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ABSTRACT
Constrained random simulation is a widespread technique
used to perform functional verification on complex digital
designs, because it can generate simulation vectors at a very
high rate. However, the generation of high coverage tests is
still a major challenge when using this technique. In this
paper we present Guido, a hybrid verification software that
uses formal verification techniques to guide the simulation
towards a verification goal. Guido is novel in that 1) it
guides the simulation by means of a cost function derived
from the circuit structure, and 2) it has a novel, fine-grained
sequence controller that monitors and controls the direc-
tion of the simulation by striking a balance between random
chance and controlled hill-climbing. We present experimen-
tal results indicating that Guido can tackle complex designs,
including major components of a picoJava microprocessor,
and reach a verification goal in many fewer simulation cycles
than random simulation.

1. INTRODUCTION
Functional verification has become the most critical de-

velopment factor for digital designs in terms of cost and
time resources. The reasons of this preponderant resource
demand lie in the growing complexity of digital integrated
systems, paired with shrinking design cycle times. Available
verification technologies are unable to tackle the complexity
of current designs either in terms of confidence of correct-
ness, commonly expressed as coverage, or in terms of sheer
design size. While the predominant verification strategy in
the industry still remains centered on simulation-based ap-
proaches because of their linear scalability with design size,
there has been a rising trend in recent years towards the
complementary deployment of semi-formal verification tech-
niques, which promise to provide high-coverage results at an
acceptable performance cost.

To support the verification engineer, the design automa-
tion industry provides a rainbow palette of tools and tech-
nologies that complements barebone logic-simulation: these
range from testbench design languages [3, 9], to coverage
evaluation tools [4, 12, 2] and to constrained random stim-
ulus generators [21, 15]. Constraint-based random simula-
tion, in particular, has the prominent advantage of relieving
the engineer from the development of specific testbenches,
and relying simply on the specification of a set of interface
constraints (called the ”design environment”) to produce a
voluminous amount of valid input vectors in a short time

span. However, the challenge remains of producing input
stimuli that are not only valid, but can also produce high
coverage simulation traces.

The semi-formal verification landscape is populated by
tools that draw techniques from both the formal verification
and the simulation-based domains and use them in a collabo-
rative manner to achieve good coverage quality on complex
designs. Within this space, one group of solutions entails
using a wide range of verification tools against the verifica-
tion task at hand in a time-interleaved fashion (simulation
may be one of them or not) [11, 10, 17]. Another family of
solutions attempts to apply one specific formal verification
technique to the problem and provides smart fall-back mech-
anisms to overcome the limitations of that technique [20, 19].
In contrast with these solutions, the objective of this paper
is to propose a novel hybrid verification approach that relies
heavily on the positive aspects of scalability and fast per-
formance of random simulation while it deploys small-scale
formal verification techniques to guide the simulation.

1.1 Contribution
Guido is a new hybrid verification solution that enhances

the coverage density of random simulation by guiding the
simulation towards a specific verification goal. The workhorse
of state exploration in Guido is provided by random simu-
lation. However, in contrast with plain random simulation,
the simulator’s search is directed by a ”trace sequence con-
troller” that forces the simulator to get incrementally closer
to the verification goal. To this end, the trace sequence con-
troller relies on a hill-climbing algorithm and a cost func-
tion associated to each state of the design. The controller
complements its baseline hill-climbing technique with mech-
anisms that exploit the random nature of the simulation
when beneficial, and bypass it by inserting single-step de-
terministic improvements, when the search is not fruitful.
A verification goal in Guido is specified by monitoring the
value of a design signal; this signal can encode a property
or checker to be falsified, a coverage goal, or a state/set
of states that the designer wants to target. The random
simulation-centered solution proposed by Guido differenti-
ates itself from previous solutions in two main aspects:

• the cost function used in Guido provides a high-quality
evaluation of the distance from the goal, since it is
derived from the circuit structure and, in particular,
the portion of the design that most closely affects the
verification goal.



