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ABSTRACT
The recent improvements in SAT solving algorithms, driven by
the quest to solve increasingly complex problem instances, has
produced techniques whose objective is to prune large portions of
the search space to converge quickly to a solution (for instance,
conflict-driven learning). In particular, solutions have been sug-
gested in this area which attack the problem by attempting to par-
allelize DPLL-based SAT. However, so far the results have been
mixed, which, consequently, have led to a scarcity of research in
this space. One of the challenges of this direction is that finding
a good partitioning of the space is not straightforward when using
a DPLL-based algorithm. Moreover, partitioning the problem lim-
its the benefits that can be ripped from effective learning and good
variable ordering heuristics in sequential solvers.

In this paper, we propose techniques which improve upon pre-
vious approaches, primarily by improving the quality of learning
during the search. Our first technique implements a parallel version
of recursive learning (RL), which we use as a preprocessor to sim-
plify the initial instance. Unlike previous DPLL-based approaches,
RL can be easily partitioned and each processor learns information
that is beneficial to solving the problem at hand. Our results indi-
cate that this initial preprocessing can be done efficiently when di-
vided among several processors, thereby boosting the performance
of solving the resulting instance. In addition to RL, we explore
strategies for improving parallel DPLL-based algorithms by adopt-
ing heuristics which have proven effective in the sequential domain,
such as VSIDs, and by applying them to shared learning and parti-
tioning. We show results that indicate improvement over previous
work and reveal that future enhancement could lead to better mech-
anisms for pruning search space through shared learning strategies
in a parallel framework.

1. INTRODUCTION
Several approaches to develop efficient SAT solvers have been

proposed in the past, including techniques involving resolution and
heuristic local search. Most SAT solvers today, however, use an
algorithm that is a variant of the DPLL algorithm introduced in [1].
Several improvements have been made to enhance the performance
of the baseline DPLL algorithm: conflict-driven learning and non-
chronological backtracking have been studied in [2], and have con-
tributed to exceptional performance improvements over a wide va-
riety of SAT instances. Boolean Constraint Propagation (BCP) is a
component of SAT solvers that is used extensively at run-time: its
performance has been streamlined in [3]. Techniques to find a good
decision order for the variable in the SAT instance [3] and various
preprocessing techniques [4] have also been considered.

Despite these advances, many important SAT problems are still
beyond the capabilities of present solvers. Because of the inherent
complexity of this problem, the amount of improvements that can
be made seems to be limited, and, as a result, parallel approaches
seem to have the potential for breaking the performance barrier.

The most common approach to parallelizing a SAT solver uses
the DPLL-algorithm as a starting point and assigns different guid-
ing paths [5, 6] or initial sets of assignments to different processors
so that the SAT space can be partitioned effectively [7]. However,

the authors offer little insight of what would be an effective guid-
ing path to adequately partition the work. A second issue in these
approaches involves the aspect of communicating learned informa-
tion obtained on individual solvers through conflict-driven learning
to other solvers running in parallel. The analysis of this aspect
is also inconclusive, since only simple filtering heuristics are sug-
gested [7, 5]. The results of several of these parallel ventures are
generally positive but inconsistent. There is little experimental data
that shows that the techniques developed are effective.

In this paper we present advances in parallel SAT solving by
adopting strategies which effectively prune the search space. The
difficulty of partitioning a DPLL-based algorithm, which we grasped
from the literature, led us to consider the alternative of using re-
cursive learning (RL). Potentially, a SAT instance can be solved
entirely by recursive learning, but this strategy would be much less
efficient than the original sequential DPLL algorithm. However, we
found that the recursive learning algorithm can be effectively parti-
tioned and therefore could be efficiently applied as a preprocessor
for improving the initial SAT instance which our results indicate in
several cases.

We also provide improvements to DPLL-based parallel algo-
rithms by incorporating strategies effective in the sequential do-
main and applying them in the parallel one. In particular, we pro-
pose different strategies for partitioning a SAT instance among in-
dividual DPLL-based solver engines with the intent of maximizing
the amount of useful computation. The most effective techniques
take advantage of variable counting strategies originally developed
for sequential solvers. Finally, we present learning techniques spe-
cific to a parallel context, that perform considerably better than
strategies previously considered.

