
Automating Post-Silicon Debugging and Repair
Kai-hui Chang, Igor L. Markov, Valeria Bertacco

EECS Department, University of Michigan, Ann Arbor, MI 48109-2121
{changkh, imarkov, valeria}@umich.edu

ABSTRACT
Modern IC designs have reached unparalleled levels of overall
complexity, resulting in more and more bugs discovered post-silicon.
However, few EDA tools can assist engineers in post-silicon debug-
ging, since it requires a high level of sophistication. In this work we
develop a methodology and new algorithms to automate this debug-
ging process. Key innovations in our techniques include support
for the unusual physical constraints of post-silicon debugging and
ability to repair functional errors through subtle modifications of
an existing layout. Our proposed post-silicon debugging methodol-
ogy (FogClear) can also repair some electrical errors while pre-
serving functional correctness. Thus, by automating this tradi-
tionally manual debugging process, our contributions promise to
greatly reduce engineers’ debugging effort. As our empirical re-
sults show, we can repair more than 70% of the representative cir-
cuits automatically.

1. INTRODUCTION
Due to the high complexity of modern designs and the increas-

ing pressure to reduce their time-to-market, errors are more likely
to escape verification and are only found after a chip has been man-
ufactured. Needless to say, such errors must be fixed before the In-
tegrated Circuits (ICs) can be shipped to customers, making post-
silicon debugging a crucial step in the design process. To this end,
a recent EE Times article quotes: “post-silicon debugging is a dirty
little secret that can cost $15 to $20 million and take six months to
complete” [14]. Indeed, post-silicon debugging has become one of
the most time-consuming part, 35% on average, of the chip design
cycle [2]. Therefore, it is surprising that only few EDA tools and
algorithms address this problem [14].

Post-silicon debugging, however, is becoming more important
because silicon ICs offer several advantages not available in pre-
silicon. One reason is that manufacturing defects are becoming in-
creasingly difficult to simulate, including those caused by antenna,
thermal and inductive effects, as well as diffraction patterns. Non-
deterministic effects, such as manufacturing variability, pose even
greater challenges. As a result, comprehensive validation of a chip
can only be performed after tape-out. In addition, silicon dies allow
at-speed testing, which is orders of magnitude faster than logic sim-
ulation and astronomically faster than electrically-accurate simula-
tion. If a sufficiently strong post-silicon debugging methodology
is available, a part of the verification effort can be shifted to post-
silicon, taking some pressure off the enormous simulation farms
used by leading hardware vendors to validate their designs. Unfor-
tunately, such a methodology is not yet available today.

Pre-silicon and post-silicon debugging differ in several signifi-
cant ways. First, conceptual bugs that require deep understanding
of the chip’s functionality often appear in pre-silicon stage only,
and such bugs may not be fixable by automatic tools. On the other
hand, post-silicon functional bugs are often subtle errors that only
affect the output responses of a few input vectors, and their fixes
can usually be implemented with very few gates. However, finding
such fixes requires the analysis of detailed layout information, mak-
ing it a highly tedious and error-prone task. As we will show later,

our work can automate this process. Second, errors found post-
silicon typically include functional and electrical problems, as well
as those related to manufacturability and yield. However, issues
identified in pre-silicon are predominantly related to functional and
timing errors.1 Problems that manage to evade pre-silicon vali-
dation are often difficult to simulate, analyze and even duplicate.
Third, the observability of the internal signals in a silicon die is ex-
tremely limited. Most internal signals cannot be directly observed,
even in designs with built-in scan chains [5], which enable access
to sequential elements. Fourth, verifying the correctness of a fix is
challenging because it is difficult to physically implement a fix in a
chip that has already been manufactured. Although techniques such
as Focused Ion Beam (FIB) exist, they typically can only change
metal layers of the chip and cannot create any new transistor (this
process is often called metal fix).2 Finally, it is especially impor-
tant to minimize the size of each change in post-silicon debugging
because smaller changes are easier to implement with good FIB
techniques, and there is a smaller risk of unexpected side effects.
Due to these unusual circumstances and constraints, most debug-
ging techniques prevalent in early design stages cannot be applied
to post-silicon debugging. In particular, conventional physical syn-
thesis and Engineering Change Order (ECO) techniques affect too
many cells or wire segments to be useful in post-silicon debugging.
As illustrated in Figure 1(b), a small modification in the netlist that
replaces a gate with another one requires changes in all transistor
masks and refabrication of the chip. To this end, we observe that a
recent technique called SafeResynth [10] only selects netlist mod-
ifications that require minimal physical changes. This philosophy
is adopted in our work to handle the unusual constraints of post-
silicon debugging.

(a) (b) (c)
Figure 1: Post-silicon error-repair example. (a) The original
buggy layout. (b) A traditional resynthesis technique finds a
“simple” fix that only changes one cell type, but it requires ex-
pensive remanufacturing of the silicon die to change the tran-
sistors. (c) Our physically aware techniques find a more “com-
plex” fix involving the use of a spare cell and several wire re-
connections, but it can be implemented using only metal fixes
and has smaller physical impact.

1Post-silicon timing violations are often caused by electrical prob-
lems and are only symptoms of such errors.
2Despite the impressive success of the FIB technique at recent fab-
rication technology nodes, the use of FIB is projected to become
more problematic at future nodes, limiting the amount of allowable
change and further complicating post-silicon debugging.