• the trace sequence controller is based on a hill-climbing
approach that employs a novel way of balancing ran-
dom steps with deterministic improvement. This tech-
nique leads Guido to exploit random simulation alone
to reach a verification goal, when this goal is easily
achievable. When the goal requires stepping the sim-
ulation through a narrow passage (in terms of state
transitions), the trace sequence controller deploys de-
terministic formal techniques to accomplish the single
narrow step towards the goal.

1.2 An overview of Guido
From a dynamic simulation standpoint, Guido can be

viewed as a technique to tunnel the exploration trace of
random simulation in a narrow path leading to the verifica-
tion goal. Figure 1 shows schematically this dynamic explo-
ration, where the areas at different grey intensity represent
the partitions of the search space in layers of increasing costs,
based on the evaluation of the cost function. The trace se-
quence controller guides the simulator through a random
walk where at each step of simulation a range of potential
next states are considered and the one that brings us closer
to the goal is selected. Because of the coarse granularity
of the cost function, it is possible that none of the poten-
tial next states is closer to the goal than the present state.
In these situations, the trace sequence controller uses addi-
tional mechanisms based on random selection, backtracking,
or deterministic search, to select the next state. Note that,
as suggested by the diagram, once the simulation trace has
climbed up to a given cost layer, Guido does not allow the
simulator to perform a transition back to a layer of lower
cost.
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Figure 1: Guido’s trace sequence controller guides
the random simulation towards the verification tar-
get by classifying the design’s state space into
equidistant layers on which the simulator hill-climbs.

One by-product of the transition of current verification
practices towards a methodology that makes use of semi-
formal techniques is the increased use of formal properties to
describe the correct behavior of the design, usually derived
from design specifications. Additionally, random simulation
requires designers to embed ”checkers” of some sort in the
design, which are used to detect if a bug is found. Guido can
target both checkers and properties to flush out many of the

bugs present in the design by invalidating them. We envision
Guido as complementary to formal verification software. In
fact, it can be deployed in the first stage of property veri-
fication and expose bugs with scalability and performance
comparable to a logic simulator. Once Guido cannot find
any more bugs, heavier formal verification tools are brought
in to flush out the remaining issues. When the verification
methodology is based on random simulation, Guido can be
seen as a smart random simulator that boosts the efficacy
of this methodology by keeping the simulation on track to-
wards the goal of invalidating checkers.

The remainder of the paper is organized as follows. The
next section discusses related work and reviews background
concepts. Section 3 introduces the Guido architecture and
its verification flow. The abstraction, guiding cost function
and trace sequence controller are also presented in this sec-
tion. Section 4 discusses heuristics and techniques to avoid
dead-ends during the simulation. Experimental results and
conclusions are given in Section 5 and 6.

2. RELATED WORK AND BACKGROUND
Traditional formal verification techniques provide the high-

est confidence in the correctness of a design by simply prov-
ing or disproving specific properties associated with its func-
tionality. When a formal verification technology finds that
a property is not valid, it can automatically produce a bug
trace, that is, a compact test vector that will pinpoint the
problem [6, 13]. Because of the exponential complexity na-
ture of these techniques, pure formal verification can be ap-
plied only to small designs, with size up to a few hundreds
latches, or to properties affecting only a very small portion
of a complex design.

To cope with this limitation, the past few years have
witnessed the emergence of a range of hybrid verification
approaches, both in the academic environment and in the
design-automation industry. The common thread among
these efforts is the attempt to deploy a diverse set of for-
mal verification and simulation-based techniques to boost
the size of the designs that can be formally verified, and to
obtain at least some formal verification results, that is, prop-
erty proofs, at a low additional performance cost. In this
domain, an example which has also become a commercial
product is [11], where the authors time-interleave random
simulation with symbolic simulation to gain the ability to
prove properties that are hidden in a complex design block
far away from the initial state configuration. Additionally,
reachability analysis is run in parallel on an abstract design
model with the objective of ruling out unreachable config-
urations and thus prune the design space to be explored.
Another example which has also been used in an industrial
context is by Aagaard et al. [1], where theorem proving
techniques are used to coordinate multiple model checking
runs. Other solutions that have combined a range of formal
verification techniques are also in [10, 17].

