
Synthesis with External Don’t-Cares
Using Shannon Entropy and Craig Interpolation

Kai-hui Chang∗, Valeria Bertacco∗, Igor L. Markov∗†, Alan Mishchenko‡

∗EECS Department, University of Michigan, Ann Arbor, MI
†Synplicity, Inc., Sunnyvale, CA

‡EECS Department, University of California, Berkeley, CA
{changkh, valeria, imarkov}@umich.edu, alanmi@eecs.berkeley.edu

ABSTRACT
Traditional digital circuit synthesis flows start from an HDL be-
havioral definition and assume that circuit functions are almost
completely defined, making don’t-care conditions rare. However,
recent design methodologies do not always satisfy these assump-
tions. For instance, third-party IP blocks used in a system-on-chip
are often over-designed for the requirements at hand. By focusing
only on the input combinations occurring in a specific application,
one could resynthesize the system to greatly reduce its area and
power consumption. Therefore we extend modern digital synthesis
with a novel technique, called SWEDE, that makes use of exten-
sive external don’t-cares. Experiments indicate that SWEDE scales
to large ICs with half-million input vectors and handles practical
cases well.

1. INTRODUCTION
Due to the increasing demand for integrated circuits to provide

more functions while consuming less power, designing a new chip
becomes more and more difficult. One way to reduce this de-
sign effort is to reuse previously designed circuits, such as Intel-
lectual Property (IP) blocks and general-purpose processors. This
approach, however, may result in designs with unnecessarily large
area and power consumption because they are over-provisioned
with respect to the target functionality. On the positive side, sys-
tem performance and cost may be improved by customizing reused
components to the target applications and environment. This novel
optimization, which we call design specialization, poses a new syn-
thesis challenge, which differs from traditional formulations by the
abundance of external don’t-cares. In fact, both academic and com-
mercial synthesis tools available today appear to be structured and
optimized to extract optimization opportunities from small, local-
ized sets of external don’t-cares. While this approach succeeds on
mainstream synthesis instances, it does not perform well on the
type of instances generated in the context of design specialization
(and cannot handle some cases at all). Our experimental study re-
vealed that the performance of existing tools, such as Espresso [14]
and some commercial synthesis tools, greatly deteriorate when ex-
tensive don’t-cares are added. In addition, several other tools, such
as ABC [24] and many commercial tools, do not handle our prob-
lem instances at all, or do not provide specification formats for this
situation. It is typical of these mainstream synthesis tools to explore
as many ways to exploit a don’t-care as possible. When the ma-
jority of the terms are indeed don’t-cares, however, this approach
becomes ineffective because the search space explodes.

In this work we address two types of synthesis problems in the
presence of extensive external don’t-care sets. The first type as-
sumes that the care-terms are known and represented using a truth
table while the circuit structure is unknown. To solve this problem,

we propose CleanSlate and InterSynth algorithms that synthesize
the truth table from scratch. The second problem type assumes
that an initial circuit already exists for customization. To solve
this problem, we developed a FastShrink algorithm, which takes
as input an optimized design and reduces it based on the specified
don’t-care set. Note that FastShrink might find optimization oppor-
tunities even when applied after CleanSlate. Our approach is based
on an important insight: extensive don’t-cares allow simple greedy
algorithms to quickly produce a reasonably small netlist, and the
missed optimization opportunities can be recovered afterward us-
ing more sophisticated synthesis techniques. Since this latter step
does not consider don’t-cares, it can run much faster and leverages
existing tools. This two-step process eliminates the need for a time-
consuming don’t-care optimizer, yet it is still capable of generating
high-quality netlists. We integrated these techniques in our tool,
called SWEDE (Synthesis Within an Extensive Don’t-care Envi-
ronment). In our experiments we performed synthesis from truth
tables with large don’t-care sets and observed SWEDE completing
ten times faster than state-of-the-art synthesis tools while produc-
ing smaller circuits. We have also used SWEDE to customize cir-
cuits with up to 30K gates and half-a-million input vectors in under
two hours on a single processor in most cases.

SWEDE’s high performance enables several new synthesis ap-
plications and enhances many others, including (1) input constraint
synthesis for emulation; (2) acceleration of the most-frequent com-
putation in a unit [2, 8]; (3) customization of third-party IP com-
ponents in an System-on-Chip (SoC); and (4) support for graceful
wear-out of electronic devices [19]. Applications in category (1)
can solve current engineering problems, while the others provide
new system design paradigms. Our techniques may help address a
wide range of emerging concerns in IC design, including increasing
verification difficulty, unpredictability of manufacturing [19], and
lower-power circuits [8]. Since our simplified circuits provide cor-
rect outputs only within the specified care set, stimuli outside this
realm may not be viable. While “soft” application domains such
as multimedia can tolerate these situations well, other applications
may require an output flag indicating that a given input cannot be
processed correctly.

The rest of the paper is organized as follows. In Section 2 we
review previous work and provide necessary background. We pro-
pose our new synthesis techniques in Section 3, whose analysis and
applications are given in Section 4. Experimental results are pro-
vided in Section 5, and Section 6 concludes this paper.

2. BACKGROUND
In this section we first review relevant previous work. Next, we

describe three important concepts: bit-signatures, Craig interpola-
tion, and Shannon entropy. These concepts are used in our synthe-
sis techniques.