In the following sections, we begin our analysis with some of the
relevant previous work and the necessary background information
to present our techniques. We then discuss our three main con-
tributions in the context of our implementation of a parallel SAT
solver, presenting our strategy for 1) parallelizing recursive learn-
ing, 2) choosing an appropriate guiding path when splitting a SAT
instance, and 3) offering a learning filter that selects clauses based
on the activity of the literals they include. We present experimen-
tal results that evaluate each of these techniques individually, and
conclude by outlining future research directions.

2. PREVIOUS WORK
Research on the parallelization of SAT problems has pursued two

general directions–coarse-grain parallelization and fine-grain par-
allelization. Fine-grain parallelization strategies target the Boolean
Constraint Propagation (BCP) used extensively in solving SAT prob-
lems. The assignment of a variable must be propagated to every
relevant clause to check for implications and conflicts that can re-
sult from the assignment. BCP can be parallelized by splitting the
number of clauses among separate processing units to achieve lin-
ear speedup in BCP. Coarse-grain parallelization strategies involve
finding a partition of the search-space by starting different process-
ing units with different variable assignments.

Fine-grain parallelization would be hard to implement on gen-
eral distributed or CMP architecture because of the frequency that



BCP is used and therefore the demanding communication require-
ment that it entails. As a result, fine-grain parallelization has been
implemented on specific parallel architectures [8] and also by map-
ping the SAT instance onto specific architecture such as FPGAs [9,
10]. These techniques provide noticeable parallelization of SAT
but are limited by the lack of scalability and by the architectural
specificity required.

Coarse-grain parallelization has been implemented on large, dis-
tributed architectures as well as smaller multiprocessor approaches.
Coarse-grain parallelization is limited by two factors. In SAT, de-
termining the guiding paths that partition the problem adequately
among the processors is not straightforward. In addition, conflict-
based learning done on sequential solvers must be communicated
intelligently to other solvers to improve the performance of the par-
allel solver. Several designs have been suggested but most use com-
mon strategies for partitioning the problem and for communicating
learned information on the sequential solver [11, 6, 7]. These de-
signs all show improvement but tend to focus more on the architec-
tural issues such as communication and load balancing but little on
improved guiding paths or learning strategies.

3. BACKGROUND
The SAT problem consists of choosing an assignment for a set of

variables, V , that satisfies a Boolean equation or discovering that
no such assignment exists. The Boolean equation is expressed in
conjunctive-normal form (CNF), F = (a+b+c)(d+e)...., which
is a conjunction of clauses, like (a+b+c) and (d+e). A clause is
a disjunction of literals which are the input variables of F that can
have a polarity of positive or negative.

3.1 SAT Algorithm
The basic approach for solving SAT is a branch and bound algo-

rithm called the Davis-Putnam (DPLL) algorithm [1]. Several in-
novations such as non-chronological backtracking, conflict-driven
learning, and decision heuristics greatly improve upon this approach
[2, 3, 12]. The essential components of a SAT solver are shown in
the algorithm in Figure 1.

search {
while(true) {

propagate();
if(conflict) {
analyze conflict();
if(top level conflict) return UNSAT;
backtrack();

}
else if(satisfied) return SAT;
else decide();

}
}

Figure 1: Pseudocode for a generalized DPLL-SAT Algorithm

The search function explores the decision tree until a satis-
fying assignment is found or the entire space is traversed with-
out finding any such assignment. The decide function picks
the next literal that will be propagated. Many methods exist for
picking this variable. In the next section, we will describe the
VSIDS algorithm developed in Chaff [3]. The propagate func-
tion performs the BCP operation. If this assignment is not a sat-
isfying one, the algorithm checks whether the current assignment
has produced a conflict. The analyze conflict function does
the conflict-driven learning. The information learned through this
process is encoded as clauses and will be referred to as learnts.
The backtrack function undoes the previous assignments that
contributed to the conflict. Periodically, the search function is

stopped and restarted. Results show that random restarts are criti-
cal in finding a solution in a reasonable amount of time, particularly
for complex instances, by avoiding portions of the problem where
the learning is very localized [3, 13].