In the specific domain of target-driven logic simulation,
one of the first efforts is by Yang et al. [20]. This work pro-
poses to help a random simulator hit a goal by enlarging a
verification target through backward traversal, so that it is
sufficient for the simulator to hit any of the states in the en-
larged target. However, the pre-image computation required
in this algorithm cannot usually go past 4 or 5 time steps,



with the consequence that it is often difficult for the simula-
tor to reach any of the states in the enlarged target. In [14]
a probabilistic guiding algorithm is presented, which assigns
values to design states based on their estimated probabil-
ity of leading to the target state. As values are assigned by
approximate analysis, there is no apparent mechanism to es-
cape from the dead-end states. An approach that attempts
to reach a target by exploring a range of potential next states
in a simulation environment was suggested by Ganai et al.
in [8]. Their solution a cost function based on the hamming
distance between the current configuration reached by logic
simulation and the target state. At each step of simulation a
set of alternative next states is considered and the one that
leads to the minimum hamming distance state is chosen.
The advantage is that the computation of the hamming dis-
tance can be performed very efficiently at simulation time.
The downside of this approach, however, is that this measure
is usually not a good indication of the distance to the target
state and could mislead the simulator, since it is possible
and common that two adjacent states in a state transition
graph of a sequential system have actually very high ham-
ming distances. Subsequent work in this direction [19] adds
the use of automatically-generated ”lighthouses”, interme-
diate goals that serve the purpose of directing the simulator
toward a goal deep in the design.

2.1 Composing design modules
The abstraction engine of Guido performs two main tasks:

it selects the components of the design that will be used for
the abstract finite state machine and it generates the prod-
uct machine. The selection algorithm is discussed in Section
3.1, here we discuss how the composition of the selected
components is performed. We model each design module,
or component, as a finite state machine, formally defined
below:

Definition 1. A finite state machine (FSM) M is a 6-
tuple M(I,O, S, δ, λ, S0) where I is the n length input vector,
O is the k length output vector and S is the m length vector
that represents the set of states of the machine M. S0 ∈ S
is the set of initial states and δ : S × I → S is the next
state transition function. Finally, λ : S → O is the output
function.

In the following we refer to finite state machines and de-
sign modules interchangeably.
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Figure 2: Composing two design modules in the
abstract machine: the matching input/outputs are
connected inside the product machine P, while the
other I/Os become I/Os of P. The dashed lines con-
sider the case where one module is instantiated in-
side the other.

The composition of multiple components is performed by
generating iteratively the product of pairs of FSMs. The

product machine is reported schematically in Figure 2 where
we indicate all the possible ways in which inputs/outputs
from one machine may be connected to inputs/outputs of
the other. The dashed lines consider the case where one
machine is instantiated inside the other. In composing two
FSM A and B, we first identify all the signals that are inputs
and outputs of the resulting product machine P, by analyz-
ing the module descriptions and instantiations. We then
derive the set of state elements of P, by simply composing
the set of state elements of the two source FSM. Finally, we
compute all the components of the transition function δP
of P by composing the elements of δA and δB that are con-
nected and existentially quantifying the IA and IB variables
that are consequently eliminated.

2.2 Images and pre-images
The cost function in Guido relies on a backward reachabil-

ity analysis over an abstraction of the design. This section
reviews the basic terminology that we use in referring to this
computation. The exploration of the set of states that can
be reached from an initial state in a FSM is done through
the image operation. The image operation computes the set
of states that can be reached in one simulation step from a
given starting set. It’s inverse is called a pre-image and it
computes the set of states that are one step away from a
target state set. Let X be a subset of the state set S. The
image and pre-image of X are formally defined as follows:

Definition 2. Given a subset X of S for a FSM M, the
image of X is defined as Img(X,M) = {y|∃x, i ∈ X, I, y =
δ(x, i)}.

Definition 3. Given a subset X of S for a FSM M,
the pre-image of X is defined as Pre(X,M) = {y|∃x, i ∈
X, I, x = δ(y, i)}.