2.1 Prior Work on Synthesis with Don’t-Cares
Much research has been developed in exploiting don’t-cares in

synthesis optimization. A classic tool implementing some of the
most commonly-used techniques is Espresso [14]. Although other
more sophisticated synthesis tools exist, such as ABC [24] and MV-
SIS [29], these focus specially on synthesis problems with a small
number of don’t-cares. Moreover, their input specification format
makes it impractical to describe a large number of don’t-cares. For
example, a design that could arise in our problem domain may have
50 inputs and as many as one million care terms, leaving more than
1015 combinations to be don’t-care terms. In order to specify such
a complex set of don’t-cares, Gao et al. [6] proposed the use of an
external netlist to encode them. The construction of such a netlist,
however, can be challenging.

In addition to synthesizing from a truth table, it is also possible
to optimize a design starting from an existing circuit and simpli-
fying it using the don’t-cares via resynthesis techniques such as
rewiring [21] and node merging [12]. One major challenge in this
context is the representation and manipulation of such don’t-cares.
For instance, Muroga et al. [11] proposed the concept of Com-
patible Sets of Permissible Functions (CSPFs), which was used by
Savoj et al. [15] to optimize multi-level networks composed of
NOR gates. This representation was later improved by Yamashita
et al. [21, 22] and became Sets of Pairs of Functions to be Distin-
guished (SPFDs). One major drawback in these techniques is that
representing the don’t-cares is cumbersome and the related data
structures are difficult to work with. Traditionally, these don’t-cares
are represented by BDDs, often exhausting all memory resources
even for moderate-size designs. To address this problem, Sinha
proposed an efficient representation of SPFDs based on graphs that
can be used in logic resynthesis [23]. This approach improves the
memory profile of SPFDs, but deteriorates the computing time.
Recently, Plaza et al. [12] relied on bit-signatures generated by
functional simulation to approximate observability don’t-cares for
node merging, followed by SAT-based verification. This approach
is faster and more efficient in memory than other solutions. How-
ever, external don’t-cares were not used in the optimization. In
stead of utilizing don’t-cares for circuit optimization, techniques
based on logic decomposition and refactoring can also effectively
reduce the size of a circuit. To this end, the greedy algorithm pro-
posed by Rajski [13] et al. is used in our CleanSlate synthesis flow.

2.2 Craig Interpolation
The concept of Craig interpolation originated in mathematical

logic in 1957 and has recently become popular in formal verifica-
tion. In contrast, we are going to use it in logic synthesis.

DEFINITION 1. Consider a pair of Boolean functions, A(x,y)
and B(y,z), such that A(x,y)∧B(y,z) = 0, where x and z are vari-
ables appearing only in A and B, respectively, and y are common
variables of A and B. An interpolant of A(x,y) w.r.t. B(y,z) is a
Boolean function I over the common variables y that satisfies the
following conditions: A(x,y)⇒ I(y) and I(y)⇒ B(y,z) [4].

Consider an unsatisfiable SAT instance composed of two sets of
clauses A and B. In this case, A(x,y)∧B(y,z) = 0. An interpolant
of A can be computed from the proof of unsatisfiability of the SAT
instance by the algorithm found in [9] (Definition 2). The resulting
interpolant is a single-output multi-level logic network represented
as an And-Inverter-Graph (AIG) [24]. If A(x,y) is the on-set of a
function, B(y,z) is its off-set, and A(x,y)∧B(x,y) is its don’t-care
set, then I(y) can be seen as an optimized version of A(x,y) where
the don’t-cares are used in a particular way to optimize representa-
tion of I.

Interpolation is used in formal verification to compute an over-
approximation of the complete set of reachable states [9]. Inter-
polation has also been used in area- and delay-driven technology
mapping into K-input LUTs [10]. When applied to technology
mapping, interpolation is used to generate new functions for the
node being synthesized.

2.3 Bit-Signatures and Entropy
Our FastShrink synthesis technique is based on bit-signatures

generated using simulation, which are defined below. Note that
a signature is essentially a signal’s partial truth table. If the input
vectors are applied exhaustively, then the signature of a signal is its
complete truth table.

DEFINITION 2. Given a wire (signal) w in a circuit, computing
function f, and input vectors v1, v2 ... vk, the signature of w is
the bit-vector (f (v1), ..., f (vk)), where f (vi)∈ {0,1} represents the
output of f given the input vector vi.

The second step of the FastShrink technique (see Section 3.3)
exploits short-range optimization opportunities in a circuit. Intu-
itively, signals with less information are easier to optimize. To
quickly identify such signals, we use Shannon entropy, which is
calculated as follows [17]:

Es =−
#ones

k log2(
#ones

k)−
#zeros

k log2(
#zeros

k) (1)

In the equation, Es is the entropy of signature s, #ones is the
number of 1s in the signature, and #zeros is the number of 0s in the
signature. Variable k is the number of bits in the signature and is
also the number of vectors applied to the circuit. A larger E means
that the signature contains more information.

3. CIRCUIT OPTIMIZATION WITH
EXTERNAL DON’T-CARES

In this section we formalize the synthesis problem described ear-
lier and propose three circuit-optimization techniques. One shrinks
an existing netlist, while the other two perform synthesis starting
from a functional specification (truth table). We then illustrate our
techniques by example.

3.1 Problem Formulation
We formulate the circuit-specialization problem as follows. Given

a circuit, the complete set of all possible input vectors and their
output responses (or, equivalently, a functional specification in the
form of a truth table), we seek to produce a small netlist that gen-
erates the correct outputs for the given inputs. Our solution con-
siders a combinational flattened circuit and performs the optimiza-
tion without any structural or other information from the user. On
the other hand, if structural information is available in the original
netlist, it can be used to improve quality of results.

