if faulty, are closely monitored. Second, test length is reduced

by skipping tests of unused components, thus improving user’s ex-

perience. Indeed, a fault occurring in one of those units would not

affect the correctness of the computation of the software applica-

tion running in the system.

To further boost fault coverage in hard-to-test units we increase

design observability by adding dedicated observation points. En-

hancing the system with observation points does not impact perfo-

mance and requires very limited hardware additions. Since data

from the observation points is collected only during the testing

phase, they are transparent to software applications.

With our integrated approach, we can expose the vast majority of

microprocessor’s faults and, in particular, the ones an application

is most sensitive to, without incurring the high cost of traditional

testing mechanisms such as BIST and scan-chains.

4.1 Software Tests
In the hardware testing community, it is recognized that software-

based fault testing can be a very effective way to expose the major-

ity of faults in a processor design [22]. In our framework, we chose

to use the software regression suite developed for the functional

verification of the processor under study, since this software strives

to check all, or most, corner cases of the system’s behavior.

From this suite, we want to select several test subsets, one for

each hardware unit. Each subset should comprise the most ef-

fective tests in detecting faults for a given unit. We accomplish

this goal by formulating an integer linear programming (ILP) prob-

lem, such that the solution of this problem provides the set of tests

we are seeking. To start this process, we partition the processor

into several functional units and create an ILP problem for each of

them. For instance, for the processor considered in our experimen-

tal evaluation, we partitioned the design in five separate units: inte-

ger pipeline, divider, multiplier, floating point frontend, and stream

processing unit.

A fault coverage matrix is built from the outcome of the software

tests. Coefficients in the matrix specify which fault locations are

exposed by each test (Figure 2.a). From the fault coverage matrix,

the constraints for the ILP problem are generated (Figure 2.b). A

binary variable is associated with every test (ti) and fault location

(fj) and one inequality is added for each possible fault location.

The binary variable that represents a test i, ti, is set to one if and

only if the associated test is selected for execution. A variable as-

sociated with a fault location j, fj , is greater than zero only if the

fault is exposed by at least one of the test that will be executed.

Since the integer pipeline is active all the time while the system

is operational, the corresponding test is selected for each testing

session. As a result, this test has the most impact on test execution

time. Therefore, we set a hard constraint on its time budget. In

contrast, for all other units, test time is less critical since they are

triggered only occasionally. For those, high coverage becomes the

most relevant parameter. Below we present the specific aspects of

the two problem setups.

Integer pipeline test. For this test, we add a hard constraint to

the ILP problem instance so that the total execution time of the

tests selected is below a pre-determined threshold. This choice is

driven by the frequent use of this test, and its consequent high im-

pact on overall performance. In addition, the objective function of

the ILP instance is to maximize fault coverage, that is, to maximize

the number of distinct faults covered by the execution of the tests

(Figure 2.c).

Module directed tests. For the other functional units, the primary

goal is to achieve high coverage. A specific modular test is devel-

oped for each complex module in the microprocessor not already

covered by the integer pipeline test. The ILP problem setup is sim-

ilar; however we do not set a hard constraint on the execution time

of the test suite. Instead, we add a constraint requiring that cover-

age is above a specified threshold (Figure 2.c).

The ILP problem for the integer pipeline in a complex processor

Constraint inequalities:

t1 + t2 ≥ f0
t0 + t1 ≥ f1
t0 + t2 ≥ f2
t2 + t4 ≥ f3
t0 + t3 + t4 ≥ f4
t1 + t4 ≥ f5

F0 F1 F2 F3 F4 F5 Cost

T
0

0 1 1 0 1 0 c
0

T
1

1 1 0 0 0 1 c
1

T
2

1 0 1 1 0 0 c
2

T
3

0 0 0 0 1 0 c
3

T
4

0 0 0 1 1 1 c
4

Fault locations

T
es

ts

ti =
1, if Ti (0≤ i ≤4) is selected

0, otherwise

fj =

1, if one of more tests

exposes Fj (0≤ j ≤5)

0, otherwise

Additional constraint Goal

Integer Pipeline ∑itici ≤ test time budget Max(∑jfj)

a)

b)