2.3 Backward traversal
In order to rank the states of the abstract machine based

on the distance from the goal state, Guido performs a back-
ward FSM traversal. The general algorithm for backward
traversal is given in Figure 3. From a target set of states that
describe the verification goal, the previous states are itera-
tively enumerated until a fix point is obtained. With refer-
ence to the figure, Ri represents the set of states that can be
reached in up to i steps of traversal, while previous states

represent the set of states reached in the current traversal
step, often called frontier set in the literature.

1 BackwardTraversal(){
2 Ri = goal state;

3 do {
4 Ri=Ri+1;

5 previous states = Pre(δ,Ri);

6 Ri+1 = previous states
S

Ri;

7 } while(Ri 6= Ri+1)

8 }

Figure 3: Backward traversal algorithm.

All the functions and operations involved in the backward
traversal algorithm are usually performed using BDD repre-
sentations. Because of the BDD limitations in representing
very complex functions, backward traversal computations



are typically limited in application to small FSM. The com-
plexity limitation applies to all the functions involved: from
the reached sets, to the computation of the pre-image and
transition functions. In Guido, we apply a design-based ab-
straction to avoid reaching this complexity limit by selecting
only a few critical modules of the design.

3. GUIDO ARCHITECTURE
Guido consists of three main components: an abstraction

engine, a cost function, and a trace sequence controller. The
trace sequence controller makes decisions based on the anal-
ysis of the other two components and controls the state ex-
ploration path of a random simulator. The cost function in
Guido is based on an exact reachability analysis performed
on an abstraction of the design under verification. The ab-
straction is generated by considering the verification goal at
hand and some of the design components that most closely
affect it. During the random simulation a number of po-
tential next states are explored and the one with the best
possibility of reaching the target is chosen based on the com-
puted cost function. Thus, the cost assigned to the abstract
states guides the simulation.
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Figure 4: Guido uses a cost function to control the
random stimulus generator and direct the simulator
towards the goal.

Guido can be used to verify a coverage target expressed by
a set of states in the design, or to disprove a general safety
property, or to target a verification ”checker” in the context
of a random simulation methodology.

From an architectural standpoint, Guido operates as a
module interacting with a logic simulator and random stimu-
lus generator and guides the logic simulator towards a prop-
erty goal. If Guido finds an input assignment that violates
the property then a bug trace is produced by simply logging
the simulator input sequence. Figure 4 shows how Guido
interfaces to the simulator and random stimulus generator
by selecting the direction of the next simulation step among
a range of possible steps suggested by the random genera-
tor. Guido also samples the current state from the simulator
to evaluate the progress towards the verification goal. The
three main components of Guido and their interaction is
also represented in the figure. A detailed analysis of each of
these components is presented in the following sections.

3.1 Abstraction Engine
Guido uses an abstract model of the design to compute

a cost function, which is then used to guide the random

simulator. The abstraction engine selects a small number
of critical design modules together with the property de-
scription and generates a product finite state machine. The
cost function module performs a backward traversal on this
abstract machine and computes a cost value for all reach-
able states. This value measures, for each abstract state,
its shortest distance to the goal. This is equivalent to the
distance to any of the states falsifying the property. In par-
ticular, all the states that falsify the property have cost 0,
the states at distance one from the goal have cost −1, and
so on. The abstract machine used in the cost function gen-
eration is created by considering the product of the finite
state machine representing the property to be falsified and
other ”critical” design modules, also modeled as FSM.

A digital design is commonly described by a hierarchial
structure of modules (simpler design components) intercon-
nected together. If we represent each module as a single
FSM, it is easy to see how any subset of the design’s mod-
ules can be represented by a product machine obtained by
composing the FSMs of the component modules. At the
limit, the complete design can be represented by an FSM ob-
tained by computing the product FSM of each instantiated
module. This last machine represents the full design behav-
ior, while all the other intermediate products correspond to
design abstractions. From a practical standpoint, the com-
putation of the product machine is intractable for all but
the smaller designs, or an abstraction involving a few com-
ponents. To overcome the computational complexity of per-
forming a full state traversal, we select only a few ”critical”
design modules for our abstraction. The selection includes
always the checker module, that is, the module describing
the verification goal. The additional modules included are
selected based on how they interact with this checker mod-
ule. We expand this set of modules based on the estimated
complexity of the product machine, each module is included
based on how close is its interaction with the target module.
Practically, the selection is based on two criteria: 1) close
interaction with the checker module, and 2) complexity of
each module considered as a candidate for the abstraction
machine.
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Figure 5: Guido computes the abstraction using
the checker module and the components that most
closely interact with it.