3.2 Fast Synthesis based on Truth Tables
In this section we introduce two fast synthesis techniques based

on truth tables. The first one, called CleanSlate, greedily expands
cubes and then performs more sophisticated resynthesis to mini-
mize the size of the netlist. The second one, called InterSynth, is
based on interpolation.

3.2.1 The CleanSlate Technique
Our specification-based synthesis technique, called CleanSlate,

starts from a truth table and produces a technology-mapped netlist.

The algorithm is outlined in Figure 1: CleanSlate first greedily ex-
pands a cube, one literal at a time, similar to the heuristic used in
Espresso (lines 1-3). A cube is subsumed by the expanding cube
and is eliminated if its outputs are the same as those of the ex-
panding cube. The expansion stops when the cube overlaps another
cube with different outputs. After producing an optimized truth ta-
ble, CleanSlate generates a two-level netlist (line 4), which is fed
to ABC for further optimization. Using ABC, CleanSlate first per-
forms fast logic sharing detection of the netlist [13], and then con-
verts the netlist to an And-Inverter-Graph (AIG) [24]. After that, it
expands 2-input ANDs in the AIG to multi-input ANDs to create
more opportunities for logic sharing detection, and performs AIG
resynthesis to optimize the netlist. The procedure in lines 7-10 is
applied several times to achieve better optimization (three times in
our implementation). At completion, we apply a technology map-
ping step to produce the final netlist.

The rationale behind our solution is that the large number of
don’t-cares enables even a greedy algorithm to generate a reason-
ably small two-level netlist within a short time. We then bypass
a time-consuming two-level optimization process, and instead per-
form multi-level synthesis. As our experimental results in Section
5 indicate, CleanSlate runs 10X faster than exiting tools, handles
more complex circuits, and provides better synthesis quality.

flow CleanSlate(TruthTable)
1 foreach row ∈ TruthTable
2 expand the cube of row until a different cube is reached;
3 remove other rows in TruthTable subsumed by row;
4 convert TruthTable to a two-level netlist;
5 perform fast logic sharing detection of the netlist using [13];
6 repeat N times
7 transform the network to an AIG by 1-level structural hashing;
8 expand 2-input ANDs in AIG to multi-input ANDs;
9 perform fast logic sharing detection using [13];

10 perform AIG resynthesis (AIG balancing, rewriting
and refactoring);

11 return netlist by technology mapping the AIG;
Figure 1: The CleanSlate synthesis flow.

3.2.2 The InterSynth Technique
Another specification-based synthesis technique is InterSynth.

This approach is based on computing multi-output interpolants, as
shown in the pseudo-code of Figure 2. The computation begins by
dividing the input patterns into the on-set and the off-set for each
output of the design. Next, the multi-output on-sets and off-sets
are converted into AIGs and synthesized to reduce the total number
of AIG nodes. After that, an incremental SAT problem is solved
for each output, by assuming that the on-set and the off-set of this
output are true at the same time. The proof of unsatisfiability of
this instance is used to derive the interpolant for the output under
consideration. The interpolants for all outputs are then combined
into a single AIG, which is synthesized to reduce the total number
of AIG nodes. Finally, the AIG is mapped into two-input gates as
described in Section 3.2.1.

function InterSynth(TruthTable)
1 divide TruthTable into on-set and off-set for each output;
2 synthesize shared AIG F0 for off-sets of all outputs;
3 synthesize shared AIG F0 for on-sets of all outputs;
4 for each pair of outputs, f 1 and f 0, of AIGs F1 and F0
5 derive proof P of f 1∧ f 0 being unsatisfiable;
6 derive interpolant f from the proof P;
7 create shared AIG F from the set of interpolant AIGs { f};
8 synthesize AIG to minimize the number of nodes and levels;
9 return netlist by technology mapping the AIG;

Figure 2: The InterSynth synthesis flow
.

InterSynth differs from [10] in that it interpolates all primary
outputs of the network rather than one node. For this, we extend
the interpolation procedure to work for multi-output unsatisfiability
proofs derived by solving several incremental SAT problems. The
interface of a SAT solver such as MiniSAT [5] allows us to spec-
ify assumptions for each incremental SAT run. When the run is
proved unsatisfiable, assumptions are lifted and the SAT solver can
be reused. The assumptions used in the incremental runs express
the condition that the on-set and the off-set are true simultaneously.
This condition is, by construction, unsatisfiable for the on-set and
the off-set. The resulting interpolant is a multi-output AIG such
that the function of each output is contained in the interval defined
by the on-set of this function and the complement of the off-set.

3.3 Specializing an Existing Netlist
Given an existing netlist, FastShrink uses a two-step process to

produce a specialized new netlist. The first step, called Signal-
Merge, quickly merges signals in an existing circuit that are iden-
tical under the given input combinations. The second step, called
ShannonSynth, performs further optimization using local don’t-cares.
The algorithm of SignalMerge is shown in Figure 3. It first simu-
lates care-term vectors and then merges signals with identical sig-
natures. This allows SignalMerge to leverage both external and in-
ternal satisfiability don’t-cares to remove redundant gates. Our im-
plementation selects the signal closest to primary inputs for merg-
ing to achieve smaller circuit delay. After the signals are merged,
unconnected gates are removed. To expose additional merging op-
portunities, large cells such as AOI, OAI, etc. are decomposed into
smaller gates. After signals in the netlist are merged, the netlist can
be technology mapped again.

function SignalMerge(Circuit)
1 simulate vectors to generate signatures;
2 foreach signals with identical signatures
3 target ← the signal ∈ signals closest to primary inputs;
4 merge signals to target;
5 remove gates with no fanouts;

Figure 3: The SignalMerge algorithm.