Existing techniques that address the post-silicon debugging prob-
lem strive to provide more visibility and controllability for the sili-
con die [2]. Although such techniques are great aids to engineers,
they do not automate the debugging process itself. To address this
problem, we propose new algorithms and a methodology that facil-
itate the automation of post-silicon debugging. These techniques
can benefit from existing Design-For-Debugging (DFD) constructs
but can also work well without them. Key innovations in our tech-
niques include their support for the unusual physical constraints of
post-silicon debugging and their ability to repair errors by subtle
modifications of an existing layout. As illustrated in Figure 1(c),
our techniques are aware of the physical constraints and can repair
errors with minimal physical changes. To achieve these goals, our
algorithms are exhaustive in nature in order to generate as many
netlist and layout transformations as possible. This is important in
post-silicon debugging because often only a few transformations
can satisfy all the physical constraints. On the other hand, we also
utilize these constraints in our algorithms because they can prune
the search space effectively due to their highly restrictive nature.
The main contributions of our work include: (1) a post-silicon de-
bugging methodology, called FogClear, that automates the debug-
ging process; (2) the PARSyn resynthesis algorithm that searches
for netlist transformations which can be implemented with limited
physical resources; (3) the PAFER framework that automatically
diagnoses and repairs logic errors with minimal perturbation to the
layout; and (4) the adaptation of symmetry-based rewiring [8] and
SafeResynth [10] for post-silicon debugging to find layout trans-
formations that can repair electrical errors. Empirical results show
that our techniques are effective in repairing design errors and can
greatly reduce engineers’ debugging effort.

In addition to post-silicon debugging, FogClear can also be ap-
plied to reduce the cost of respins. As the data in [4] suggest, masks
responsible for active device layers contribute about 68% of the to-
tal mask cost at the 100nm technology node. With mask costs ap-
proaching 10 million dollars per set at the 45 nm node (see Figure
2) [25], being able to reuse transistor masks greatly reduces the cost
for a respin. This can be achieved using FogClear because the lay-
out transformations it produces only involve changes in the metal
layers and allow the reuse of the transistor masks.

Figure 2: Estimated mask costs at different technology nodes
[25]. The transformations produced by FogClear allow the
reuse of transistor masks and thus greatly reduce respin costs.

The rest of the paper is organized as follows. In Section 2 we de-
scribe the current post-silicon debugging methodology and review
some DFD techniques. The FogClear methodology that automates
this debugging process is illustrated in Section 3. Our functional
and electrical error repair techniques are explained in detail in Sec-
tion 4 and Section 5, respectively. Experimental results are shown
in Section 6, while Section 7 concludes this paper.

2. CURRENT POST-SILICON DEBUGGING
METHODOLOGY

Josephson documented the major silicon failure mechanisms in
microprocessors in [16], where the most common failures (exclud-
ing dynamic logic) are drive strength (9%), logic errors (9%), race
conditions (8%), unexpected capacitive coupling (7%), and drive
fights (7%). Another important problem at the latest technology
nodes is the antenna effect, which can damage a circuit during its
manufacturing or reduce the circuit’s reliability. These problems
often need to be solved via post-silicon debugging.

Figure 3 shows the current post-silicon debugging methodology.
To verify the correctness of a silicon die, engineers apply a large
number of test vectors to the die and then check their output re-
sponses. If the responses are correct for all the applied test vectors,
then the die passes verification. If not, then the test vectors that
expose the design errors become the bug trace that can be used to
diagnose and correct the errors. The trace will then be diagnosed
to identify the causes of the errors. Typically, there are three types
of errors, including functional, electrical, and manufacturing/yield.
In this work we only focus on the first two types of errors.

Figure 3: The current post-silicon debugging methodology. In
this work we propose the FogClear methodology that auto-
mates this debugging process, which is shown in Figure 4.

After the errors are diagnosed, the layout will be modified to
fix the errors, and the repaired layout will be verified again. This
process keeps repeating until verification passes. In post-silicon
debugging, however, it is often not necessary to fix all the errors
because repairing a part of the errors may be enough to enable fur-
ther verification. For example, a processor may contain a bug in its
ALU and another bug in its branch predictor. If fixing the bug in
the ALU already allows the die to be used in more testing, then it
is not necessary to fix the branch predictor in the same die.

In the following subsections, we first describe two DFD tech-
niques that can be used to facilitate post-silicon debugging. We
then describe two important steps in the debugging methodology,
including functional error repair and electrical error repair.

2.1 Design For Debugging
Without special constructs, only the values of a design’s primary

inputs and outputs can be observed in a chip, making its debugging
extremely difficult. As a result, most modern designs incorporate
a technique, called scan test [5], into their chips. This technique
allows engineers to observe the values of internal registers and can
greatly improve the design signals’ observability.

In order to change the logic in a silicon die, spare cells are often
scattered throughout a design to enable metal fix [17]. The number
of spare cells depends on the methodology, as well as the expec-
tation for respins and future steppings, and this number can reach
1% of all cells in mass-produced microprocessor designs. Alterna-
tively, Lin et al. [18] proposed the use of programmable logic for
this purpose. A recent start-up company [2, 26] provides a more
comprehensive solution that further improves the observability of

silicon dies and enables logic changes in the dies, and a success
story can be found in [15]. In our work, we assume that scan test
has been used, and spare cells are available for metal fix.

2.2 Functional Error Repair
If the errors are diagnosed to be functional, engineers can resort

to the current logic error repair techniques, such as the work by
Chang et al. [11], Veneris et al. [21], and Yang et al. [23]. These
techniques can automatically diagnose design errors in combina-
tional circuits and potentially find fixes to correct the errors. These
fixes can then be used to repair the layout, usually via metal fix.
However, implementing the fixes in the layout may not always be
feasible because: (1) there may be insufficient spare cells to im-
plement the resynthesis netlists; and (2) the wires to reconnect the
cells may be too long to be generated by FIB. Although techniques
that can generate various resynthesis netlists exist [24], they do not
take physical information into consideration. To find fixes com-
patible with an existing layout, engineers often generate alternative
fixes by perturbing their logic-level techniques and then resort to
tedious trial-and-error methodologies. If no such fix can be found,
engineers will have to do it manually. This is especially difficult
because the netlists were automatically generated and have proba-
bly undergone many iterations of optimizations. As a result, it is
difficult to understand the netlists even though the RTL code that
produced them were designed by the engineers.