Module Directed ∑jfj ≥ target fault coverage Min(∑itici)

c)

Figure 2: Formulation of the ILP problems to select the subset
of tests to execute at runtime. a. Example fault coverage matrix
is build: a nonzero coefficient at location (i, j) indicates that the
ith test exposes the jth fault. The last column indicates cost in
execution cycles of a test. b. Constraints derived from the fault
coverage matrix. c. Additional constraints and goals for the two
ILP problems.

such as the OpenSPARC T1 consists of more than 300,000 fault

locations, over 850 tests, and occupies more than 2GB of memory

when stored in a file system. A commercial ILP solver spends be-

tween 2 and 40 hours to find a solution to the problem and peaks

at 30GB of memory usage. The solution of the ILP problems must

only be computed once when the microprocessor is designed.

4.2 Hardware Activity Monitors
To track switching activity in the various units we utilize activity

monitors. These consist of counters associated with each complex

unit in the microprocessor’s architecture. Each activity monitor

oversees a processor’s functional module, and a counter is incre-

mented every time the corresponding module is subject to switch-

ing activity. The counters are reset after each hardware integrity

check (testing phase). In practice, module utilization can be ap-

proximated by analyzing the instruction flow: in our solution, we

use a dedicated controller, which observes each instruction entering

the processor’s decoder stage and increments appropriate counters

based on which units a given instruction exercises. The activity

monitors are embedded in the processor’s hardware, as shown in

Figure 3. We envision that software routines evaluating the need of

triggering a unit test can access their value.

Functional unit testing can be triggered when the functional unit’s

utilization rises above a preset threshold. In our framework, we en-

vision that users, or the operating system could configure the de-

sired trigger thresholds dynamically, in order to trade-off perfor-

mance overhead with AFC.

4.3 Microprocessor Observability Extensions

Floating

Point Unit
DividerMultiplier

Instruction

Fetch
ExecutionDecoder

Write

Back
Memory

activity

controller

Stream

Processing
activity

monitor

activity

monitor

activity

monitor

activity

monitor

activity

monitor

to
 a
ct
iv
ity

m
on
ito
rs

activity controller

op
co
de

unit
Exe
Exe
Exe Mul
Exe Div

instr
ALU
branch
MUL
DIV

decoder

counterreset
(= test_end)

0 1testing

activity monitor

from_ctrl

Figure 3: Activity monitors track the use of each processor’s
units so that tests can be adapted to target those activated during
the last execution interval, and could thus affect the correctness of
the computation if faulty. Monitors’ counters are incremented by a
controller based on the instruction flow at the decoder stage of the
processor, and are reset at the beginning of each execution interval.

To boost the coverage provided by the test routines we augment

the processor’s logic with observability monitors. Indeed, faults not

detected during a test can be classified as either non-controllable or

non-observable. Non-controllable faults lay in logic paths that are

not exercised by testing. Usually they correspond to nodes that are

stimulated only by rare events not controllable through determinis-

tic software programs, such as external interrupts and error condi-

tions. Non-observable faults correspond, instead, to internal nodes

that toggle during the test, but whose eventual failure does not man-

ifest in test’s outcome. Longer, more accurate software tests might

be able to expose these faults at the price of higher runtime over-

head.

We selected tests capable of controlling the vast majority of fault

locations in the design, but the effects of some faults is masked by

other logic elements. By analyzing these non-observable fault lo-

cations in the gate-level netlist of the processor, we found that they

are often grouped in cones of logic. Thus, we added observability

monitors at the output of these cones so that a single monitor could

provide observability for several internal nodes.

To reduce the amount of signals to monitor, we developed a sim-

ple compression circuit consisting of a parity detector. Several

observation points are fed to the parity detector and its output is

connected to a counter, so that each time the parity signal is as-

serted, the value of the counter is incremented. The value stored in

the counter is reset before the online testing routines are executed.

