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ABSTRACT
Disjoint support decompositions (DSDs) are a way of expos-
ing the inherent hierarchical structure of a Boolean function.
By decomposing a function in its disjoint support compo-
nents it is possible to reduce its complexity by considering
it as the simple composition of smaller blocks that are dis-
joint, that is, they do not share any input variable. Expos-
ing a function’s decomposability properties has the potential
to enable optimizations in various application domains of
computer-aided design, from synthesis to verification. More-
over, it provides the potential for generating a compact rep-
resentation of the function. Algorithms have been proposed
that can decompose a function into a decomposition tree of
the finest granularity components, once its Binary Decision
Diagram (BDD) is given. However, no solutions have been
suggested so far for applying Boolean operators directly on
decomposed forms that do not require one to reconstruct
first the BDD of the operand functions involved and then
construct the BDD of the result.

This paper proposes a novel algorithm to perform Boolean
operations directly on a decomposed form. Our algorithm
can construct complex DSDs by performing multiple Boolean
operations directly on other simpler DSDs, without ever con-
structing the BDD of the functions. The implications of
the contribution are twofold: 1) we can maintain a lower
memory profile than previous algorithms generating DSDs
as a consequence of not constructing the BDDs before de-
composition, and 2) by using a decomposed form during
Boolean function manipulation, it is possible to exploit di-
rectly the function’s hierarchical structure, exposed by the
decomposed form, for further optimizations.

We show results indicating that we always maintain a
lower memory profile compared to previous decomposition
techniques while achieving competitive runtime performance.
We also show that our algorithm generates a representa-
tion of a Boolean function that can require significantly less
memory than a BDD representation. Thus, our algorithm
could provide a compact alternative to BDDs in memory-
critical applications.

1. INTRODUCTION
The compact representation of Boolean functions and their

efficient manipulation is a central requirement for many ap-
plications of computer-aided design and beyond. Binary
Decision Diagrams (BDD) [1] are a widespread represen-
tation based on directed-acyclic graphs (DAG). For many
Boolean functions arising in practical situations, the size
of the BDD representation is quite compact, and so is its

memory footprint, thus enabling the manipulation of very
complex functions. Moreover, Boolean operations between
BDDs can be performed efficiently, enabling the construc-
tion of BDDs representing very complex functions by com-
bining simpler ones. However, in several cases, the size of
the BDD representation is prohibitively large, an example
are multipliers, which have provably exponential BDD size
[2]. One of the limitations of BDDs is that they represent a
function as a monolithic graph, which usually does not ex-
pose any apparent internal structure of the function. This
lack of structure in the representation is a contributing fac-
tor to the memory explosion that is seen in BDDs, because,
often, common sub-functions go undetected and thus their
representation cannot be re-used. This is also a cause of the
high sensitivity that BDDs present with respect to variable
ordering [3]. In fact, a good ordering could group together
variables of a frequently used subfunction allowing for shar-
ing of its representation, while a bad ordering would prevent
this from happening.

Research that aims at recognizing the internal structure
of a given Boolean function has been ongoing since the in-
ception of design automation. Within this field, Disjoint
Support Decompositions, (DSDs), play a major role [4, 5, 6].
Disjoint Support Decompositions are a way of decomposing
a Boolean function by identifying sub-function components
that do not share any input variables, and expressing the
main function in terms of those components. It has been
shown [7] that, although theoretically only a small fraction
of all Boolean functions are decomposable, most functions
arising in practice present good decomposition properties.
Canonical forms and algorithms have been defined that can
find the finest granularity decompositions of a Boolean func-
tion, once its BDD representation is known, and construct
a corresponding decomposition tree [8, 9].

The ability to apply Boolean operators directly on decom-
posed forms of a function enhances applications benefit from
decompositions by improving their performance and lower-
ing their memory profile. Exposing the decomposed form
of a function is advantageous for several reasons. First, it’s
a method to obtain a multiple-level implementation of a
function, which can be exploited during synthesis. Decom-
positions have been applied in synthesis problems [10, 11,
6], and placement and routing, where they provide an auto-
matic method for clustering together logic cells that depend
on the same subset of inputs, thus enabling shorter inter-
connect lengths and increased routability [12]. Attempts [13,
14] to generate synthesized circuits directly from BDD forms
have only been successful when applied to small functions.
In the case of complex functions, a typical synthesis proce-



dure would exploit the hierarchical structure of the functions
derived from the designer’s description; however, a synthesis
tool that maps BDDs directly to logic gates would lose this
structure information and produce a much larger circuit. By
using DSDs, a hierarchy can be detected automatically and
this problem alleviated. Second, DSDs expose parallelism in
the computation of the function that can be exploited in for-
mal verification and simulation. For example, the evaluation
of complex digital functions can benefit from the inherent
parallelism that is exposed by the disjoint support compo-
nents of a function [15, 16]. Finally, by performing Boolean
operations directly on DSDs, the requirement of generating
an initial BDD representation to build a DSD, as in [8, 9],
is unnecessary.