Signal merging can remove redundant logic that generates identi-
cal signal functions. ShannonSynth pushes the optimization further
by reimplementing subcircuits in smaller structures using don’t-
cares. To quickly identify subcircuits with high optimization poten-
tial, we use Shannon entropy to guide our resynthesis. Intuitively,
signatures with low entropy contain less information and should be
easier to optimize. In our experience we found that for a random
subcircuit-extraction technique to produce the same quality as our
entropy-guided approach, 50% more runtime is required.

The ShannonSynth algorithm in Figure 4 first simulates vectors
in the care terms to generate a signature for each signal. Next, it
computes the entropy of each signature. To make sure its resynthe-
sis attempts are fruitful, the algorithm only tries subcircuits whose
output signatures have small entropy (the bottom 20% of all sig-
natures in our implementation). The key idea in this algorithm is
that, instead of trying to resynthesize the netlist in the subcircuit,

function ShannonSynth(Circuit)
1 simulate vectors to generate signatures;
2 compute the entropy of each signature;
3 foreach signal whose signature has 20% smallest entropy
4 extract a subcircuit involving signal as its output;
5 build a truth table using the subcircuits’ inputs and outputs;
6 resynthesize the truth table using CleanSlate;
7 if (resynthesized netlist is smaller)
8 replace the subcircuit with the resynthesized netlist;

Figure 4: The ShannonSynth algorithm.

we build a partial truth table using only the subcircuit’s input and
output signatures so that we can exploit don’t-cares. ShannonSynth
then synthesizes the truth table using the CleanSlate algorithm. In
this step, however, we use Espresso to replace lines 1-3 of Clean-
Slate to achieve better resynthesis quality. This is appropriate in
local resynthesis because the truth tables are small. After an opti-
mized truth table is generated, ABC is still called for further opti-
mization and technology mapping. If the new resynthesized netlist
is smaller than the original one, ShannonSynth replaces it.

3.4 A Circuit Specialization Example
We now illustrate the FastShrink algorithm on a 3-bit ripple-

carry adder. In this example, input A can only assume values 3,
4 or 5; while input B has values 1 or 7. SignalMerge first simulates
all possible six input combinations on the given adder to produce
6-bit signatures for all internal signals. The circuit annotated with
the signatures is shown in Figure 5(a). SignalMerge then merges
signals with identical signatures and removes all the gates that are
no longer connected (Figure 5(b)). At this point, only 8 out of the
15 gates are still needed, resulting in a much smaller circuit.

To further optimize the circuit, we invoke ShannonSynth. This
extracts a subcircuit composed of gates g7, g8 and g9 to explore
further optimizations. First, a truth table is built using the signa-
tures of the subcircuit’s inputs and outputs as follows:

A1 A0 B1 g5 g9
1 1 0 1 1
1 1 1 0 1
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 1 1

We then feed the truth table to CleanSlate for synthesis and ob-
tain a new netlist, “g9=A0 & (g5 | B1)”, that only uses two gates.
Since this resynthesized netlist is smaller, it will replace the orig-
inal one. Another ShannonSynth run replaces gate g0 with an in-
verter, and the final result is shown in Figure 5(c). By using the
signatures of the subcircuit instead of the netlist for resynthesis,
we can fully utilize don’t-cares for optimization. This optimization
is not performed by many traditional synthesis tools that only use
function-preserving netlist transformations. Note that among the
58 don’t-care input combinations, 25.9% are still added correctly.

4. ANALYSIS AND APPLICATIONS
In this section we first analyze our techniques and then outline

several applications made possible by SWEDE.

4.1 Analysis
An important property of FastShrink is that every netlist mod-

ification it performs always preserves the output responses of the
given input vectors. This is because we operate on signatures,
which are simulated values of the input vectors. Since all the changes
made by FastShrink preserve signatures, the output responses are
also preserved. Moreover, we observe that FastShrink subsumes
the common constant propagation technique, which is used when
a subset of the signals are constant 0 or 1. To simplify our rea-
soning, we assume that the netlist is decomposed into 1- or 2-input
gates, but the same holds in the general case as well.

PROPOSITION 1. SignalMerge followed by ShannonSynth sub-
sumes the optimizations produced by constant propagation.

PROOF. Since the output of a 1-input gate can only be constant 0
or 1, SignalMerge connects the output signal to VCC or GND, thus
eliminating the gate. Given a 2-input gate, suppose the constant

(a)

(b)

(c)
Figure 5: Ripple-carry adder specialization example: (a) origi-
nal circuit, (b) after SignalMerge, and (c) after ShannonSynth.
Allowed input values are 3, 4, 5 (for A) and 1 and 7 (for B).

input is the controlling value of the gate, then the output of the gate
can only be constant 0 or 1. In this case, SignalMerge proceeds
as the 1-input gate. Now suppose that the constant input is not
the controlling value of the gate, then the output of the gate can be
either identical or the complement to the other input. If the output is
identical, then SignalMerge connects it directly to the non-constant
input, eliminating the gate. Otherwise, we build a truth table using
the gate’s input and output signatures and rely on ShannonSynth to
simplify the gate to an inverter.

Finally, note also that a SignalMerge pass guarantees that no two
signals are identical in the final circuit, since it merges all the sig-
nals with identical signatures.