After the test completes, the counter value is read and compared

against a reference value: the test is considered successful only

if the difference between these two values is within an acceptable

range (%10). Counter value variations inferior to that threshold are

considered acceptable because of the variation in events common

during different executions of a same test in a complex processor

system. In contrast, by experimental evaluation, we noted that the

occurrence of a fault causes a significant difference in the values

stored in these counters (greater than 10%). Figure 4 shows how

the observation points are connectted to the parity detectors and to

the counters.

5. EVALUATION
We evaluated the quality of our solution on a Sun’s OpenSPARC

T1 processor [28] and compared against traditional non-adaptive

testing in terms of performance overhead, fault coverage, AFC, and

parity checkers

processor unit

observability

points

from activity
ctrl

counter
reset

testing0 1

counter
reset

testing0 1

carry out

Figure 4: Observability Extensions. Each processor’s unit is aug
mented by a set of observability monitors. Monitors are grouped
based on physical proximity and compressed through a parity
checker. The output of each parity checker is fed to a local counter
 the same counters used for the activity monitors. Counters are
evaluated at the end of the test to determine if the outcome is cor
rect.

area impact.

The processor implements the SPARC V9 ISA and supports 4-

way fine grain multithreading. We synthesized the pipeline logic of

the T1 with Synposys Design Compiler targeting the Artisan IBM

130nm library. Fault coverage was obtained through fault simula-

tion of functional vectors with Synposys TetraMAX.

Benchmarks: The NAS parallel benchmark suite was used to

estimate the overhead on cpu-intensive programs. In addition, we

evaluated our solution on I/O intensive benchmarks such as bonnie

and stream. To estimate performance on a benchmark that relies on

both CPU and I/O, SPECWeb was also considered.

Performance: Statistics on the functional unit utilization were

collected through Simics simulations. Performance was measured

in number of committed instructions. Performance impact of our

design was evaluated against three epoch lengths: 20, 50, and 100

million cycles.

Fault Coverage: Our experiments focus on stuck-at faults and

do not account for faults either marked as undetectable by the ATPG

tool are within the DFT structures. Because all memory structures

are protected with either parity bits or error-correcting codes, single

hard faults in memory are detected by mechanisms already present

in the design [20].

Area Overhead: The hardware additions necessary for our diag-

nosis system were developed in Verilog RTL and synthesized with

the IBM Artisan 130nm library with Synopsys Design Compiler.

5.1 Fault Coverage
We first found the maximum fault coverage achievable using

Sun’s functional verification software routines. Because the over-

head introduced by running all these programs sequentially is very

high, we paritioned the tests into subsets. We also split the pro-

cessor into several functional units and selected our subsets such

that each was composed of tests that provided high fault coverage

for a particular functional unit. These functional units are: integer

pipeline, error detection, divider, multiplier, floating point frontend,

and stream processor.

We first focused on the processor’s integer pipeline since its cor-

rectness is vital to nearly every instruction. The integer pipeline

consists of four modules: instruction fetch, execution, load store,

and trap logic. As detailed in Section 4.1, an ILP solver was used

to select offline the subset of tests that yield the highest fault cov-

erage within a preset time budget.

For our fault coverage reports, we partitioned the integer pipeline

in into four sub-modules: instruction fetch, execution, load store,

OpenSPARC T1 Unit Chip Test Coverage (%)
Area (%)

Maximum 5.0M 2.5M 1.25M 0.5M 1.25M cycles
achievable cycles cycles cycles cycles w/ observation

points

Instruction Fetch 7 94.4 93.8 93.2 88.9 82.8

Execution 10 97.1 96.4 95.9 95.2 94.0

Load Store 6 89.7 88.1 87.6 86.2 82.8 89.1

Trap Logic 10 88.7 86.0 85.5 84.3 78.7 87.1

Error Detection 1 33.6 33.5 29.6 27.7 26.5

Multiplier 4 99.2 96.6 96.5 91.0 80.1

Divider 4 98.7 98.7 95.5 95.5 91.3

Stream Processing 3 93.7 89.1 84.8 79.9 60.5

Floating Point Frontend 4 91.5 90.0 85.3 77.9 67.7

Memory 51 100.0 100.0 100.0 100.0 100.0

Total (with Memory) 100 96.3 95.5 94.9 93.6 91.0 94.1

AFC for Integer Pipeline 96.6 95.9 95.7 94.8 93.2 95.5

Table 1: Fault coverage by integer pipeline tests. We report the fault coverage achievable for the different logic modules of the
OpenSPARC T1. The last two rows contain the fault protection achievable for the entire processor, for the area fault coverage and AFC,
respectively. Note that, although coverage for units that are not in the integer pipeline plummets when test time is shortened, the AFC of the
tests for applications that only use the integer pipeline decreases much less significantly.