3.2 VSIDS Heuristic
Various strategies for choosing a variable in decide can greatly

effect performance. Various heuristics have been explored in the
past in the attempt to select decision variables in a sequence that
brings the solver to fast convergence. The VSIDS (Variable State
Independent Decaying Sum) algorithm involves associating an ”ac-
tivity” count with each literal [3]. Whenever a learnt clause is gen-
erated from a conflict, each literal that occurs in the clause has its
activity incremented by a certain value. Periodically, every literal
in the problem instance is divided by some experimentally tuned
number. When a decide is called, the highest-valued undecided
literal is chosen.

3.3 Recursive Learning
In addition to conflict-driven learning, other techniques can be

employed to discover learnt clauses that could prune the search-
space. One such technique, recursive learning (RL), involves as-
signing selected variables in the CNF instance to certain values
with the objective to discover necessary variables assignments. A
necessary variable assignment is a variable that must be assigned
to a certain value in any satisfiable solution of the instance. For
instance, in the formula, (a + b)(a′ + c)(b′ + c), the variable c is
assigned to 1 because either a or b must be assigned to 1 to sat-
isfy the clause, (a + b). Hence, a 1-literal learnt clause (c) can
be added to the database. Recursive learning algorithms have been
developed to identify these situations. Moreover, as the name im-
plies, the algorithm can be applied recursively to construct learnt
clauses of size greater than one literal. A more detailed presenta-
tion of these recursive applications of the algorithm is addressed in
Section 4.1. Recursive Learning has been examined in ATPG appli-
cations as well as a technique to adopt during DPLL to augmenting
the performance of a SAT solver [14, 15, 16, 17, 18, 19].

3.4 Parallel SAT Approaches
Effectively partitioning the search space of a SAT problem is an

important aspect in the parallelization of the DPLL-algorithm. Be-
fore the popularization of conflict-driven learning, this partitioning
and the derived goal to balance the load among the processors dom-
inated the research scene of parallel SAT solvers. One strategy used
involves sending to each SAT solver an initial set of assignments
called a guiding path [6, 5]. Several strategies can be employed
to find a guiding path for a particular solver. In [5], the next de-
cision variable chosen by the heuristic in the sequential solver is
used to decide how to construct a guiding path. In general, these
strategies do not guarantee that the sub-problems created by each
guiding path will result in a balanced work load among the solvers.

With the development of conflict-learning, parallel solvers need
the ability to communicate newly learned information to each other.
Because of the large amount of communication required to send all
this data along with the increased BCP costs stemming from the
addition of several learnt clauses from different solvers, there is
an additional requirement to deploy some type of ”filtering” strat-
egy to reduce the number of learnt clauses that are communicated
among parallel solvers. The strategy most commonly used involves
filtering the learnt clauses sent to other SAT solvers based on their
size [7, 5]. For instance learnt clauses with more than x literals will
not be sent to other solvers. The logic behind this heuristic comes
from the belief that learnt clauses with fewer literals procure a more
aggressive pruning of the search space.



4. NEW APPROACHES IN PARALLEL SAT
Previous implementations of parallel SAT solvers use very simi-

lar techniques for learning and for creating new guiding paths. Al-
though these implementations often perform faster than non-parallel
SAT solvers, the results are not clearly attributed to any particular
technique. In other words, it is unclear whether the speedup is at-
tributable to a good parallel algorithm or simply to the variance
among various heuristics in a sequential solver. In addition, these
parallel approaches fail to take advantage of techniques that have
achieved success in the sequential domain. For example, a sequen-
tial solver using effective learning can achieve orders of magnitude
speedup in many cases. However, learning in a parallel solver has
not been implemented effectively and many important learnts in
one solver may never be added to another. As a result, current se-
quential solvers can actually outperform their parallel counterparts.

In the following few sections, we introduce different techniques
that address some of the limitations of previous parallel SAT imple-
mentations. In the next section, we implement a parallel recursive
learning algorithm as a preprocessor to a sequential version of a
SAT solver. Parallelizing recursive learning is straightforward and
offers the sequential solver learnt clauses that prune its space con-
siderably. We then implement a DPLL-based distributed solver that
carefully picks guiding paths and exchanges learnt clauses intelli-
gently between the processors.