Our analysis on how current commercial synthesis tools utilize
don’t-cares suggests that they perform inter-block optimizations by
first dissolving the boundaries between the blocks to form a large
flattened netlist, and then employing resynthesis techniques such
as those introduced in Section 2.1. In other words, they convert
external don’t-cares into internal don’t-cares before optimizations
are performed. Although effective, this approach has the follow-
ing drawbacks. First, the block boundaries are not preserved af-
ter optimization, which may make verification difficult, especially
when dealing with third-party IP blocks in an SoC design. Sec-
ond, dissolving boundaries makes it difficult to use external don’t-
cares because the chip’s environment often depends on applica-
tions and cannot be modeled easily using a netlist. While state-
of-the-art synthesis tools mostly exploit internal don’t-cares, our
work shows how to effectively exploit external don’t-cares without
viewing them as internal don’t-cares and without blending multiple
blocks into one netlist.

4.2 Applications
In this section we discuss some of the new applications that are

enabled by our techniques, including three applications based on

circuit specialization followed by one that requires synthesizing
truth tables.
Acceleration of common-case computations: certain classes of
SoC designs include several instances of a computational module
to improve the parallelism of the system. For instance, this is the
case for multimedia SoC where the required output throughput is
achieved by increasing the parallelism of the computation. Among
CPU designs, a specific example is the case of the Sun Niagara
T1 where 8 processor cores were sharing one Floating Point Unit
(FPU). However, due to its poor performance on FP testbenches,
the second generation processor has been enhanced with 8 FPUs.
Often the input distribution of components embedded in a system
is highly skewed for a very small set, while remaining combina-
tions are rare [16]. For instance, it is observed that often under
10% of a program’s instructions account for 90% of its execution
time [8]. Hence, SWEDE can be adopted to explore a “Better Than
Worst-Case Design” methodology [2], also known as “Common-
Case Computation” [8], where one of several units is fully func-
tional, and all others are optimized to only operate correctly for
a few high-frequency input combinations. This approach reduces
power and area of the final system. If an optimized computation
fails at runtime, a fully-functional module is invoked as a back-up.
Note that, for this approach to be viable, it may be necessary to
deploy either a functional checker (validating the operation results)
or a “valid input detection” circuit, as we are planning to explore.
Customization of third-party IP components in an SoC: in or-
der to improve reuse, SoC designs often acquire some components
from third-party vendors. In the fourth quarter of 2007, total IP
revenue has reached $265.4 million, with a growth rate of 4.1%
each year [25]. Such components are typically embedded in an
environment that only exploits a small fraction of their functional-
ity. It is then possible to use SWEDE to reduce the component’s
complexity (and power consumption) based on the specific envi-
ronment in which it is embedded. For example, floating point logic
in an embedded processor is redundant if the target application does
not require any floating point computation. Manually removing re-
dundant portions of the design, however, can be difficult and error-
prone. While some hard IPs are difficult to modify, a large segment
of the $1B/year IP market consists of soft IPs, such as ARM pro-
cessors, USB and PCI-Express devices, etc. The source code is
given to customers unencrypted because design companies would
not agree to put unknown blocks in their chips. In addition, design
houses often need to patch possible problems and better optimize
their entire SoC designs in terms of placement and floorplanning.
Importantly, such source code can be modified, and the techniques
in our paper may lead to new business models — competing on
cost by simplifying existing IPs automatically. For example, there
are many USB and PCI-Express peripherals for PCs and laptops
that are dedicated to a single function, like WiFi, WiMax, voice-
over-IP, Dolby 7.1 sound, etc. Needless to say, such devices do not
exercise the entire bus protocol, but the IP on which they are built
may support it. Therefore, to reduce the cost, one may automati-
cally customize the inherited bus IP to a given application. Whether
or not the cost differential is significant, IP specialization may no-
ticeably reduce power consumption. For example, Apple iPhone
contains the S-Gold2 baseband chipset from Infineon in which Ap-
ple chose to turn off FM radio support and MMC/SD card compat-
ibility, apparently to reduce power [26].
Graceful wear-out of electronic devices: extreme transistor scal-
ing is leading to reduced silicon reliability, including early device
and interconnect wear-out. To overcome the impact of this is-
sue there is a growing need for low-cost reliable design solution.
The use of SWEDE enables reliability through component spar-

ing [3], where spare components can be optimized to provide only
bare-bone functionality, sufficient to keep the system operational
in critical aspects until it is replaced. An example of this spare-
optimization application is discussed by Wagner et al. [19], where
the authors identify a small subset of a processor design that must
be kept operational in order to provide full system functionality (in
this case the spare was part of the processor itself with acceleration
features excluded). When the original circuit becomes unreliable,
it will be replaced by the barebone spare component to avoid a
system-level crash.
Synthesis for fast emulation: in the emulation domain, one com-
mon issue is the synthesis of the input constraints. Emulation sys-
tems can apply constrained-random simulation at very high perfor-
mance compared to logic simulation. However, if the input con-
straints are not synthesizable, then at each clock cycle the emulator
must communicate with a simulating host, incurring a huge per-
formance impact on the emulation. At the same time, input con-
straints are often written in a high-level language (C++, Vera, etc.)
and cannot be synthesized. SWEDE can be deployed by running
the random simulation only on the design’s input constraints (and
not including the design itself). This simulation would be very fast
and generates a set of care terms that SWEDE then synthesizes in a
circuit uploaded on the emulator along with the design. Each emu-
lation run would use a different constraint circuit, each synthesized
by SWEDE based on the random stimuli. On the other hand, the
design itself does not need to be resynthesized for each run.