However, so far no algorithm has been suggested to apply
Boolean operators on the decomposed form of a function,
thus, it is always necessary to transform the function back
to its BDD representation in order to perform any Boolean
manipulation. Each direction of this transformation involves
the execution of algorithms that have quadratic complexity
on the size of the BDDs involved. DSDs provide the poten-
tial for detecting and re-using common sub-functions inde-
pendently of the variable order, thus generating a more com-
pact representation. Moreover, these decompositions are in-
dependent of the chosen variable ordering, in contrast with
BDDs, reducing the variability of the memory profile.

In this paper, we introduce a novel algorithm that sup-
ports closure of DSDs under Boolean operations. In other
words, our algorithm is an efficient approach for building
the DSD of a function from other DSDs, thus eliminating
the need for constructing the BDD beforehand. In addition
to providing valuable decomposition information about the
Boolean functions without requiring an initial BDD, the al-
gorithm requires a minimal amount of memory for BDDs
and thus provides considerable improvements over previous
work [9] without serious runtime performance degradation.
Our ability to efficiently and compactly represent Boolean
functions indicates that our algorithm could be used instead
of BDDs for memory-intensive applications.

In the remainder of this paper, we first review the pre-
vious work in this area and provide the necessary back-
ground on disjoint support decompositions. We then present
our Boolean manipulation algorithm that operates on de-
composed functions, called DecO (from Decomposed Op-
erations). We conclude by analyzing performance in the
experimental results section and discussing future research.

2. BACKGROUND AND PREVIOUS WORK

2.1 Binary Decision Diagrams (BDD)
Binary Decision Diagrams [1] are a canonical and efficient

data structure to represent and manipulate Boolean func-
tions through directed acyclic graphs. Each node in the
graph has two outgoing edges, and it represents a function
F by its Shannon decomposition: F = xF0 +xF1, where x is
the variable labeling the node and F0 and F1 are the BDDs
pointed to by the outgoing edges. One important constraint
in BDDs is that the variable ordering for the labels in the
graph has to be fixed. The size of a BDD is highly depen-
dent on the selected variable ordering, thus algorithms to
discover good orderings have been studied extensively [3,
17]. Good orderings allow the construction of BDDs whose
size is linear in the number of variables in the support of the

function. It has been shown, however, that in the worst case
the complexity of a BDD is exponential [2]. Applications of
BDDs have been explored and adopted in virtually every
area of computer-aided design and beyond (some examples
are given in [18, 19]), although many applications continue
to be limited by the memory required by BDDs.

2.2 Disjoint Support Decompositions (DSD)
In the most general case, finding the disjoint support de-

composition of a function F , consists of discovering simpler
functions K and Ai such that:

F (x1, .., xn) = K(A1(x1, .., xA1
), A2(xA1+1, .., xA2

), ..) (1)

with S(Ai) ∩ S(Aj) = ∅, ∀i, j.
In other words, a function can be defined as the composi-

tion of a kernel function, K, with the functions Ai, which
have disjoint supports. In general, a function has several dis-
joint support decompositions, which can be superimposed
to obtain decompositions with finer granularity. Moreover,
it is possible to recursively search for disjoint support de-
compositions for the functions Ai to produce even smaller
components. At the limit, F can be represented as a tree of
functions, with the inputs xi being the leaves of the tree. We
call this tree the decomposition tree. It has been shown
that the maximal decomposition tree (that is, the tree of
the finest granularity, where each node cannot be further
decomposed) for a function is unique and independent of
the variable ordering [4, 8].
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Figure 1: Decompositions for Example 1: a) A sim-
ple decomposition and b) The complete decomposi-
tion tree.

Example 1. Function F = MAJ(a, b+c+d, efg+efg+eh)
can be decomposed as in Figure 1.a) where the kernel func-
tion is MAJ and there are three disjoint components A1 = a,
A2 = b + c + d and A3 = efg + efg + eh. By decomposing
recursively the functions Ai, we obtain a decomposition tree
as in Figure 1.b). 2

Note that the leaves of the tree are the input variables
of the function, thus the number of internal nodes in a de-
composition tree is linearly bound by the size of the support
of the function, that is the number of input variables. In
contrast, a BDD may have a number of internal nodes that
is exponential on the size of the support.