4.1 Recursive Learning Preprocessor
A basic definition of recursive learning was offered in Section

3.3. Recursive learning (RL) is one way to further constrain the
initial problem by identifying necessary assignments. Despite the
exponential complexity of the RL algorithm, we noticed that the
ability to parallelize RL is as simple as dividing the problems into
N pieces for N different processors or clients. Because of this
behavior, we implemented a parallel RL algorithm to act as a pre-
processor for a DPLL-based sequential solver. Even though the
RL learnts reduce the computation time of a sequential solver it of-
ten becomes prohibitively expensive to compute these learnts as a
preprocessing step. Therefore we offer a fundamental contribution
to parallel SAT by offering a parallel approach to RL that has the
potential to reduce the search space and subsequently improve the
performance of a sequential solver. The following few paragraphs
explain how RL is performed sequentially and then explains how
this algorithm is parallelized.

The complexity of the RL algorithm depends on the level of re-
cursion that is desired. For instance, 1-RL would involve the com-
putation of necessary 1-literal assignments involving 1 level of re-
cursion. In others words, 1-RL produces learnt clauses of 1-literal
size. In general, X-RL produces learnt clauses of X literals and
requires more computation as X increases. Algorithms will now
be presented for 1-RL and 2-RL and computation for any X-RL is
easily inferred from this. The algorithm for performing 1-RL on a
set of clauses is provided in Figure 2.

The algorithm begins by iterating through each clause in the
set of clauses that define the SAT instance. We initialize the list,
necessary assigns, to contain all possible assignments, or
2N assignments for a problem with N variables. For each clause
every literal in the clause is examined one at a time. One literal
will be assumed at a time and any implications of this decision
are propagated through all the clauses. The assignments implied
by assuming this lit are intersected with the current necessary as-
signments that exist for the current clause being examined. The
function undoDecision clears the assignment and implications
produced previously. After every literal is examined in the clause,
the literals that were propagated by each assignment can now be

added as 1-literal learnt clauses to the initial problem.

1-RL Algorithm(clauses) {
for each C in clauses {

necessary assigns(UNIV);
for each lit in C {
assume(lit);
implications = propagate();
necessary assigns =

intersect(necessary assigns,
implications);

undoDecision(lit);
}
1lit learnts += necessary assigns;

}
}

Figure 2: Algorithm to Calculate Recursive Learning Learnts
containing only one literal

Example 1. Consider the following instance: (a+b)(a′+c)(b′+
c)(c′ + d). By performing the algorithm in Figure 2, we see that
the literals c and d can be added to the initial list of clauses. This
occurs because (a = 1) → c → d and (b = 1) → c → d when
the first clause is examined. Since the assignment a = 1 or b = 1
needs to be made to satisfy the clause, (a + b), and c = 1 and
d = 1 are implied by both such assignments, both are necessary
assignments and can be added as learned information.

The previous algorithm works with the knowledge that every
clause must have at least one literal that is true for a satisfiable
solution to be found. Other combinations of assignments can be
made to produce other types of learnt clauses. Figure 3 shows the
algorithm for 2-RL that produces learnt clauses with two literals.

2-RL Algorithm(clauses) {
for each C in clauses {

for each lit1 in C {
necessary assigns(UNIV);
assume(˜lit1);
for each lit2 in C {

if(lit1 == lit2) continue;
assume(lit2);
implications = propagate();
necessary assigns =

intersect(necessary assigns,
implications);

undoDecision(lit2);
}
undoDecision(˜lit1);
generate 2lit learnts(necessary assigns);

}
}

}

Figure 3: Algorithm to Calculate Recursive Learning Learnts
containing two literals

This algorithm is similar to the 1-RL algorithm; however, in-
stead of assigning 1 literal at time, two literals are assumed and
their implications are propagated. The first lit is assumed to be
false. The innermost loop then iterates through the remaining lit-
erals in the clause and identifies implications that are common to
all these sets of assignments. 2-literal learnt clauses are generated
by calling generate 2lit literals. The learnt clauses gen-
erated consist of the literal that was assumed false in the particular
clause being examined and each literal that was implied after it-
erating through the remaining literals in that particular clause. To
clarify this procedure and its correctness, we offer the following
example:

Example 2. Consider a set of clauses (a + b′ + c)(a + b +
d)(a + c′ + d). The first step of the algorithm assigns a = 0
and b = 0 which implies d. Next, a = 0 and c = 1 which also



implies d. The algorithm identifies d as a necessary assignment
when assuming a = 0. In other words the 2-literal learnt clause
(a + d) could be added to the set of clauses. This occurs because
a′b′ → d is logically equivalent to (a + b + d) and a′c → d is
logically equivalent to (a + c′ + d). By resolving (a + b + d) with
(a + b′ + c), (a + c + d) is derived. Then (a + c′ + d) can be
resolved with (a+ c + d) to produce (a+ d). Continuing with this
algorithm literal b′ would then be examined followed by c and then
every other clause and literal in the formula. However, no other
2-RL clauses exist for this particular example.