The selection of which modules to include in the gen-
eration of the abstract machine is based on the observa-
tion that closely interacting components are more prone to
remove spurious behavior from the abstract machine com-
pared to the product of two non-interacting modules. Inter-



acting modules are modules instantiated at the same level
that communicate directly through I/O signals, and modules
which are instantiated hierarchically within each other. For
instance, with reference to Figure 5, the modules controller

and cliA are directly interacting with the checker, and thus
they belong to our first layer of consideration for inclusion
in the product machine. We maintain an estimation of how
complex the resulting product machine will be based on the
number of memory element that it includes. If the inclusion
of the closest layer of modules does not generate a product
machine that is deemed ”too complex”, based on our esti-
mation, then we consider components at the next layer, that
is, components that interact directly with the ones already
included. If the inclusion of a module leads to a product
machine size that is estimated to make the computation too
complex, we skip it and consider an other component in the
same layer.

3.2 Cost Function
The cost function assigns a cost value to all reachable

abstract states. This value measures the shortest distance
of each state to the goal. The cost is stored as a set of
characteristic representations of all states that have a spe-
cific distance from the goal. During simulation each design
configuration is mapped to one of the distance values by
abstracting the real state to the abstract state in the cost
function and then finding the distance set to which the ab-
stract state belongs.

Since the characteristic equi-distant functions are repre-
sented by BDDs, we strive for maintaining a set of BDDs of
minimal size. For this objective, we store for each distance
k a BDD with minimal size in the interval:

[Pre(Rk−1)/Rk−1, P re(Rk−1) ∪ Rk−1] (1)

where Rk−1 represents the set of states at distance k−1 from
the goal. The accuracy of the cost function depends on the
refinement quality of the abstraction. In general, because
the cost function is computed on an abstract representation,
the abstract FSM will include state transitions that are not
existing in the real design. The implication is that it is
possible that the simulator reaches a state at cost C from
which there is no transition to a state at cost C + 1, even
if in the abstract machine such a transition was present as
indicated by the derived cost function. Section 4 discusses
how to handle these dead-end situations.

3.3 Trace sequence controller
The trace sequence controller in Guido uses the cost as-

sociated with each state in the abstract machine to guide
the random simulator towards the goal. At each simulation
step, the trace sequence controller tries different sets of ran-
dom input vectors and then selects, among all the possible
next states obtained, the one with the highest cost, that is,
the one closest to the goal. The best search is an informed
search algorithm; it uses a heuristic to rank the potential
next states based on their estimated cost [7].

During the simulation, we maintain a queue Q of states
that we have already visited and that are good candidates
as starting points for the next state transition. At each step
of the search, we first consider the current state CS, that is,
the state from which we are going to perform the upcoming

transition. A current state under consideration is obtained
by removing it from the queue. If its cost is 0, then we stop
since we have reached the goal. Otherwise we remove it from
the queue Q and the random simulator starts generating a
pre-determined number of successor states from CS. Each of
these successors is evaluated by the cost function and added
to the queue Q. At this point, the best of the candidates
in the queue is selected as the new current state and the
process is repeated until a goal is found.

Notice that by using this process, when the search plateaus
at a certain cost, there is a non-zero probability to select
from the queue a candidate from the past simulation steps
that has equal cost but belongs to a search path that was
previously abandoned. This mechanism of retrieving search
directions that had not been previously explored is the first
mechanism that allows Guido to move away from a dead-end
simulation path.