Our solution to this problem is discussed in Section 4, and it
is based on the CoRé framework described in [11]. We adopted
CoRé because: (1) it uses an abstraction-refinement scheme, which
is more scalable than most existing techniques; (2) it only needs
input vectors, output responses, and state values, which are easily
available in post-silicon debugging; and (3) it provides a highly
flexible interface that can adopt different resynthesis techniques.
This is because CoRé operates on signatures, which are essentially
partial truth tables of the nodes in the circuit. As a result, we can
easily extend the framework to be physically aware by plugging in
our new resynthesis technique.

The CoRé framework works as follows. Given certain test vec-
tors and their output responses, it first uses simulation to generate
signatures, which provide an abstraction of the design because sig-
natures are partial truth tables of the wires in the circuit. Next, error
diagnosis and resynthesis are performed on the abstract model to
correct the errors. The repaired netlist is then verified. If verifica-
tion fails, the returned bug traces are used to extend and enrich the
signatures to refine the abstraction. This framework repeats until
verification passes.

2.3 Electrical Error Repair
Debugging electrical errors is often more challenging than de-

bugging functional errors because it does not allow the deployment
of logic debugging tools that designers are familiar with. In addi-
tion, there are various reasons for electrical errors [16], and an-
alyzing them requires profound design and physical knowledge.
Although techniques to debug electrical errors exist (e.g., voltage-
frequency Shmoos [3]), they are often heuristic in nature and re-
quire abundant expertise and experience. Even if the causes of the
errors can be identified, finding valid fixes is challenging because
most existing resynthesis techniques require changes in cells and
do not allow metal fix. To address this problem, techniques that
allow post-silicon metal fix have been developed recently, such as
ECO routing [22]. However, ECO routing can only repair some of
the electrical errors because it cannot find layout transformations
involving logic changes. To repair more difficult bugs, transforma-
tions that also utilize logic information are required. For example,
one way to repair a driving strength error is to identify alternative

signal sources that also generate the same signal, and this can only
be achieved when logic information is considered.

To this end, Chang et al. [9] proposed the concept of physical
safeness to measure how well physical parameters are preserved by
a physical synthesis technique. In their definition, techniques that
do not perturb existing cells are physically safe; therefore, they can
be used to repair electrical errors via metal fix. In light of this, we
adapt their SafeResynth technique for post-silicon error repair. In
addition, we develop a symmetry-based rewiring technique, called
SymWire, that is physically safe and can repair electrical errors.
Both techniques are able to find layout transformations involving
netlist changes and are more powerful than ECO routing alone.
These techniques are described in Section 5.

3. THE FOGCLEAR METHODOLOGY
Figure 4 shows our FogClear methodology that automates post-

silicon debugging. When post-silicon verification fails, a bug trace
will be produced. Since silicon dies offer simulation speeds or-
ders of magnitude faster than those provided by logic simulators,
constrained-random testing are used extensively, which can gener-
ate a bug trace that is extremely long. To simplify error diagnosis,
we introduce a step called bug trace minimization in our methodol-
ogy to reduce the complexity of the trace. To this end, we observe
that many existing bug trace minimization techniques, such as the
work by Safarpour et al. [20] or Pan et al. [19], rely heavily on SAT
analysis and lack the scalability to handle these traces. On the other
hand, the Butramin technique proposed by Chang et al. [7, 12] in-
cludes several simulation-based bug trace minimization methods,
which are especially suitable for post-silicon debugging because
simulation and bug trace minimization can be performed using the
silicon die. As a result, in our FogClear methodology we develop
the SimButramin component using the simulation-based methods
described in [7, 12].

After the bug trace is simplified, we simulate the trace by a logic
simulator using the netlist that produces the layout. If simulation
exposes the error, then the error is functional, and PAFER is used
to generate a repaired layout; otherwise the error is electrical. Cur-
rently, we still require manual error diagnosis to find the cause of an
electrical error. After the cause of the error is identified, we check
if the error can be repaired by ECO routing. If so, we apply ex-
isting ECO routing tools such as [22]; otherwise we use SymWire
or SafeResynth to change the logic and wire connections around
the error spot in order to fix the problem. The layout generated by
SymWire or SafeResynth is then routed by an ECO router to pro-
duce the final repaired layout. This layout can be used to fix the
silicon die for further verification.

Figure 4: The FogClear post-silicon debugging methodology.
In the following sections, we will describe our functional and

electrical error repair techniques in detail, including PAFER, SymWire
and SafeResynth.

4. PHYSICALLY AWARE
FUNCTIONAL ERROR REPAIR

In this section we describe our Physically Aware Functional Er-
ror Repair (PAFER) framework that automatically diagnoses and
fixes logic errors in the layout by changing its combinational por-
tion. In this context, we assume that state values are available, and
we treat connections to the flip-flops as primary inputs and out-
puts. Our PAFER framework extends previous work in [11] which
was empirically validated in the CoRé framework and shown to
be scalable and flexible. To support the layout change required in
logic error repair, we also describe a Physically Aware ReSynthesis
(PARSyn) algorithm in this section.

4.1 The PAFER Framework
The algorithmic flow of our PAFER framework is outlined in

Figure 5. Our enhancements to make the CoRé framework [11]
physically aware are marked in boldface. Note that unlike CoRé,
the circuits (ckterr, cktnew) in the PAFER framework now include
layout information.

framework PAFER(ckterr,vectorsp ,vectorse ,cktnew)
1 calculate ckterr ’s initial signatures using vectorsp and vectorse ;
2 f ixes← diagnose(ckterr ,vectorse);
3 foreach f ix ∈ f ixes
4 cktsnew ← PARSyn(fix,ckterr);
5 if (every circuit in cktsnew violates physical constraints)
6 continue;
7 cktnew ← the first circuit in cktsnew that does not violate

physical constraints;
8 counterexample← veri f y(cktnew);
9 if (counterexample is empty)

10 return (cktnew);
11 else
12 if (check(ckterr ,counterexample) fail)
13 f ixes← rediagnose(ckterr ,counterexample, f ixes);
14 simulate counterexample and update ckt’s signatures;
Figure 5: The algorithmic flow of the PAFER framework.