Calculating learnt clauses using recursive learning can be an ex-
pensive procedure that can involve an exponential amount of work
depending on how much recursion is performed. In our implemen-
tation of RL, we find all 1-RL and 2-RL learnts for a particular
SAT instance as described in Figure 2 and Figure 3. We avoid
other levels of recursion because of the complexity. Despite the
potential usefulness of generating 1-literal and 2-literal clauses that
can prune the search space of a SAT solver, the complexity of 1-RL
and 2-RL might make it an unattractive preprocessor for a sequen-
tial SAT solver. However, we noticed that this algorithm can easily
be parallelized while DPLL cannot.

We parallelize RL by initiating multiple client processors with
the original SAT instance or set of clauses. A central server man-
ages the work of the client processors. The server’s first task is
to assign to each client a section of clauses to examine. In other
words, for two clients, one client would iterate through the first half
of the clauses (the first loop in Figures 2 and 3 would be split into
two) and the other client would examine the second half. When
each client finishes its recursive learning algorithms, the server
must obtain the new learnt clauses and concatenate them to the
initial set of clauses. At this point the new set of clauses is used
as input to a SAT solver (either sequential or parallel). The speed-
up achieved by parallelizing SAT is nearly linear to the number of
client processors involved in recursive learning.

4.2 Parallel SAT Solver
In addition to implementing a parallel preprocessor based on RL,

we implemented a parallel version of a DPLL-based SAT algorithm
to identify useful partitioning and learning heuristics to gain insight
into parallelizing SAT effectively. Our main goal is to develop a
parallel framework that will generate many useful learnts and send
those learnts to solvers that can benefit from them. Effective par-
titioning is needed to maximize the amount learnts that are gener-
ated.

Our design consists of multiple client processors connected via
a high speed network with a single global server that coordinates
the clients’ efforts. In the next section, we examine a partitioning
scheme that our distributed solver uses to effectively balance the
problem among all the clients. We then discuss our strategy for
sending learnt clauses from one client to another while ensuring
that the extra cost in BCP associated with adding learnt clauses is
offset by the quality of the learnt clauses added.

4.2.1 Splitting Strategies.
Several previous parallel SAT solvers explained their techniques

for constructing guiding paths to partition the SAT instance among
clients. In our parallel solver, we let the server pick the initial guid-
ing paths to send to each client. For instance, if a is a variable in the
SAT instance, literal a could be sent as a guiding path to one client
and a′ could be sent to another client. Because choosing a vari-
able poorly will not partition the SAT search space effectively, the
server picks an initial variable based on the VSIDS activity similar
to how a sequential solver chooses a high VSIDS variable to assign
the next variable to improve its performance. Since VSIDS activity

changes during the SAT solver’s execution, we experimentally de-
cided on a insignificantly small amount of time that the server runs
sequentially to produce VSIDS information that could be used to
construct the initial guiding paths.

After the initial partition, the server’s primary responsibility is
in making sure that each client has work to do by requesting guid-
ing paths that active clients recommend. For instance, if client A
is solving the SAT instance with a guiding path a, b, c, d′ (in other
words, (a = 1, b = 1, c = 1, d = 0)) and client B is currently
not doing any solving. Client A must decide on a variable x such
that it will now have a guiding path (a, b, c, d′, x) and client B will
have a guiding path of (a, b, c, d′, x′) guaranteeing the complete-
ness of the search. The client that is chosen to give the guided
path is the client that has been working on its search space the
longest. We pick the variable, x, based primarily on its VSIDS
activity according to the client being chosen. This is a slight vari-
ation to some previous approaches that just choose the next vari-
able picked by the decide function. However, when sequential
solvers assign variables based on VSIDS activity, the next variable
returned by decide is often close to the highest VSIDS activ-
ity. Either approach should be an effective way to construct new
guiding paths. We decided to let the client decide x instead of the
server because the client’s VSIDS information is more particular
to the sub-problem that is being partitioned than the initial VSIDS
information obtained by the server.