and trap logic. These partitions roughly divide the processor along

functional module boundaries; the approximate chip area fraction

for each logic module is shown in the second column of Table

1. The other columns report the fault coverage achieved by the

tests that focus on the integer pipeline. The column ’Maximum’

shows the maximum percentage of faults detectable in the chip us-

ing Sun’s functional verification tests. The remaining columns indi-

cate the fault coverage achieved over a range of test time execution

constraints, from .5 to 5 million cycles. The last two rows report,

respectively, the total fault coverage when memory is taken into

account, and the Application-Aware Fault Coverage for an applica-

tion workload that relies 100% of the time on the integer pipeline.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

F
au

lt
 C

o
ve

ra
g

e
R

ed
u

ct
io

n
 %

0.00

AFCarea-based fault coverage

Figure 5: Degradation of Fault Coverage. This graph compares
the areabased fault coverage reduction caused by our application
aware testing framework when the test trigger threshold is set to 1%
of the committed instructions. Note that the impact on the AFC is
much less significant than for areabased fault coverage.

The area-based fault coverage achievable when all tests are exe-

cuted is extremely high, 96.3%, however, this comes at a very high

cost: the execution takes nearly 26 million cycles. Thus we had to

select a subset of tests that would still lead to high fault coverage

OpenSPARC Unit Target Coverage (%) Cycles

Multiplier 98 27,383
Floating Point Frontend 96 230,033
Divider 98 290,715
Stream Processing Unit 96 1,572,807

Table 2: Areabased fault coverage tests for specific functional
units. The fault coverage for each units acconts for both faults in
the logic and in the memory structures.

with a limited time budget. As shown in Table 1, when the time

budget is reduced, fault coverage for the microprocessor modules

in the integer pipeline is not affected as significantly as for the other

functional units. The load store unit and the trap logic Unit suffers

of limited testability and, in an effort to achieve better fault cov-

erage for these units, we enhanced them with 869 and 738 obser-

vation points respectively. For the 1.25 million cycles time budget

solution, the area-based fault coverage for these units improves by

3%, as reported in the last column of Table 1.

Since this first test was focused on the integer pipeline, area-

based fault coverage for the other functional units drops precipi-

tously as the time budget decreases. To target these specialized

units, distinct test subsets were selected by solving dedicated ILP

module directed problems: target fault coverage and number of cy-

cles necessary to execute the particular tests are reported are Table

2. These modular tests target a very high fault coverage but are

very time consuming. For instance, performing a thorough integrity

check on the SPU is extremely expensive, accounting for more than

1.5 million cycles. However, none of the benchmarks we evaluated

utilized that particular functional unit. This results further support

our idea that, in order to maintain low performance overhead, tests

should only be triggered on the hardware that was exercised by the

application and thus could have impacted computation results.

Avoiding these functional unit tests lowers area-based fault cov-

erage. For example, Figure 5 plots the difference in fault cover-

age observed when running an application-oblivious test vs. an

application-aware test. For each testbench we plot the difference

in coverage measured both using the area-based fault coverage and

also our AFC metric. In this experiment the epoch considered was

100M instructions long and we used a trigger threshold of 1% for

the specialized tests in evaluating our AFC metric. Note from the

figure that the area-based fault coverage is reduced by 1.7% on av-

erage when going from an oblivious test to an adaptive one. At the

same time, the AFCmetric is only reduced by 0.7% on average (see

Figure 5). We attribute this small degradation in AFC to a reduction

of the fault coverage in the integer pipeline. In fact, instructions

executed in the specialized functional units rely also on the integer

pipeline. For instance, instructions used to load and store floating

point values need to be supported by the load store unit. Thus, trig-

gering hardware tests that need to move floating point values from

and to memory will cause an increase in area-based fault coverage

of the integer pipeline, which in turn impacts the AFC.