5. EXPERIMENTAL RESULTS
In this section, we use two design examples to evaluate the ca-

pability of SWEDE in specializing circuits. One is an Alpha pro-
cessor running real applications, and the other is an integer mul-
tiplier. In addition, we compare SWEDE with existing synthesis
tools, including Espresso and a commercial synthesis tool, in terms
of of capabilities in synthesizing truth tables with external don’t-
cares. Table 1 reports the numbers of primary inputs and outputs,
as well as initial cell count for the benchmarks we used. Bench-
marks C1908-C7552 are from ISCAS’85, and Alpha is a processor
from [27] that implements a subset of the Alpha ISA. Our experi-
ments were performed on Linux workstations with AMD Opteron
280 CPUs (2.4GHz) and 8G memory.

Benchmark Description #In/Outputs #Cells
C1908 16-bit SEC/DED circuit 33/25 461
C2670 12-bit ALU and controller 233/140 484
C3540 8-bit ALU 50/22 1060
C5315 9-bit ALU 178/123 1057
C7552 32-bit adder/comparator 207/108 1187
Alpha 5-stage pipeline Alpha CPU 3054/3619 30531

Table 1: Characteristics of benchmarks.

5.1 Case Studies
In this section we study two design examples, an Alpha proces-

sor and an embedded multiplier.
Case study 1 (Alpha processor): for this study we ran five ap-
plications from the SpecINT’00 suite [30], whose characteristics
are summarized in Table 2. The processor was synthesized using
Cadence RTL compiler [28] with the highest optimization effort,
and was mapped to a 0.18µm library. Since our Alpha processor
only implements a subset of the Alpha ISA, simulation was per-
formed in lockstep with the Simplescalar instruction set simulator
[1]. We then use SignalMerge to optimize the circuit based on the
stimuli from each program. Figure 6 and 7 report the final size
of the optimized designs and the synthesis runtimes, respectively,

Benchmark Description Language
bzip2 Compression tool C
gcc Compiler C
mcf Combinatorial optimization C
parser Word processing C
perlbmk Perl programming language C

Table 2: Characteristics of SpecINT programs [30].

achieved after simulating up to half a million instructions. They in-
dicate that the optimization potential varies from application to ap-
plication: for instance, the bzip2 application has a very small stim-
uli set, hence we can exploit aggressive optimizations on it; while
gcc has a much wider span, hence little optimization can be ex-
tracted. This is aligned with the intuition that bzip2 is a specialized
algorithm applying the same operations to arbitrary data sets, while
gcc’s operation is much more complex. This result suggests that if
the program running on a circuit is known, SWEDE can potentially
reduce its size significantly, generating a much smaller circuit that
consumes less power. Figure 7 also shows that SignalMerge oper-
ates in approximately linear time on the number of input vectors in
the care set, which enables it to handle complex designs efficiently.
Designs can be further optimized by ShannonSynth: this step has
greater runtime complexity, however, this is offset by the fact that
ShannonSynth only takes into consideration small blocks in a cir-
cuit. For comparison, in the figures we also show the trend of opti-
mizing for a constrained-random trace generated by StressTest [20]
(diamond-bullet lines). Its curve indicates that with random inputs,
we can only reduce the circuit by 10%, even when the number of
instructions is as small as 6400. This is not surprising since, in-
tuitively, random traces span a much larger fraction of the circuit’s
configurations than real applications, making optimization difficult.

Figure 6: Gate count after specializing the Alpha CPU with
SignalMerge. 30-90% of the gates can be removed for applica-
tions as long as half-million dynamic instructions.

In Figure 8 we show the results when optimizing individual com-
ponents in the Alpha processor using the gcc application. The
blocks we studied are the instruction fetch unit (IF), the decode
unit (ID), the execute block (EX) and the memory access controller
(MEM). The result indicates that the optimization potential is very
block specific. In particular, the EX block cannot be optimized well
because the execution unit needs to handle a wide range of input
values, making don’t-cares less dense. The MEM block also has
very limited optimization potential because it only has 363 gates
but has 195 inputs. This shallow logic structure makes signal shar-
ing difficult.
Case study 2 (constant-coefficient multiplier): embedded sys-
tems and digital signal processors often need to perform simple
operations repetitively [7]. For example, consider a portable elec-
tronic measurement device that must convert between US units and

Figure 7: SignalMerge runtime to specialize Alpha. Runtime is
approximately linear on the number of stimulus vectors used.

Figure 8: Gate count of Alpha blocks after specialization.

metric units while keeping power consumption low. To keep the
circuit simple, an integer multiplier can be used, adjusting the dec-
imal point afterward.

To support conversions between inches, feet, miles and meters,
one needs to be able to multiply by the following six constants:
2.54, 30.4, 1.61 and their inverse. For the sake of this example, we
made the assumption that the user can only compute with 5-digit
decimal values. We used SWEDE to optimize the circuit starting
from a 16-bit Wallace-tree multiplier. The original circuit had 1938
gates, and our care set included 393,216 patterns. For compari-
son, we converted external DCs into internal DCs by hard-coding
the constants in the RTL code, and then we synthesized the design
using two different commercial synthesis tools, Tool1 and Tool2.
The results are summarized in Table 3. Since different synthesis
tools may use different multiplier architectures, the reduction ra-
tios should be compared instead of the cell counts. As the results
suggest, FastShrink performs better than existing synthesis tools.
For comparison with existing tools that support true external don’t-
care synthesis, we also attempted to synthesize the truth table of
the 393216 patterns using Espresso and Tool1 (truth-table synthe-
sis mode) but could not obtain a result netlist after 96 hours.