4.2.2 Learning Strategies.
One of the challenges involved in parallelizing SAT is decid-

ing what learnt clauses to send to which clients. Traditionally, the
analysis of the effects of sharing learnt clauses among multiple pro-
cessors solving SAT focused on using a size filter to choose learnt
clauses that should be sent to each client. For instance, one strat-
egy would be to send learnt clauses that only have fewer than 10
literals. This approach was adopted for two reasons. First, it is be-
lieved that smaller learnt clauses would more effectively prune the
search space. Secondly, not limiting the amount of learnt clauses
sent would negatively effect each solver by increasing the process-
ing time required by BCP negating the utility of learning more in-
formation.

In our approach, we acknowledge the importance of limiting the
amount of learnt clauses that are sent to other clients. However,
we reject the notion that sending learnt clauses by size is effective
for the same reason that learnt clauses obtained by minimal cut do
not necessarily outperform 1-UIP cuts that involve more literals as
explained in [20]. With this in mind, we filter learnt clauses based
on the quality of those learnt clauses as indicated by an activity
count that is associated with each learnt clause that indicates how
much the learnt clause has been used by the sequential solver [21,
22] during conflict analysis. The concept is similar to VSIDS. We
therefore choose the highest activity learnt clauses to send to other
clients. As with previous solvers, we limit the number of learnt
clauses we send based on some experimentally-guided threshold.
The server, as with other approaches, prevents any learnt clause
from being sent to a client that will immediately satisfy the learnt
clause based on the client’s guiding path.

5. EXPERIMENTAL RESULTS
We use the very extensible and efficient sequential solver, Min-

iSat [21], as the foundation of our parallel solver and for our base-
line. We test our benchmarks on a 100 mbps network with Pentium
4 3.2GHz processors with 1GB of memory running Linux. The
benchmarks that we use are described and developed in [23, 24,
25, 26]. We use three SATISFIABLE benchmarks, hanoi5, hgen,



Table 1: Runtime for the 1-RL algorithm using different num-
ber of clients

Benchmark 1Cl 2Cl 4Cl 8Cl

1dlx c bp f 8.26 4.38 2.25 1.21
1dlx c ex bp u f 21.86 11.5 6.29 3.25
4pipe 3.12 1.7 0.91 0.49
5pipe 13.3 7.12 3.89 2.04
9vliw bp mc 30.64 16.36 8.27 4.62
engine 4 nd 3.85 2.03 1.13 0.68
engine 5 nd case1 45.61 24.84 13.94 7.62
hanoi5 0.15 0.08 0.04 0.02

Table 2: Runtime for the 2-RL algorithm using different num-
ber of clients

Benchmark 1Cl 2Cl 4Cl 8Cl

1dlx c bp f 275 45 27 17
1dlx c ex bp u f 2378 1574 728 521
2bitadd 10 0.07 0.05 0.05 0.04
3bitadd 31 9.01 9.11 9.01 7.86
4pipe 42 23 13 7.88
5pipe 1316 700 130 40
9vliw bp mc 1258 655 325 166
engine 4 nd 50 29 17 11
engine 5 nd case1 2489 1398 746 487
hanoi5 0.47 0.31 0.19 0.14

and 3bitadd 31, while the rest are UNSATISFIABLE. Two of the
benchmarks, hgen and urqh3x3, are randomly generated. We chose
benchmarks from test suites that were solvable by MiniSAT and did
not lead to negligible runtimes. Some large benchmark files were
not included because they tended to timeout due to memory con-
straints in the underlying solver such as the omitted benchmarks
from the engin unsat test suite. Smaller benchmark instances from
many of the represented suites such as 2pipe, 3pipe, and hanoi4
have negligible runtimes and were inadequate for demonstrating
the performance of our approaches.

The following sections first examine the positive contribution
of preprocessing the benchmarks with parallel RL and then show
some preliminary results for implementing a parallel DPLL-based
algorithm that reveal the potential for further research for develop-
ing a more comprehensive parallel learning framework.