The inputs to the framework include the original circuit (ckterr)
and the test vectors (vectorsp , vectorse). The output of the frame-
work is a circuit (cktnew) that passes verification and does not vio-
late any physical constraints. In line 2 of the PAFER framework,
the error is diagnosed, and the fixes are returned in f ixes. Each
fix contains one or more wires that are responsible for the circuit’s
erroneous behavior and should be resynthesized. In line 4 of the
PAFER framework, PARSyn is used to generate a set of new resyn-
thesized circuits (cktnew), which will be described in the next sub-
section. These circuits are then checked to determine if any phys-
ical constraint is violated. For example, whether it is possible to
implement the change using metal fix. In lines 5-6, that no circuit
complies with the physical constraints means no valid implemen-
tation can be found for the current f ix. As a result, the f ix will be
abandoned and the next f ix will be tried. Otherwise, the first cir-
cuit that does not violate any physical constraints is selected in line
7, where the circuits in cktsnew can be pre-sorted using important
physical parameters such as timing, power consumption, or relia-
bility. The functional correctness of this circuit is then verified as
in the original CoRé framework. Please refer to [11, Section IV]
for more details on this part of the framework.

4.2 The PARSyn Algorithm
The resynthesis problem in post-silicon debugging is consider-

ably different from traditional ones because the numbers and types
of spare cells are often limited. As a result, traditional resynthe-
sis flow may not work because technology mapping the resynthesis
function using the limited number of cells can be difficult. Even if

the resynthesis function can be mapped, implementing the mapped
netlist may still be infeasible due to other physical limitations. There-
fore, it is desirable in post-silicon debugging that the resynthesis
technique can generate as many resynthesis netlists as possible.

To support this requirement, our PARSyn algorithm exhaustively
tries all possible combinations of spare cells and input signals in
order to produce various resynthesis netlists. To reduce its search
space, we also develop several pruning techniques based on log-
ical and physical constraints. Although exhaustive in nature, our
PARSyn algorithm is still practical because the numbers of spare
cells and possible inputs to the resynthesis netlists are often small
in post-silicon debugging, resulting in a significantly smaller search
space than traditional resynthesis problems.

Our PARSyn algorithm is illustrated in Figure 6, which tries to
resynthesize every wire (wiret) in the given f ix. In line 2 of the
algorithm, getSpareCell searches for spare cells within RANGE
and returns the results in spareCells, where RANGE is a distance
parameter given by the engineer. This parameter limits the search
of spare cells to those within RANGE starting from wiret’s driver.
One way to determine RANGE is to use the maximum length of a
wire that FIB can produce. A subcircuit, cktlocal , is then extracted
by extractSubCkt in line 3. This subcircuit contains the cells which
generate the signals that are allowed to be used as new inputs for
the resynthesis netlists. A set of resynthesis netlists (resynNetsnew)
is then generated by exhaustiveSearch in line 4. The cells in those
netlists are then “placed” using spare cells in the layout to produce
new circuits (cktsnew), which are returned in line 6.

function PARSyn(f ix,ckt);
1 foreach wiret ∈ f ix
2 spareCells← getSpareCell(wiret ,ckt,RANGE);
3 cktlocal ← extractSubCkt(wiret ,ckt,RANGE);
4 resynNetsnew ← exhaustiveSearch(1,spareCells,cktlocal);
5 cktsnew ← placeResynNetlist(ckt, resynNetsnew);
6 return (cktsnew);

Figure 6: The PARSyn algorithm.

To place the cells in a resynthesis netlist, we first sort spare cells
according to their distances to wiret’s driver. Next, we map each
cell in the resynthesis netlist, the one closer to the netlist’s output
first, to the spare cell closest to wiret ’s driver. The reason behind
this is that we assume the original driver is placed at a relatively
good location. Since our resynthesis netlist will replace the original
driver, we want to place the cell that generates the output signal of
the resynthesis netlist as close to that location as possible. The rest
of the cells in the resynthesis netlist are then placed using the spare
cells around that cell.

The exhaustiveSearch function called in the PARSyn algorithm
is given in Figure 7. This function exhaustively tries combinations
of different cell types and input signals in order to generate resyn-
thesis netlists. The inputs to the function include the current logic
level (logic), available spare cells (spareCells), and a subcircuit
(cktlocal) whose cells can be used to generate new inputs to the
resynthesis netlists. The function returns valid resynthesis netlists
in netlistsnew.

In the function, MAXLEVEL is the maximum depth of logic al-
lowed to be used by the resynthesis netlists. So when level equals
to MAXLEVEL, no further search is allowed, and all the cells in
cktlocal are returned (lines 1-2). In line 3, the search starts branch-
ing by trying every valid cell type, and the search is bounded if no
spare cells are available for that cell type (lines 4-5). If a cell is
available for resynthesis, it is deducted from the spareCells repos-
itory in line 6. In line 7 the algorithm recursively generates sub-
netlists for the next logic level, and the results are saved in netlistsub.
New netlists (netlistsn) for this logic level are then produced by

function exhaustiveSearch(level,spareCells,cktlocal)
1 if (level = MAXLEVEL)
2 return all cells in cktlocal ;
3 foreach cellType ∈ validCellTypes
4 if (checkSpareCell(spareCells,cellType) failed)
5 continue;
6 spareCells[cellType].count- -;
7 netlistssub ← exhaustiveSearch(level +1,spareCells,cktlocal);
8 netlistsn ← generateNewCkts(cellType,netlistssub);
9 netlistsn ← checkNetlist(netlistsn ,spareCells);