1

2

3

4

5

6

7

8

9

R
u

n
ti

m
e

O
ve

rh
ea

d
 %

100M 50M 20M

16.8%

Application-Aware
Oblivious

0 A
ll

A
n

y

1% 5% 10%

20%

A
ll

A
n

y

1% 5% 10%

20%

A
ll

A
n

y

1% 5% 10%

20%

O
b

livio
u

s

1 in
stru

ctio
n

O
b

livio
u

s

1 in
stru

ctio
n

O
b

livio
u

s

1 in
stru

ctio
n

Test Trigger Threshold

Figure 6: Performance overhead of our applicationaware di
agnosis for variable epoch sizes. For a given epoch size, our
applicationaware diagnosis mechanism reduces testing overhead
by 50% compared to applicationoblivious solutions. The data re
ported in this graph is the mean of the performance overhead over
all the benchmarks.

5.2 Performance Overhead
To evaluate the perfomance overhead of our solution, we select

the integer pipeline test bound to 1.25 million cycles, since it pro-

vides a good compromise between area-based fault coverage and

test runtime.

We evaluate the effects of our application-aware solution against

an online testing solution that is oblivious to application behavior.

Figure 6 plots the geometric mean of the performance overhead

experienced by the benchmarks considered. For both approaches,

performance impact was measured using epoch lengths of 100M,

50M, and 20M cycles. Testing time reduction can be capitalized

to reduce the epoch’s length as shown in Figure 6. On one hand,

a shorter epoch length is beneficial since it reduces a checkpoint

memory footprint, as reported in [7]. On the other hand, longer

epoch increases performance since it directly affects test frequency.

However, due to the overhead reduction achieved using our scheme,

is possible to run hardware tests more frequently without losing

performance. We also evaluated the effect of varying the module

utilization triggers, ranging from a minimum of one instruction (a

single instruction exercising a specialized module is sufficient to

trigger its test), to 20% of the executed instructions.

95.6

95.8

96

96.2

A
F

C
 %

Specweb Stream Nas IS Average

Specweb Stream Nas IS Average

■ Oblivious Test

Application-Aware Trigger:

▲ 1 instruction

♦

▲

▲

▲

▲
■ Oblivious Test

Application-Aware Trigger:

▲ 1 instruction

♦

▲

▲

▲

▲

■

95

95.2

95.4

1 1.5 2 2.5 3 3.5

Runtime Overhead %

♦ 1% of committed instr.

× 5% of committed instr.

● 10% of committed instr.

+ 20% of committed instr.
♦

♦

♦

×

♦ 1% of committed instr.

× 5% of committed instr.

● 10% of committed instr.

+ 20% of committed instr.
♦

×
●●

+

Figure 7: Tradeoff between runtime overhead and AFC.
This figure shows the impact on performance and AFC of our
ApplicationAware adaptivemechanism for some significant bench
marks and for the average among all the considered applications.
The markers in the graph report different instructions thresholds
triggering the functional test: 0 (oblivious solution, tests are always
triggered), 1 instruction, 1%, 5%, 10%, and 20% of the committed
instructions. Increasing test trigger thresholds impacts the perfor
mance of the different benchmarks, yielding lower runtimeoverhead
with limited impact on AFC.

The runtime overhead of our adaptive test system was measured

on several benchmarks against different test trigger thresholds. In

Figure 7, we plot the runtime overhead of our proposed technique

against an oblivious testing solution for the average of our bench-

marks and for some significant applications. In particular, we com-

pare the variation of AFC of our system against the AFC obtained

by the oblivious solution. Runtime overhead in Figure 7 is reported

for an epoch length of 100 million instructions. As for the graph in

Figure 6, several test trigger thresholds to activate the modular tests

are considered (from 1 instruction to 20% of the instructions exe-

cuted in the epoch). Note that for the benchmark Nas IS the AFC

achievable by our adapive system saturates when the adaptive test

trigger reaches 1% of the committed instructions. This behavior is

common among the several applications that only rely on very few

processor functional units.