5.1 Parallel RL Results
We implemented parallel versions of 1-RL and 2-RL as a prepro-

cessor for a sequential solver. In Table 1, we show the computation
time required to perform 1-RL on a benchmark for 1, 2, 4, and 8
clients. Two things stand out in this table. First, the computation
time required for 1-RL is relatively insignificant when compared to
the sequential time to solve the SAT instance. Second, the speedup
achieved by adding more clients is nearly linear to the number of
clients. Some benchmarks are excluded from the table because 1-
RL does not generate any 1-literal learnt clauses. In these cases,
the run-time for preprocessing is close to 0 seconds for 1 client.

Given the positive results of 1-RL, we explored the potential ben-
efits of implementing parallel 2-RL. Most of the results in Table 2,
do indicate the same linear trends as with 1-RL. In addition, bench-
marks that do not have 2-RL learnt clauses can be computed in
time close to 0 seconds. The only negative with 2-RL is that the

Table 3: Sequential solver runtime with and without the learnts
found from Recursive Learning

Benchmark Seq. Seq w/1RL Seq. w/2RL

1dlx c bp f 669.17 211.40 173.08
1dlx c ex bp u f 277.90 115.32 249.68
2bitadd 10 263.44 – 145.67
3bitadd 31 1597.62 – 0.31
4pipe 98.16 29.33 132.79
5pipe 50.30 43.79 21.92
9vliw bp mc 185.03 174.77 94.15
engine 4 nd 163.05 210.84 176.53
engine 5 nd case1 68.13 50.99 83.66
hanoi5 36.90 238.62 952.54

Table 4: Overall runtime of the parallel SAT solver for different
number of clients

Benchmark 1Cl 2Cl 4Cl 8Cl

1dlx c bp f 669 379 178 137
1dlx c ex bp u f 278 195 118 105
2bitadd 10 263 228 77 66
3bitadd 31 1598 3 3 3
4pipe 98 92 57 53
5pipe 50 70 70 56
9vliw bp mc 185 149 121 135
engine 4 nd 163 103 64 54
engine 5 nd case1 68 81 57 59
fpga11 12 uns rcr 628 781 292 253
fpga11 13 uns rcr 1724 TIMEOUT TIMEOUT 744
hanoi5 37 36 26 30
hgen6-4-24-n250-01 10087 118 175 88
hole10 37 47 46 28
urqh3x3 224 278 179 107

run-times of performing 2-RL often exceeds the runtime necessary
to solve the instance on a sequential solver without RL preproces-
sor. However, this parallel solution makes 2-RL viable when more
clients are added.

We have shown that calculating 1-RL and 2-RL can be done
quickly. In Table 3, we illustrate the effectiveness of RL prepro-
cessing for a sequential solver. The second column is the baseline
that gives the time required to solve the instance without any pre-
processing. The third and fourth columns show the time it takes
when 1-RL is performed and 2-RL is performed respectively. Ac-
cording to the table, 1-RL shows pretty consistent improvements
over the baseline. The only serious degradation is in the SATISFI-
ABLE benchmark hanoi5 where additional learnt clauses probably
steered the search heuristics in the wrong direction.

The performance of 2-RL is a little less uniform in its improve-
ment. Most benchmarks do show improvement over the baseline.
In addition, two benchmarks, 2bitadd 10 and 3bitadd 31 are very
effective where 1-RL does not generate any 1-literal learnt clauses.
The degradation seen is most likely attributable to not effectively
filtering the 2-RL learnt clauses. We implemented a simple filter
based on the number of learnt clauses to be added to the original
problem. In general, these results indicate the potential of parallel
preprocessing. RL preprocessing techniques coupled with effective
filtering strategies could improve sequential solving dramatically.



5.2 Parallel Solver
In addition to preprocessing results, we offer preliminary results

for a distributed parallel SAT solver that we developed. The run-
times that we produced for 2, 4, and 8 clients are displayed in Table
4. These results positively reflect on our implementation based on
VSIDS generated guiding paths and activity based learning. Al-
though, there is some variance in the numbers, the trends show im-
provement as the number of clients increase. There is one notable
exception, fpga11 13 uns rcr that reached a 10000 second timeout.
In this case, 2 and 4 clients most likely perform poorly from an
experimentally-tuned strategy that we implemented that occasion-
ally deletes low activity learnt clauses. The extra-ordinary result
for 3bitadd 31 is due to the increased ability of a parallel solver to
find a satisfiable solution since it looks at a different portions of the
search space simultaneously.