10 netlistsnew ← netlistsnew ∪netlistsn ;
11 if (level = 1)
12 removeIncorrect(netlistsnew);
13 return netlistsnew ;

Figure 7: The exhaustiveSearch function.

generateNewCkts. This function produces new netlists using a cell
with type=cellType and inputs from combinations of sub-netlists
from the next logic level. In line 9 checkNetlist checks all the
netlists in netlistn and remove those that cannot be implemented
using the available spare cells. All the netlists that can be imple-
mented are then added to a set of netlists called netlistsnew. If level
is 1, the logic correctness of the netlists in netlistsnew is checked
by removeIncorrect, and the netlists that cannot generate the cor-
rect resynthesis functions will be removed. The rest of the netlists
will then be returned in line 13. Note that BUFFER should al-
ways be one of the valid cell types in order to generate resynthe-
sis netlists whose logic levels are smaller than MAXLEVEL. The
BUFFERs in a resynthesis netlist can be implemented by connect-
ing their fanouts to their input wires without using any spare cells.

To bound the search in exhaustiveSearch, we implemented the
logic pruning techniques described in Chang’s GDS algorithm [11].
To further reduce the resynthesis runtime, we use netlist connectiv-
ity to remove part of the cells from our search pool: cells that are
too many levels of logic away from the erroneous wire are removed.
In addition, cells in the fanout cone of the erroneous wire are also
removed to avoid the formation of combinational loops.

5. AUTOMATING ELECTRICAL ERROR
REPAIR

The electrical errors found post-silicon are usually unlikely to
happen in any given region of a circuit, but become statistically
significant in large chips. To this end, a slight modification of the
affected wires has a high probability to successfully repair the prob-
lem. However, being able to check this by accurate simulation and
compare several alternative fixes increases the chances of a suc-
cessful repair even further. In this section we first describe two
techniques that can automatically find a variety of electrical error
repair options, including SymWire and SafeResynth. These tech-
niques are able to generate layout transformations that modify the
erroneous wires without affecting the circuit’s functional correct-
ness. Next, we study three cases to show how our techniques can
be used to repair electrical errors.

5.1 The SymWire Rewiring Technique
Symmetry-based rewiring changes the connections between gates

using symmetries. An example is illustrated in Figure 9(b), where
the inputs to cells g1 and g2 are symmetric and thus can be recon-
nected without changing the circuit’s functionality. The change in
connections modifies the electrical characteristics of the affected
wires and can be used to fix electrical errors. Since this rewiring
technique does not perturb any cell, it is especially suitable for post-
silicon debugging.

In light of this, we propose an electrical error repair technique
using symmetry-based rewiring, called SymWire, which is outlined

in Figure 8. The input to the algorithm is the wire (w) that has
electrical errors, and this algorithm changes the connections to the
wire using symmetries. In line 1, we extract various sub-circuits
(subCircuits) from the original circuit, where each sub-circuit has
at least one input connecting to w. Currently, we extract sub-circuits
composed of 1-7 cells in the fanout cone of w using breadth-first-
search and depth-first-search. For each extracted sub-circuit, which
is saved in (ckt), we detect as many symmetries as possible using
function symmetryDetect (line 3). If any of the symmetries involve
a permutation of w with another input, we swap the connections
to change the electrical characteristics of w. In our implementa-
tion, we adopt the symmetry-detection technique described in [8]
because their technique can detect a large number of symmetries
and supports a variety of cell types.

Function SymWire(w)
1 extract subCircuits with w as one of the inputs;
2 foreach ckt ∈ subCircuits
3 sym← symmetryDetect(ckt);
4 if (sym involves permutation of w with another input)
5 reconnect wires in ckt using sym;

Figure 8: The SymWire algorithm.

5.2 Adapting SafeResynth to Perform
Metal Fix

Some electrical errors cannot be fixed by perturbing a few wires.
For such errors, we need a more aggressive technique. We observe
that the SafeResynth technique described in [10] can find alternative
sources to generate a signal using an additional cell. Furthermore,
their technique does not perturb existing cells. Therefore, we adapt
SafeResynth to fix electrical errors, and it works as follows.

Assume that the error is caused by wire w or the cell g that drives
w. We first use Sa f eResynth to find an alternative way to generate
the same signal that drives w. In our work, however, we only rely
on the so-called “space cells” that are embedded into the design
but not connected to other cells. Therefore we do not need to insert
new cells, which would be impossible to implement with metal fix.
Next, we disconnect w from g and use the new cell to drive w. Since
a different cell will be used to drive w, we can change the electrical
characteristics of both g and w and potentially fix the error. Note
that SafeResynth subsumes cell relocation; therefore, it can also
find layout transformations involving replacements of cells.

5.3 Case Studies
In this subsection we show how our techniques can repair drive

strength and coupling problems, as well as avoid the harm caused
by the antenna effect. Note that these case studies only serve as
examples, and our techniques can also be applied to repair many
other errors.

Drive strength problems occur when a cell has insufficient driv-
ing capability to propagate its signal to all the fanouts within the
designed timing budget. Our SafeResynth technique solves this
problem by finding an alternative source to generate the same sig-
nal. The new source can then be used to drive a part of the fanouts
of the problematic cell, thus reducing its required driving capabil-
ity. An illustration of this process is given in Figure 9(a).