Techniques for finding disjoint decompositions have been
studied for the past 40 years. Traditional approaches are
based on using decomposition tables to partition the inputs
into disjoint sets as in [4, 20], while more recent techniques
proceed by computing the DSD starting from a BDD repre-
sentation [21, 8, 22]. In [8], the authors define a canonical
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Figure 2: The DecO algorithm. Two input DSDs are expanded to have consistent root nodes. The Boolean
operation is then applied to these nodes. Finally, the result is decomposed and the lower part of the tree is
reconnected.

form for decomposition trees, and present an exact algo-
rithm that constructs the decomposition tree by traversing
a BDD bottom-up and has quadratic complexity on the size
of the BDD. When considering each internal BDD node rep-
resenting a function F , if the decompositions of the two co-
factors F0 and F1 are known, the decomposition of F can
be constructed by selecting one of a set of construction rules
based on the decomposition characteristics of the cofactors.
If the application domain requires that Boolean operations
be performed between DSDs, the traditional approach re-
quires that the DSDs are transformed back to BDD form,
an operation that requires applying Boolean function com-
position at each internal node of the decomposition tree,
which also has quadratic complexity. In the next section we
present an algorithm that allows the application of Boolean
operators directly on the DSD of a function, thus avoiding
the transformations to and from BDD.

Anatomy of a DSD node.
Nodes in a decomposition tree can be of two types, based
on the type of kernel function: associative (that is, AND,
OR, XOR) and prime. Prime functions are functions that
cannot be decomposed further into disjoint components. For
example, majority and multiplexor functions cannot be di-
vided any more. It follows that prime decompositions always
have more than two inputs since all two-input functions are
trivially associative operators. Each block in a decomposi-
tion tree maintains all the relevant information: its type,
the list of its component functions, that is, its actuals list,
and a symbolic representation of its specific kernel function,
called symbolic kernel.

Example 2. Consider the Boolean function rooted in the
top block of Figure 1. The top block, which is a MAJ

function, is a prime decomposition type. The inputs, a,
OR(b, c, d), and MUX(e, XOR(f, g), h) make up the actuals
list for the top block. Finally, the symbolic kernel is a 3-
input majority function where a different variable is used to
represent a, OR(b, c, d), and MUX(e, XOR(f, g), h). 2

Note that there are in general several ways to decompose
an n-input associative operator. For instance, with refer-
ence to Figure 1.a), b + c + d block could be decomposed
as OR(b, OR(c, d)) or OR(b, c, d) or OR(OR(b, c), d). The
decomposition tree is canonical if the maximal-inputs asso-
ciative operator is always chosen, as in Figure 1.b) [8].

The kernel function of a DSD node is described through
symbolic kernels–Boolean functions encoding the specific re-
lation among the actuals lists elements of the node [9]. The

variables in the support of a symbolic kernel function have a
one-to-one correspondence with the elements in the actuals
list of the node. The variables selected to be part of the
kernel function are chosen based on optimization criteria of
the DSD construction. In this regard, DecO uses the same
strategy as in Staccato [9] and selects each kernel variable
based on the lowest ranked variable (closest to the constant
node in a BDD) of each actuals list element. The kernel
is called symbolic exactly because of this mapping between
kernel variables and actuals list.

Example 3. The symbolic kernel for the topmost node in
the decomposition tree of Figure 1.b, is KF = MAJ(a, d, h),
where the support set {a, d, h} (the lowest ranked variable in
each actuals list member) has a one-to-one correspondence
with the actuals list elements, {a, OR(...), MUX(...)}. 2

3. BOOLEAN MANIPULATION OF DSDS
We present our novel algorithm, DecO, to apply Boolean

operators to Disjoint Support Decomposition forms. DecO
takes as input two functions represented by DSDs and pro-
duces a resulting DSD that is a canonical maximal decompo-
sition tree, and represents the result function of the Boolean
operation. The complexity of the algorithm is quadratic on
the size of the symbolic kernels of the operands involved in
the computation, which are commonly much smaller func-
tions than the complete BDDs of the operands. DecO does
not require a complete transformation from a DSD represen-
tation to a BDD representation to perform Boolean manip-
ulations. Thus, applications that benefit from the ability to
manipulate DSD representations for run-time optimizations
can exploit DecO to their advantage. In the remainder of
this section, we first overview the DecO flow and then dis-
cuss each phase of the algorithm in detail.