These results only show the potential benefits of parallelizing
SAT, but do not provide much insight on whether our strategies are
effective. The next two sections describe the effectiveness of our
technique for generating guiding paths and our learning strategy.

5.2.1 Splitting Results.
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Figure 4: Relative performance of different techniques for gen-
erating guiding paths

In Figure 4, we show the relative improvement of our technique
of using client generated guiding paths based on VSIDS activity
with 4 clients. The first bar in the bar graph represents this tech-
nique and is set to 100. The other bars in the graph are normalized
by the first one. The second bar describes a similar guiding path
strategy as ours that simply uses the next variable to be assigned
by the sequential solver to form the guiding path. The third bar
shows the performance associated with generating guiding paths
based on static VSIDS information produced by the server at the
start of program execution to create the initial guiding paths. This
VSIDS information on the server is never updated after this ini-
tialization. The final bar shows the performance associated with
randomly generating guiding paths. Bars that are excluded indicate
situations where that strategy required more than 10000 seconds
and therefore timed-out. In this figure, shorter bars have better rel-
ative performance than taller bars.

Appropriately, randomly generating guiding paths performs much
worse than the other strategies presented in Figure 4. More inter-
estingly though, both client VSIDS guiding paths and first decision
guiding paths show pretty consistent improvement over using the
server’s VSIDS information. Thus, it appears that guiding paths

are better when generated on the clients where its activity infor-
mation is more relevant to its current sub-problem. Finally, and
even somewhat surprisingly, our technique of using highest VSIDS
activity achieves relatively consistent speedup over the technique
used in [5] despite the fact that the first decision variable in an as-
signment trail is often the highest VSIDS variable.

These results illustrate that dynamic techniques that reflect the
current sub-problems improve the quality of the parallel SAT frame-
work. Therefore, we believe that future research into maintaining
global VSIDs data dynamically could produce partitions that will
be the most beneficial to every solver.

5.2.2 Learning.
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Figure 5: Speedup achieved by filtering learnt clauses by activ-
ity rather than by number of literals

In Figure 5, we explore the benefits of filtering learnt information
based on the learnt clause’s activity instead of its size. The figure
shows the speedup associated with implementing an activity-based
filter over a size-based filter (implemented with 4 clients). The re-
sults show, on average, an improvement when filtering is based on
its activity rather than by size. Where speedup is not seen, the run-
time for both techniques is approximately the same. These results
indicate that sending small learnt clauses as a filtering technique is
not very effective.

Future successful implementations of parallel SAT will require
that the learnts available to each solver be the most relevant and use-
ful for pruning its current subspace. Development into more global
strategies such as maintaining activity counts across all solvers could
be used to distribute learnts stored in a global pool to solvers that
currently require them. In this fashion, the memory requirements
of maintaining many learnts in a certain solver can be alleviated by
providing a separate repository and sending them to the solver only
when necessary. There is a twofold benefit in this 1) the BCP cost
can be reduced by minimizing the size of the clause database and 2)
each solver will have access to the most relevant learnts produced
by all solvers.

6. CONCLUSIONS
In this work, we examined a range of techniques to prune the

search space explored when attempting to solve a SAT problem in-
stance. Specifically, we have developed an algorithm to generate
1-literal constraints in parallel, through the 1-RL algorithm, which
constrains the initial instance by finding 1-literal assignments. We



show that 1-RL is an effective preprocessing technique, and be-
cause of the ability to easily parallelize RL, aggressive preprocess-
ing schemes could lead to interesting new possibilities for addi-
tional speedups. Furthermore, we present an algorithm for a par-
allel DPLL-based SAT solver that offers insights into partitioning
strategies and techniques for communicating useful learnt clauses.
This is achieved by adopting effective techniques and heuristics in
a sequential domain, such as VSIDS, and applying it to a parallel
domain. The result is a solver that performs much faster than the
sequential baseline.

Our results also indicate the potential for future work and im-
provement. Unlike other parallel DPLL-based approaches, we rec-
ognize the effectiveness of recent advances in SAT and strive to find
models for it in the parallel setting. In particular, RL can be effec-
tively parallelized to add high-quality learnts to the initial instance.
Future work on heuristically filtering these added learnts could im-
prove performance. Also, our work in DPLL-based parallelization
indicates that improving the heuristics to take into account more
global information could lead to further gains.
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