Coupling between long parallel wires that are next to each other
can result in delayed signal transitions under some conditions and
also introduces unexpected signal noise. Our SafeResynth tech-
nique can prevent these undesirable phenomena by replacing the
driver for one of the wires with an alternative signal source. Since
the cell that generates the new signal will be at a different location,
the wire topology can be changed. Alternatively, SymWire can also

(a)

(b)
Figure 9: Case studies. (a) g1 has insufficient driving strength,
and SafeResynth uses a new cell, gnew, to drive a part of g1’s
fanouts. (b) SymWire reduces coupling between parallel long
wires by changing their connections using symmetries, which
also changes metal layers and can alleviate the antenna effect.

be used to solve the coupling problem. As shown in Figure 9(b),
the affected wires no longer travel in parallel for long distances af-
ter rewiring, which can greatly reduce their coupling effects.

Antenna effects are caused by the charge accumulated during
semiconductor manufacturing in partially-connected wire segments.
This charge can damage and permanently disable transistors con-
nected to such wire segments. In less severe situations, it changes
the transistor’s behavior gradually and reduces the reliability of the
circuit. Because the charge accumulated in a metal layer will be
eliminated when the next layer is processed, it is possible to split
the total charge with another layer by breaking a long wire and
going up or down one layer through vias. Based on this observa-
tion, metal jumpers [13] have been used to alleviate the antenna ef-
fect, where vias are intentionally inserted to change layers for long
wires. However, the new vias will increase the resistivity of the nets
and slow down the signals. To this end, our SymWire technique can
find transformations that change the metal layers of several wires to
reduce their antenna effects. In addition, it allows simultaneous op-
timization of other parameters, such as the coupling between wires,
as shown in Figure 9(b).

6. EXPERIMENTAL RESULTS
To measure the effectiveness of the components in our FogClear

methodology, we conducted two experiments. In the first experi-
ment we apply PAFER to repair functional errors in a layout; while
the second experiment evaluates the effectiveness of SymWire and
SafeResynth in finding potential electrical fixes. To allow metal
fix, we pre-placed spare cells uniformly using the whitespace in
the layouts, and they occupied about 70% of each layout’s whites-
pace. The types of the spare cells included: INVERTER, AND,
OR, XOR, NAND, and NOR (all cells except INVERTER have
two inputs). In the PAFER framework, we set RANGE to 50µm
and MAXLEVEL to 2. All the experiments were conducted on
an AMD Opteron 880 workstation running Linux. The bench-
marks were selected from OpenCores [27] except DLX, Alpha,
and EXU ECL. DLX and Alpha were internally developed bench-
marks, while EXU ECL was the control unit of OpenSparc’s EXU
block [28]. Our benchmarks are representative because they cover
various categories of modern circuits, and their characteristics are
summarized in Table 1. In the table, “#FFs” is the number of
flip-flops and “#Cells” is the cell count of each benchmark. To
produce the layouts for our experiments, we first synthesized the
RTL designs with Cadence RTL Compiler 4.10 using a cell library
based on the 18µm technology node. We then placed the synthe-
sized netlists with Capo 10.2 [6] and routed them with Cadence
NanoRoute 4.10.

Benchmark Description #FFs #Cells
Stepper Stepper Motor Drive 25 226
SASC Simple Asynchronous Serial 117 549

Controller
EXU ECL OpenSparc EXU control unit 351 1460
Pre norm Part of FPU 71 1877
MiniRISC MiniRISC full chip 887 6402
AC97 ctrl WISHBONE AC 97 Controller 2199 11855
USB funct USB function core 1746 12808
MD5 MD5 full chip 910 13311
DLX 5-stage pipeline CPU running 2062 14725

MIPS-Lite ISA
PCI bridge32 PCI 3359 16816
AES core AES Cipher 530 20795
WB conmax WISHBONE Conmax IP Core 770 29034
Alpha 5-stage pipeline CPU running 2917 38299

Alpha ISA
Ethernet Ethernet IP core 10544 46771
DES perf DES core 8808 98341

Table 1: Characteristics of benchmarks.

6.1 Functional Error Repair
To evaluate our PAFER framework, we chose several bench-

marks and injected functional errors at either the gate level or the
Register Transfer Level (RTL). At the gate level we injected bugs
that complied with Abadir’s error model [1], while those injected
at the RTL were more complex functional errors (DLX contained
real bugs). We collected input patterns for the benchmarks from
several traces generated by verification (some of the traces were re-
duced by SimButramin), and a golden model was used to generate
the correct output responses and state values for error diagnosis and
correction. Note that the golden model can be a high-level behavior
model because we do not need the simulation values for the inter-
nal signals of the circuit. The goal of the this experiment was to fix
the layout of each benchmark so that the circuit produces correct
output responses for the given input patterns. This is similar to the
situation described in Section 2 where fixing the observed errors al-
lows the silicon die to be used in further verification. If the repaired
die fails further verification, new counterexamples will be used to
refine the fix as described in the PAFER framework. The results are
summarized in Table 2, where “#Patterns” is the number of input
patterns used in each benchmark, and “#Resyn. cells” is the num-
ber of cells used by the resynthesis netlist. In order to measure the
effects of our fix on important circuit parameters, we also report
the changes in via count(“#Vias”), wirelength (“WL”), and maxi-
mum delay (“Delay”) after the layout is repaired. These numbers
were collected after running NanoRoute in its ECO mode, and then
they were compared to those obtained from the original layout. The
maximum delay was reported by NanoRoute’s timing analyzer.

The results in Table 2 show that our techniques can successfully
repair logic errors for more than 70% of the benchmarks. We ana-
lyzed the benchmarks that could not be repaired and found that in
those benchmarks, cells that produce the required signals were too
far away and were excluded from our search. As a result, our resyn-
thesis technique could not find valid fixes. In practice, it also means
that the silicon die cannot be repaired via metal fix. The results also
show that our error-repair techniques may change physical parame-
ters such as via count, wirelength, and maximum delay. For exam-
ple, the wirelength of SASC(GL1) increased by more than 1% after
the layout was repaired. However, it is also possible that the fix we
performed will actually improve these parameters. For example,
the via count, wirelength, and maximum delay were all improved
in DLX(GL2). In general, the changes in these physical parameters
are typically small, showing that our error repair techniques have
few side effects.