4. ESCAPING FROM DEAD-END STATES
The best search algorithm described in 3.3 is often not suf-

ficient by itself to guide the simulator to the target. Because
our cost function is computed on an abstract machine, situ-
ations may arise that force the random simulation towards
a state from which there is no transition to a higher-cost
configuration. In some cases, the only path in the real de-
sign to a higher-cost configuration is through a lower-cost
configuration. We illustrate here some of the situations that
may arise with the support of an example.
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Figure 6: An example clustering of real design states
based on a Guido cost function.

Example 1. Consider the diagram of Figure 6. The states
labeled by a capital letter represent all the real states of
a DUV. The large circles group these states in equivalence
classes of equal cost based on the cost function and its re-
lated abstract FSM. The followings are possible scenarios:

1. Assume that the present simulation state is D. Among
the six next states from D, five are to other states at
the same cost and only one is to a state of higher cost.
Moreover, all the other states at cost -3 are tightly
interconnected, with only few transition towards lower
cost states. Statistically , there is a low probability
that the random simulator will generate a transition
to the state C at a higher cost. If this does not happen
the simulation will just keep iterating among states of
cost -3 and never progress toward the goal.

2. Due to the abstraction used in computing the cost
function, it is possible that configurations that in the
real design are at greater distance from the goal, are
assigned a high cost by the cost function. This can
happen because the abstract machine used to gener-
ate the cost function may have extra state transitions



that are not available in the real design. With refer-
ence to the Figure, if, for instance state D is effectively
at distance 3 from the goal, then state E must be at
distance 4. However, the cost function clamped them
both at the same distance because of the additional
behavior seen by the abstract machine.

3. Finally, if the set of modules in the abstract machine is
not selected carefully, that is, the abstract machine is
composed by two disconnected components, the result
is that all the states in one of the components are going
to have the lowest cost (since the goal is not reachable
from there). However, in the real machine that would
be inaccurate since the additional modules of the real
machine bring the disconnected component at a finite
distance from the goal. This problem can be avoided
just by carefully selecting the modules in the abstract
machine.

The situations described in the example suggests that spe-
cial techniques needs to be deployed to provide sufficient
chance of progress. This is necessary to provide a good
probability of forward progress even in these complex cases,
when plain hill-climbing approaches are not sufficient. We
propose here two techniques that help in steering the simu-
lation away from a plateau region. These techniques, called
SimSearch and SimSAT, are presented below.

4.1 SimSearch
Guido uses a modified version of the best search algorithm

described in Section 3.3, called SimSearch. The pseudo-
code of SimSearch is given in Figure 7. When the cost of
a candidate next state is the same as the current state CS,
the candidate state is not added to the queue Q. Simulation
is continued along that next state for T steps in the hope
to discover a state with higher cost. If such a state exists
within T steps, then it is a good candidate and it is added to
the queue. The number T of forward steps is parameterized
to allow experimenting with different trade-offs.

1 SimSearch(){
2 CS = initial state

3 repeat

4 loop Num Successors

5 curr sample = sample next state(CS)

6 loop T steps

7 if Cost(curr sample) 6=Cost(curr state)

AND Is not in queue(curr sample)

8 add priority queue(curr sample)

9 break

10 else

11 curr sample=sample next state(curr sample)

12 end

13 end

14 best next state = priority queue.head

15 CS = best next state

16 end

Figure 7: Pseudocode of the SimSearch algorithm.
From each current state, Num Successors forward
paths are searched for a maximum of T steps or
until a higher cost state is found.

With reference to Example 1, if the present state is E,

and the randomly generated vectors lead to states D, H
and I, SimSearch can discern between H, a state whose
only outgoing transition is to a lower cost state, and D and
I, which are also states at the same cost level as all the
others involved, but at least have outgoing edges leading to
the possibility of transitioning to higher cost states. Among
these alternatives, H will be discarded in favor of D or I.

4.2 SimSAT
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Figure 8: The SimSAT flow. The CNFs of the
present state and the combinational logic of the real
design and the abstract better cost states is fed to
a SAT solver to ascertain if a transition to a higher
cost state from the present state exists.