Tool1 Tool2 FastShrink
Orig. Opt. Orig. Opt. Orig. Opt.

Cell count 1387 834 2238 1440 1938 981
Reduction Ratio 39.9% 35.7% 49.4%

Table 3: Comparison of two major commercial tools and
SWEDE in synthesizing constant-coefficient multipliers. Orig-
inal cell counts, optimized cell counts and the reduction ratios
are shown.

Bench- Number of cells after (re)synthesis Runtime (s)
mark Truth table based Netlist based Truth table based Netlist based

Espresso Tool1 CleanSlate InterSynth FastShrink Espresso Tool1 CleanSlate InterSynth FastShrink
(SignalMerge) (SignalMerge)

C1908 2518 6891 1352 828 284 (332) 16.19 143.76 4.17 0.99 33.68 (0.32)
C2670 6098 T/O 4467 2592 571 (665) 1494.51 T/O 45.26 34.81 54.13 (1.36)
C3540 1925 6271 1140 1980 1059 (1094) 29.12 193.69 3.55 2.01 115.4 (1.54)
C5315 5183 T/O 3594 5882 1238 (1312) 635.17 T/O 27.70 25.04 179.56 (1.42)
C7552 5072 T/O 3644 4923 1311 (1387) 911.54 T/O 35.39 26.68 150.51 (0.71)

Table 4: Comparison of existing tools and SWEDE using one-hour time-out. All our solutions, CleanSlate, InterSynth and Fast-
Shrink, provide better synthesis quality with significantly shorter runtime.

While this multiplier only serves as a simple and intuitive exam-
ple, the case study indicates that SWEDE can seamlessly handle
even traditionally difficult synthesis problems, such as multipliers.
This is because SWEDE is unconcerned with the complexity of
the original functionality and can focus on just a few important
inputs for its optimization. To further study the behavior of the
specialized multiplier, we computed all the multiplications where
one input ranges from 0 to 65535, and the other from 100 to 199,
producing a total of 6553600 input combinations. The range for
the second input was selected around the range of our specialized
input constants. The results show that 29.33% of the input combi-
nations were still multiplied correctly, while the average error over
all input combinations was 9.75%. The greatest error we observed
was 98.72%, produced by 56685×188.

5.2 Comparison with Existing Tools
In this experiment we compared CleanSlate and InterSynth with

Espresso and a commercial tool (Tool1). We used the ABC system
[24] to implement the interpolation-based procedure InterSynth for
computing multi-level representations of Boolean functions that
agree with the given on-set/off-set. The results are verified by
checking that interpolants are implied by the on-sets and do not
overlap with the off-sets. To avoid the influence of technology
mapping on our experiments, we only used inverters and basic two-
input gates. To evaluate Espresso, which lacks a technology map-
per, we fed the optimized truth tables to ABC. We used 128 random
patterns to generate the truth tables, and summarized the results in
Table 4. CleanSlate and InterSynth outperform Espresso and Tool1,
producing the smallest netlists in just a small fraction of the time.
Moreover, in several cases Tool1 timed-out after one hour. We also
tried synthesizing from care sets of 256, 512 and 1024 random pat-
terns using the same circuits. We found that CleanSlate can finish
all the benchmarks within 6.5 minutes, while Espresso and Tool1
timed-out after 1 hour for most of the benchmarks.

Although CleanSlate and InterSynth, which operate from a truth
table specification, produce comparatively better results, a compar-
ison with Table 1 shows that the generated netlists are still larger
than the original ones. The reason is that the original netlists are of-
ten produced from higher-level specifications, which include con-
ceptual structures that lead to better optimizations. On the other
hand, trying to synthesize a compact netlist using only input and
output values is much more difficult. Therefore, if a netlist is avail-
able, the best optimizations can be obtained through FastShrink,
whose results are also shown in Table 4.

SWEDE is based on signatures, which can be calculated easily
using simulation. This makes SWEDE simple to use because de-
signers only need to provide input vectors to the circuit that belong
to the care terms. Since signatures can be represented compactly
using bit-vectors and allow bit-parallel computation, our solution is
both fast and memory-efficient. As our experimental results show,
we can handle half-million input vectors in less than three hours.

6. CONCLUSIONS
To reduce circuit design complexity in the multi-billion transistor

era, SoC and embedded systems heavily rely on reuse and third-
party IP components. Often, the design environment surround-
ing such components uses only a fraction of the functionality that
these general-purpose components implement. The unused logic
in those circuit blocks not only occupies valuable die area but also
consumes more power, hurting the circuit’s performance and qual-
ity. Hence, new synthesis optimization opportunities are available
in simplifying these components to the subset of functionality re-
quired by the system they are embedded in. Surprisingly, existing
synthesis tools perform poorly in this context, which typically in-
volves a small care-set and a very large don’t-care set. To address
this problem, we proposed a new tool called SWEDE, and pro-
vided three new synthesis techniques which can specialize a circuit
using external don’t-cares: FastShrink, CleanSlate and InterSynth.
Unlike traditional synthesis tools that pursue maximal use of don’t-
cares by explicitly branching on different don’t-care assignments,
our greedy algorithms (SignalMerge and the first phase of Clean-
Slate) implicitly exploit the fact that most terms are don’t-cares and
quickly generate a small netlist. Further circuit optimization is per-
formed by our ShannonSynth technique and the second phase of
CleanSlate. This novel synthesis flow allows SWEDE to scale bet-
ter when massive don’t-cares exist. As our empirical results indi-
cate, SWEDE provides better synthesis quality than state-of-the-art
tools while running 10X faster. In fact, SWEDE can handle designs
as large as 30K cells with 0.5M care-set vectors in a few hours,
demonstrating its superior scalability and efficiency.