Benchmark Bug description #Patterns #Resyn. Changes after repair Runtime
cells #Vias WL Delay (sec)

SASC(GL1) Missing wire 90 2 0.29% 1.27% -0.13% 9.9
SASC(GL2) Incorrect gate 66 1 0.13% 0.33% 0.00% 4.4
EXU ECL(GL1) Incorrect gate 90 No valid fix was found 158.71
EXU ECL(GL2) Wrong wire 74 0 0.01% 0.03% 0.00% 145.3
Pre norm(GL1) Incorrect wire 46 2 0.10% 0.24% -0.05% 38.92
DLX(GL1) Incorrect gate 46 0 0.38% 0.02% 0.00% 17245
DLX(GL2) Additional wire 33 0 -0.13% -0.04% -0.15% 12778
Pre norm(RTL1) Reduced OR replaced by reduced AND 672 3 0.19% 0.38% 0.57% 76.24
MD5(RTL1) Incorrect state transition 201 3 0.02% 0.03% -0.02% 29794
DLX(RTL1) SLTIU inst. selects the wrong ALU operation 2208 No valid fix was found 12546
DLX(RTL2) JAL inst. leads to incorrect bypass from MEM stage 1536 0 0.00% 0.00% 0.03% 8495
DLX(RTL3) Incorrect forwarding for ALU+IMM inst. 1794 0 0.00% 0.00% 0.03% 13807
DLX(RTL4) Does not write to reg31 1600 No valid fix was found 7723
DLX(RTL5) If RT = 7 memory write is incorrect 992 0 0.00% 0.00% 0.00% 5771

Table 2: Functional error repair results. The bugs in the upper half were injected at the gate level, while those in the lower half were
injected at the RTL. Some errors can be repaired by simply reconnecting wires and do not require the use of any spare cell, as shown
in Column 4.

Benchmark SymWire SafeResynth
#Repaired Metal segments affected Runtime #Repaired Metal segments affected Runtime

Min Max Mean (sec) Min Max Mean (sec)
Stepper 81 6 33 15.7 0.03 79 14 53 28.3 4.68
SASC 50 8 49 19.8 0.79 41 2 48 27.8 3.32
EXU ECL 68 7 42 15.0 1.13 71 14 831 119.1 23.02
MiniRISC 58 4 29 13.7 1.65 57 14 50 28.1 166
AC97 ctrl 52 9 26 13.9 3.26 56 14 53 31.9 68.02
USB funct 70 7 36 16.4 1.84 58 16 74 32.4 157.52
MD5 82 7 30 15.0 1.83 79 13 102 37.9 2630
DLX 64 6 49 15.8 11.00 67 13 97 40.2 8257
PCI bridge32 42 8 42 16.6 6.04 32 15 54 31.2 211.28
AES core 83 5 32 15.0 2.53 83 12 64 31.4 285.58
WB conmax 84 7 35 16.0 2.96 46 19 71 35.2 317.50
Alpha 67 9 41 16.3 12.32 55 11 101 36.9 85104
Ethernet 36 7 22 13.4 45.01 18 18 104 46.6 3714
DES perf 91 7 1020 36.7 4.86 76 10 60 29.0 585.34

Table 3: Results of electrical error repair. 100 wires were randomly selected to be erroneous, and “#Repaired” is the number of
errors that could be repaired by each technique. The number of metal segments affected by each technique is also shown.

6.2 Electrical Error Repair
We currently do not have access to tools that can identify elec-

trical errors in a layout. Therefore, in this experiment we measure
the effectiveness of our electrical error repair techniques by report-
ing the percentages of wires where at least one valid transformation
can be found. To this end, we selected 100 random wires from each
benchmark and assumed that the wires contained electrical errors.
Next, we applied SymWire and SafeResynth to find layout transfor-
mations that can modify the wires to repair the errors. The results
are summarized in Table 3. In the table, “#Repaired” is the number
of wires that could be modified, and “Runtime” is the total runtime
of analyzing all 100 wires. We also report the minimum, maximum
and average numbers of metal segments affected by our error-repair
techniques. These numbers include the segments removed and in-
serted due to the layout changes.

From the results, we observe that both SymWire and SafeR-
esynth were able to modify more than half of the wires for most
benchmarks, suggesting that they can effectively find layout trans-
formations that change the electrical characteristics of the erro-
neous wires. In addition, the number of affected metal segments is
often small, which indicates that both techniques have little physi-
cal impact to the chip, and the layout modifications can be imple-
mented easily by FIB. The runtime comparison between these tech-
niques shows that SymWire runs significantly faster than SafeR-

esynth because symmetry detection for small sub-circuits is signif-
icantly faster than equivalence checking. However, SafeResynth
is able to find and implement more aggressive layout changes for
more difficult errors: as the results suggest, SafeResynth typically
affects more metal segments than SymWire, producing more ag-
gressive physical modifications. We also observe that SymWire
seems to perform especially well for arithmetic cores such as MD5,
AES core, and DES perf, possibly due to the large numbers of
logic operations used in these cores. Since many basic logic opera-
tions are symmetric (such as AND, OR, XOR), SymWire is able to
find many repair opportunities. On the other hand, SymWire seems
to perform poorly for benchmarks which have high percentages of
flip-flops, such as SASC, PCI bridge32, and Ethernet. The reason
is that SymWire is not able to find symmetries in flip-flops. As a
result, if many wires only fanout to flip-flops, it will not be able to
find fixes for those wires.