As expected, by using test adaptation the performance overhead

caused by online testing decreases when the trigger threshold in-

creases. As reported in the graph, application-aware hardware on-

line tests allow a reduction in performance overhead of more than

twice that of the application-oblivious solutions. For low values of

the test trigger threshold, AFC changes are negligible.

5.3 Area Overhead
Our diagnosis mechanism requires additional hardware for coun-

ters used as activity monitors and as fault detectors for the inserted

observation points. These logic counters can share hardware re-

sources since they are never used at the same time: the activity

monitors are used when the system is operative, while the observa-

tion point monitors are active when the system is under test. In the

design considered, only five 64-bit harware counters were required,

yielding a total area overhead of 0.4%.

Our framework can take advantage of counters already present in

silicon for other purposes such as post-silicon verification or struc-

tural testing. Event counters for hardware monitoring are, in fact,

already used by the semiconductor industry [3]. If such event coun-

ters are not available, design for testability (DFT) structures can be

used instead: modern digital systems already implement registers

to store the outputs of test vectors applied during structural testing

[1]. If any of these structures exist in the processor, the counters

necessary for our solution will not have any hardware impact.

We assume that our framework adopts 64-bit hardware counters

that can be split in eight 8-bit counters. If these 8-bit counters are

time multiplexed 3 times during the test, the 5 activity monitors

already present in our design are sufficient to monitor all the ob-

servation points. We estimated that the addition of the parity com-

pressors for the extra observation points requires an additional area

overhead of 0.4%. Therefore, depending on the presence of already

available hardware counters, the total overhead of our system is

comprised between 0.4% and 0.8%.

6. CONCLUSIONS AND FUTUREWORK
We proposed a novel solution to detect and diagnose permanent

faults in microprocessors. Our system relies on a hybrid hard-

ware/software technique to adapt hardware testing to the dynamic

use of the processor’s structures. Components that are exercised

more often, are tested with higher frequency and accuracy. This al-

lows a significant benefit in performance while improving software

protection, since the test targets the faults that are most likely to

corrupt computations.

We also intoduced a new Application-aware Fault Coverage (AFC),

a metric that represents the ability of a test to detect faults that can

corrupt the application. We implemented our framework on the

Sun OpenSPARC T1, finding that it achieves an Application-Aware

Fault Coverage of 95.5% while maintaining minimal performance

overhead (1.3%) and area impact (0.4%). Compared against clas-

sic online testing solutions oblivious to application, we showed that

considering dynamic application behavior is very beneficial, yield-

ing a reduction of test overhead greater than 50% without severely

affecting AFC.

Our results are very encouranging, and we would like to extend

this work in several directions. In particular, we would like achieve

a higher fault coverage through the development of software tests

that target the currently unstimulated logical elements in the pro-

cessor. We would like to further study the observation points to

reduce their cost and improve their effectiveness. In this work we

focus only on stuck-at faults. To achieve a better degree of online

protection against permanent faults, we want to extend our system

to other fault models.

7. REFERENCES
[1] M. Abramovici, M. Breuer, and A. Friedman. “Digital Systems

Testing and Testable Design”. IEEE Press, 1995.

[2] S. Andrica and G. Candea. “PathScore-Relevance: A Metric for
Improving Test Quality.” In Proceedings of the Workshop on Hot

Topics in System Dependability (HotDep), Jun 2009.

[3] S. Baartmans and B. White. U.S. Patent no. 6438664: “Customizable
event creation logic for hardware monitoring”. Intel Corporation,
Oct 2007.

[4] A. Benso, A. Bosio, P. Prinetto, and A. Savino. “An on-line
software-based self-test framework for microprocessor cores.” In
Proc. of Design and Test of Integrated Systems in Nanoscale

Technology, Sep 2006.

[5] S. Borkar. “Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation.” In Proc. of

MICRO, Nov 2005.