When the simulator reaches a state with a very tight fil-
ter to a lower cost configuration, random generation is not
sufficient to progress in the simulation, and usually all our
previous techniques fail. A situation such as this was de-
scribed in the first case of Example 1,where only one of the
possible outgoing transitions from state D was leading to a
lower cost configuration. In this type of situations we use
SimSAT, a SAT checking procedure that simply checks if
there is a transition from the present state to a lower cost
state in the real design. If the problem is satisfiable, we
use the answer to perform the transition, otherwise we must
backtrack to a previous state. The inputs to the SAT solver
are the present state of the real design which has a cost
C, the transition relation of the design and all the states
at cost C + 1 in the abstract model, as shown in Figure 8.
To this end, the values of all the present state registers are
gathered on the fly and translated into the CNFPS formula.
The transition relation is also converted to CNFCKT . Fi-
nally the minimal BDD stored for the cost level C + 1 is
translated and written as CNFC+1.

SimSAT’s objective is to find if a transition to a higher
cost state exists. If a solution is found, then the SAT solver
returns a valid input assignment for the transition. The
inputs are fed into the present state and a transition to the
next state with higher cost is made. If no solution exists



and the transition found in the abstract model was due to
the over-approximation of the design behavior, we can infer
that the present state is not at cost C from the goal in the
real design, and abandon that state. Note that our SimSAT
procedure uses a SAT instance that includes only one copy of
the circuit’s combinational logic, in contrast with SAT/BMC
verification techniques [5] which require unrolling the circuit
many times. The relative compactness of our SAT instances
contributes to control the overall complexity of SimSAT.

A crucial aspect of incorporating SAT techniques into
Guido is the decision of when to deploy SimSAT. It is a
tempting option to use SimSAT to move from state to state
raising the cost level at each step, all the way to the goal.
However, due to the complexity of SAT solvers, this solu-
tion would become prohibitively expensive just after a few
simulation cycles. Hence, only when the trade-off is advan-
tageous and the random simulation-based algorithms are un-
able to take the simulation towards lower cost states in the
given time window, it is wise to recur to the deterministic
SimSAT. SimSAT not only validates the abstraction model,
but also accelerates the random simulator towards the goal
with minimal computational overhead.

Referring to case 1 in Example 1, if the random simulator
is held at cost -3 after a predetermined number of simulation
steps, then SimSAT would intervene and guide the simulator
to state C at cost -2. On the other hand, for case 2, when
the present state is E, a call to SimSAT would establish that
no higher cost transition is feasible and the current state E
would be abandoned.

5. EXPERIMENTAL RESULTS
We tested Guido on a number of publicly available test-

benches, namely, a cache coherence protocol and a PCI bus
from the VIS benchmark suite [18], and vaious modules from
the picoJava processor from SUN [16]. A few relevant prop-
erties were targeted for each of these testbenches. In evalu-
ating the quality of Guido, we compared it with a baseline
constraint-based random simulation, and with a commer-
cially available semi-formal verification software.

The next sections provide relevant information on our
tests setup and discuss the results of the experiments.

5.1 Designs and properties for the experiments
All the properties that we considered for the Guido evalu-

ation were known to be false. The MSI design is a cache
coherence protocol used in a multiprocessor environment
with shared memory. In this testbench, individual proces-
sors monitor the cache bus and respond accordingly to the
activities of the other processors. The protocol under ver-
ification has 43 latches and 1674 combinational gates. We
checked two known-false properties that were available with
the benchmark suite. The second testbench is a PCI bus
model used as interconnect between peripheral components
and a core processor or memory. The PCI module has 275
latches. We checked three properties for this design, also
derived from the available properties in benchmark suite.

The remaining tests are derived from the picoJava de-
sign: specifically, ICU (Instruction Cache Unit) and a home-
crafted testbench obtained by combining ICU with the Stack
Management Unit (SMU) and the Bus Interface Unit(BIU).
We refer to this testbench as ”BSI” in the table. We ver-

ified a property on the validity of the buffer control signal
for both of these testbenches. For BSI we also checked some
additional properties related to the SMU unit. All these
properties are found to be false, unless they are checked
in the context of the complete design. For all our experi-
ments a rough design environment was created to generated
valid stimuli during simulation. The same environment was
shared by all the systems we tested.