7. CONCLUSIONS
Due to the explosive increase in design complexity, more and

more errors begin to escape pre-silicon verification and are discov-
ered post-silicon. While most steps in the IC design flow have been
highly automated, little effort has been devoted to the post-silicon
debugging process, making it mostly ad-hoc and difficult. To ad-
dress this problem, we propose the FogClear methodology that sys-
tematically automates the post-silicon debugging process, and it is

powered by our new techniques and algorithms that enhances key
steps in post-silicon debugging. An insight in these techniques is
their comprehensive nature that allows the generation of various
netlist or layout transformations, which is complemented by the in-
telligent use of pruning criteria derived from the restrictive physical
constraints unique in post-silicon debugging. This innovation pro-
vides the foundation of our PAFER framework and the PARSyn al-
gorithm that correct functional errors, as well as the SymWire and
SafeResynth methods that repair electrical errors. With our tech-
niques, post-silicon debugging is transformed from art into science.
Our empirical results show that these techniques can repair a sub-
stantial number of errors in most benchmarks, demonstrating their
effectiveness in facilitating the post-silicon debugging process. In
addition to post-silicon debugging, FogClear can also be used to
reduce the costs of respins: the fixes generated by FogClear only
affect metal layers, allowing the reuse of transistor masks, thus re-
ducing mask costs.
Acknowledgments. This work was partially funded by the NSF
under Award 0448189.

8. REFERENCES
[1] M. S. Abadir, J. Ferguson and T. E. Kirkland, “Logic Verification via

Test Generation”, IEEE TCAD, pp. 138-148, Jan. 1988.
[2] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi

and D. Miller, “A Reconfigurable Design-for-Debug Infrastructure
for SoCs”, DAC’06, pp. 7-12.

[3] K. Baker and J. V. Beers, “Shmoo Plotting: The Black Art of IC
Testing”, IEEE Design and Test of Computers, Vol. 14, No. 3, pp.
90-97, 1997.

[4] A. Balasinski, “Optimization of Sub-100-nm Designs for Mask Cost
Reduction”, Journal of Microlithography, Microfabrication, and
Microsystems, Vol. 3, NO. 2, pp. 322-331, Apr. 2004.

[5] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing,
Kluwer, Boston, 2000.

[6] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can Recursive
Bisection Alone Produce Routable Placements?” DAC’00, pp.
693-698.

[7] K.-H. Chang, V. Bertacco and I. L. Markov, “Simulation-based Bug
Trace Minimization with BMC-based Refinement”, ICCAD’05, pp.
1045-1051.

[8] K.-H. Chang, I. L. Markov and V. Bertacco, “Post-Placement
Rewiring and Rebuffering by Exhaustive Search For Functional
Symmetries”, ICCAD’05, pp. 56-63.

[9] K.-H. Chang, I. L. Markov and V. Bertacco, “Keeping Physical
Synthesis Safe and Sound”, IWLS’06, pp. 86-93.

[10] K.-H. Chang, I. L. Markov and V. Bertacco, “Safe Delay
Optimization for Physical Synthesis”, ASPDAC’07, pp. 628-633.

[11] K.-H. Chang, I. L. Markov and V. Bertacco, “Fixing Design Errors
with Counterexamples and Resynthesis”, ASPDAC’07, pp. 944-949.

[12] K.-H. Chang, V. Bertacco and I. L. Markov, “Simulation-based Bug
Trace Minimization with BMC-based Refinement”, IEEE TCAD,
Vol. 26, No. 1, pp. 152-165, Jan. 2007.

[13] J. Ferguson, “Turning Up the Yield”, IEE Electronics Systems and
Software, pp. 12-15, June/July 2003.

[14] R. Goering, “Post-Silicon Debugging Worth a Second Look”,
EETimes, Feb. 05, 2007.

[15] W. Jiang, T. Marwah and D. Bouldin, “Enhancing Reliability and
Flexibility of a System-on-Chip Using Reconfigurable Logic”,
MWSCAS’05, pp. 879-882.

[16] D. Josephson, “The Manic Depression of Microprocessor Debug”,
ITC’02, pp. 657-663.

[17] D. Josephson, “The Good, the Bad, and the Ugly of Silicon Debug”,
DAC’06, pp. 3-6.

[18] C.-H. Lin, Y.-C. Huang, S.-C. Chang, and W.-B. Jone, “Design and
Design Automation of Rectification Logic for Engineering Change”,
ASPDAC’05, pp. 1006-1009.

[19] S.-J. Pan, K.-T. Cheng, J. Moondanos, and Z. Hanna, “Generation of
Shorter Sequences for High Resolution Error Diagnosis Using
Sequential SAT”, ASPDAC’06, pp. 25-29.

[20] S. Safarpour, A. Veneris, and H. Mangassarian, “Trace Compaction
using SAT-based Reachability Analysis”, ASPDAC’07, pp. 932-937.

[21] A. Veneris and I. N. Hajj, “Design Error Diagnosis and Correction
via Test Vector Simulation”, IEEE TCAD, pp. 1803-1816, Dec. 1999.

[22] H. Xiang, L.-D. Huang, K.-Y. Chao, and M. D. F. Wong, “An ECO
Algorithm for Resolving OPC and Coupling Capacitance
Violations”, ASICON’05, pp. 784-787.

[23] Y.-S. Yang, S. Sinha, A. Veneris and R. E. Brayton, “Automating
Logic Rectification by Approximate SPFDs”, ASPDAC’07, pp.
402-407.

[24] J. Zhang, S. Sinha, A. Mishchenko, R. Brayton, and M.
Chrzanowska-Jeske, “Simulation and Satisfiability in Logic
Synthesis”, Proc. IWLS’05, pp. 161-168

[25] International Technology Roadmap for Semiconductors 2005
Edition, http://www.itrs.net

[26] http://www.dafca.com/
[27] http://www.opencores.com/
[28] http://opensparc-t1.sunsource.net/