[6] S. Borkar, N. Jouppi, and P. Stenstrom. “Microprocessors in the era
of terascale integration.” In Proc. of DATE, Apr 2007.

[7] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco.
“Software-based defect tolerance for chip-multiprocessors.” In Proc.

of MICRO, Dec. 2007.

[8] K. Constantinides, S. Shyam, S. Phadke, V. Bertacco, and T. Austin.
“Ultra low-cost defect protection for microprocessor pipelines.” In
Proc. of ASPLOS, Oct. 2006.

[9] S. Gupta, A. Ansari, S. Feng, and S. Mahlke. “Adaptive online
testing for efficient hard fault detection.” In Proc. of ICCD, Oct 2009.

[10] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge. “Reliability
modeling and management in dynamic microprocessor-based
systems.” Proc. of DAC, Jul 2006.

[11] E. Karl, P. Singh, D. Blaauw, and D. Sylvester. “Compact in-situ
sensors for monitoring NBTI effect and oxide degradation.” In Proc.

of the Solid-State Circuits Conference, Sep 2008.

[12] M.-L. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, and
Y. Zhou. “Understanding the propagation of hard errors to software
and implications for resilient system design.” In Proc. of ASPLOS,
Mar 2008.

[13] Y. Li, M. Samy, and S. Mitra. “CASP: Concurrent autonomous chip
self-test using stored test patterns.” In Proc. of DATE, Mar 2008.

[14] J. Lienig. “Interconnect and current density stress - an introduction to
electromigration-aware design.” Proc. of the Workshop on System

Level Interconnect Prediction, Apr 2005.

[15] M. Mehrara, M. Attarian, S. Shyam, K. Constantinides, V. Bertacco,
and T. Austin. “Low-cost protection against SER upsets and silicon
defects.” In Proc. of DATE, Apr. 2007.

[16] A. Meixner and D. Sorin. “Detouring: Translating software to
circumvent hard faults in simple cores.” In Proc. of DSN, Jun 2008.

[17] J. Musa. “Operational profiles in software-reliability engineering.”
IEEE Software, Mar 1993.

[18] M. Nafrı́a, J. Suñé, and X. Aymerich. “Breakdown of thin gate silicon
dioxide films–a review.” Microelectronics and Reliability, July 1996.

[19] B. Panzer-Steindel. “Data Integrity” Technical Report, CERN, Apr
2007.

[20] I. Parulkar, A. Wood, J. Hoe, B. Falsafi, S. Adve, J. Torrellas, and
S. Mitra. “OpenSPARC: An open platform for hardware reliability
experimentation.” In Proc. of the Workshop on Silicon Errors in

Logic - System Effects, Mar 2008.

[21] A. Pellegrini, V. Bertacco, and T. Austin. “Fault-based attack to RSA
authentication.” Proc. of DATE, Mar 2010.

[22] M. Psarakis, D. Gizopoulos, M. Hatzimihail, A. Paschalis,
A. Raghunathan, and S. Ravi. “Systematic software-based self-test
for pipelined processors.” In Proc. of DAC, Jul 2006.

[23] E. Rosenbaum, R. Rofan, and C. Hu. “Effect of hot-carrier injection
on n- and pMOSFET gate oxide integrity.” IEEE Electron Device

Letters, Nov 1991.

[24] D. Schroder. “Negative bias temperature instability: What do we
understand?” Microelectronics Reliability, Jun 2007.

[25] B. Schroeder, E. Pinheiro and W.-D. Weber. “DRAM errors in the

wild: a large-scale field study”. Proceedings of the conference on
Measurement and modeling of computer systems, Jun 2009.

[26] J. Srinivasan, S. Adve, P. Bose, and J. Rivers. “The impact of
technology scaling on lifetime reliability.” Proc. of DSN, Jun 2004.

[27] A. Strong, E. Wu, R.-P. Vollertsen, J. Sune, G. LaRosa, and
T. Sullivan. “Reliability Wearout Mechanisms in Advanced CMOS

Technologies.” Wiley Press, 2009.

[28] Sun Microsystems Inc. “OpenSPARC T1 microarchitecture
specification.” Aug 2006.