5.2 Results
Table 1 shows the quality of the Guido exploration in

terms of simulation cycles executed before reaching the ver-
ification goal. We ran the experiments on a Sun Blade 1500
running at 1Ghz and equipped with 1GB of memory. The
results show the comparison between the trace lengths gen-
erated by Guido, a plain constrained random simulator, and
an industrial semi-formal tool. Each row of the table cor-
responds to one design-property pair of those described in
the previous section. The first column reports the simula-
tion length of the random simulator. The second and third
columns report the performance of Guido, the leftmost is
the final trace length to the bug that Guido finds (column
“Guido trace”) and the rightmost (column “Guido total”)
is the total number of simulation steps executed by Guido.
In fact, as described in Section 1.2, Guido explores different
search directions at each step and then selects the best op-
tion. In column “Guido total” we report the total number of
simulation steps that includes these “exploration” steps. All
simulations were run with a wide range of random seeds in
an attempt to gain a sense of the quality of these results that
is independent of the random factor. We found that results
were fairly consistent and we reported the best results for
both the random simulator and Guido. The fourth column
reports the trace lengths found by a commercial semi-formal
verification tool. Finally, the last column reports the ideal
minimum-length trace found by a purely-formal verification
software (SAT-BMC in VIS), whenever it was able to com-
plete its execution.

Random Guido semi- min.
Test

simul. trace total formal leng.

MSI P1 44 5 37 3933 1
MSI P2 106 10 57 9 8
ICU P1 11917 140 953 2882 2
BSI P1 110855 1532 5216 5168 2
BSI P2 61444 65 345 2332 3
BSI P3 20 5 21 9 2
BSI P4 TO 4 12 10 4
PCI P1 TO 245 2386 N/A N/A
PCI P2 TO 10 50 N/A N/A
PCI P3 TO 245 2386 N/A N/A

Table 1: Comparison of Guido trace length and simu-

lation length vs. random simulation and a semi-formal

commercial verification software. For each testbench,

simulation has been run multiple times with distinct ran-

dom seeds. In a few cases random simulation timed-out

(TO) at the five million cycles cut-off.

Table 2 shows the impact of incorporating the SimSAT
procedure into Guido. For example, for the ICU P1 prop-



erty, SimSAT reduces the trace length from 140 to 81 clock
cycles. Calls to SimSAT are triggered only when the efforts
of the trace sequence controller do not reach the goal within
60 steps. For instance, SimSAT is not used for the MSI
testbench, since the random generator guided with by cost
function alone can reach the goal in very few steps.

Guido+SimSAT
Test

trace total

ICU P1 81 363
BSI P1 130 650
BSI P2 33 153

Table 2: Impact of SimSAT on trace and simulation

length generated by Guido.

We also analyzed Guido in terms of total execution time.
We found that, on average and for the cases where the ran-
dom simulator completed the search, it took about twice as
long as Guido to falsify a property. The cases where the
random simulator timed out at five million cycles of simu-
lation took one hour to run. Correspondingly, Guido spent
approximately 120 seconds to falsify the trace. The commer-
cial semi-formal verification tool is always faster than Guido,
averaging at 60 seconds of execution time, for the tests that
we could run through it. With reference to this analysis, we
note that, even if slower, Guido often finds shorter traces
than the commercial tool. We also would like to point out
that we compared an industrial quality software develop-
ment with our preliminary experimental software.

6. CONCLUSIONS
In this paper we presented a novel hybrid verification tech-

nique which deploys a cost function derived from an abstract
model of the design under verification to guide a random
simulator towards a verification goal. We discussed various
issues that arise because of the model difference between the
cost function and the real design, and we showed preliminary
experimental results indicating that this approach is effec-
tive for a range of publicly available testbenches. We are
exploring alternative mechanisms to select the components
of the abstract machine to generate the cost function, so
that it is dynamically adaptive to the quality of the random
exploration that Guido is undertaking.
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