We discussed a number of new applications enabled by SWEDE,
including new system-design paradigms and solutions to current
engineering problems. These new applications promise to produce
circuits that run faster, consume less power, and can be used as in-
expensive back-up modules for larger circuits that may fail during
operation. Our future work seeks to develop compact circuit indi-
cators for output correctness in specialized circuits.

7. REFERENCES
[1] T. Austin, E. Larson and D. Ernst, “Simplescalar: An Infrastructure

for Computer System Modeling”, IEEE Computer, Feb. 2002, pp.
59-67.

[2] T. Austin, V. Bertacco, D. Blaauw and T. Mudge, “Opportunities and
Challenges for Better Than Worst-Case Design”, ASPDAC’05, pp.
2-7.

[3] K. Constantinides, S. Plaza, J. Blome, B. Zhang, V. Bertacco, S.
Mahlke, T. Austin and M. Orshansky , “BulletProof: A
Defect-Tolerant CMP Switch Architecture”, HPCA’06, pp. 5-16.

[4] W. Craig, “Linear Reasoning: A New Form of the Hebrand-Gentzen
Theorem”, Jour. of Sym. Logic, vol. 22 (3), 1957, pp. 250-287.

[5] N. Een and N. Sorensson, “An Extensible SAT-solver”, SAT’03.
http://minisat.se/

[6] M. Gao, J.-H. Jiang, Y. Jiang, Y. Li, A. Mishchenko, S. Sinha, T.
Villa and R. Brayton, “Optimization of Multi-Value Multi-Level
Networks”, ISMVL’02, pp. 168-177.

[7] C.-Y. Lai, C.-Y. Huang and K.-Y. Khoo, “Improving
Constant-Coefficient Multiplier Verification by Partial Product
Identification”, DATE’08, pp. 813-818.

[8] G. Lakshminarayana, A. Raghunathan, K. S. Khouri and N. K. Jha,
“Method for Synthesis of Common-Case Optimized Circuits to
Improve Performance and Power Dissipation”, United States Patent,
No. 6,308,313 B1, Oct. 2001.

[9] K. L. McMillan, “Interpolation and SAT-based Model Checking”,
CAV’03, pp. 1-13, LNCS 2725, Springer, 2003.

[10] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang, “SAT-based
Logic Optimization and Resynthesis”, IWLS ’07, pp. 358-364.

[11] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney, “The
Transduction Method — Design of Logic Networks Based on
Permissible Functions,” IEEE Computer, Oct. 1989, pp. 1404-1424

[12] S. M. Plaza, K.-H. Chang, I. L. Markov, and V. Bertacco, “Node
Mergers in the Presence of Don’t Cares”, ASPDAC’07, pp. 414-419.

[13] J. Rajski, J. Vasudevamurthy, “The testability-preserving concurrent
decomposition and factorization of Boolean expressions”, IEEE
TCAD, June 1992, pp.778-793.

[14] R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-Valued
Minimization for PLA Optimization”, IEEE TCAD, Sep. 1987, pp.
727-750.

[15] H. Savoj and R. K. Brayton, “The Use of Observability and External
Don’t Cares for the Simplification of Multi-Level Networks”,
DAC’90, pp. 297-301.

[16] E. Schnarr and J. R. Larus, “Fast Out-of-Order Processor Simulation
Using Memoization”, ASPLOS’98, pp. 283-294

[17] C. E. Shannon, “A Mathematical Theory of Communication”, The
Bell System Technical Journal, Vol. 27, Oct. 1948, pp. 379-423.

[18] S. Sinha and R. K. Brayton, “Implementation and Use of SPFDs in
Optimizing Boolean Networks”, ICCAD’98, pp. 103-110.

[19] I. Wagner, V. Bertacco and T. Austin, “Shielding Against Design
Flaws with Field Repairable Control Logic”, DAC’06, pp. 344-347.

[20] I. Wagner, V. Bertacco and T. Austin, “StressTest: An Automatic
Approach to Test Generation via Activity Monitors”, DAC’05, pp.
783-788.

[21] S. Yamashita, H. Sawada, and A. Nagoya, “A New Method to
Express Functional Permissibilities for LUT Based FPGAs and Its
Applications”, ICCAD, 1996, pp. 254-261.

[22] S. Yamashita, H. Sawada and A. Nagoya, “SPFD: A New Method to
Express Functional Flexibility”, IEEE TCAD, Aug. 2000, pp.
840-849.

[23] Y.-S. Yang, S. Sinha, A. Veneris and R. E. Brayton, “Automating
Logic Rectification by Approximate SPFDs”, ASPDAC’07, pp.
402-407.

[24] Berkeley Logic Synthesis and Verification Group, ABC: A System
for Sequential Synthesis and Verification, Release 80308.
http://www-cad.eecs.berkeley.edu/˜alanmi/abc/

[25] “EDA Sales Jump in Q4”, EE Times, Apr. 03, 2008.
[26] “Europe Suppliers Score in Apple’s iPhone”, EE Times Europe, Jul.

02, 2007.
[27] Bug UnderGround, http://bug.eecs.umich.edu/
[28] http://www.cadence.com/
[29] MVSIS, http://www-cad.eecs.berkeley.edu/Respep/

Research/mvsis
[30] SpecINT2000 benchmarks, http://www.spec.org/