3.1 The DecO Flow
The general algorithm in DecO for symbolic Boolean ma-

nipulation is outlined in Figure 2. Each step of the algorithm
will be explained in detail in the following sections. In gen-
eral, the algorithm takes as input two decomposition trees
and a Boolean operator. Each input DSD is transformed
into a non-maximal decomposition so that the root symbolic
kernels store non-intersecting actuals lists. The Boolean op-
eration is then applied to these two root kernels, and the
result is decomposed using the algorithm in [9]. The re-
sulting decomposition goes through another transformation
to reconnect the original actuals and produce the final re-
sulting DSD. The general idea in DecO is not to eliminate



BDD manipulation completely, but to perform manipula-
tion on the smallest possible BDDs. DecO is able to pro-
duce smaller BDDs through symbolic kernels by exploiting
the inherent decomposability of Boolean functions. The effi-
ciency of DecO is dependent on the intermediate BDDs and
the smaller these are, the faster the algorithm execution.
For completely undecomposable functions, the intermediate
BDDs themselves are often undecomposable, and thus DecO
performs manipulation on complete BDDs.

3.2 Constructing Consistent Decompositions
The first phase of DecO is TRANSFORM CONSISTENT as shown

in Figure 2. The general goal is to generate consistent root
DSD nodes that will be the inputs for the second phase, BDD
APPLY. Although the input DSDs already have root sym-
bolic kernels, these kernels might not be the proper root
functions for the second phase. In fact, it is possible for the
root symbolic kernels of two distinct functions to share a
common symbolic variable, which represents distinct actuals
elements in the two kernels. If we were to apply a Boolean
operation directly on the kernels, the result would not be
correct. The underlying reason for this type of situation is
that, while all the components of a DSD are disjoint among
each other, the two input operands of DecO may share parts
of their support. The objective of TRANSFORM CONSISTENT is
to expand the root kernels until all the actuals list elements
are disjoint functions. The next two sections will describe
this process.
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Figure 3: a) Decomposition trees of two input func-
tions for a Boolean operation. b) Their correspond-
ing pseudo-decompositions after applying TRANSFORM

CONSISTENT.

Consistent Variable Mapping
Consider the example of Figure 3.a) that illustrates how
this transformations takes place, for readability purposes,
the symbolic kernels of the internal nodes are not specified
but can be readily deducted. We assume that the variable
order is lexicographic with a at the highest rank. Moreover,
we assume that a function represented by an upper-case let-
ter like C has variable c as its lowest rank support variable.
Notice that the symbolic kernels, KF and KG contain vari-
ables that are common to both BDDs. However, variable,
e, symbolically maps to Cde in F and to variable e in G.

In this figure, C is an arbitrary function with support dis-
joint from all the other blocks in the diagram. In addition,
variable h in G symbolically maps to function C + h, whose
support intersects with the function mapped to e in F.

The first phase of DecO transforms both operand func-
tions so that the symbolic kernels at the root of the decom-
position have support variables which are consistent, that is,
there is 1) a unique function corresponding to each distinct
support variable, and 2) there is no intersection among the
support of the actuals list elements. An example is shown in
Figure 3.b), where F and G are no longer DSDs, but pseudo-
decompositions. The functions of the root tree nodes are
called symbolic functions.

Definition 1. A pseudo-decomposition of F is a dis-
joint support decomposition that may or may not be further
decomposed.

The maximal disjoint support decompositions described in
Section 2 are a special case of pseudo-decompositions. Like-
wise, symbolic kernels are a special case of symbolic func-
tions. We use the symbol SFF to refer to the symbolic
function for a pseudo-decomposition of F.

In general, many distinct pseudo-decompositions are pos-
sible for any pair of Boolean functions. Among this set, we
choose the finest granularity pseudo-decomposition which
produces a consistent variable mapping.

Definition 2. Given two symbolic functions SF1 and SF2

and their actuals list AL1 and AL2, SF1 and SF2 have a
consistent variable mapping iff: ∀fi ∈ AL1 and ∀fj ∈
AL2 one of the following two conditions hold:

1. fi = fj

2. S(fi) ∩ S(fj) = ∅.

In other words, SF1 and SF2 have a consistent variable map-
ping iff each actuals list element of SF1 is either identical
or disjoint from each element of SF2.

As shown in Figure 3.b), after TRANSFORM CONSISTENT

each variable maps to a distinct disjoint component. This
mapping enables us to perform Boolean operations with
SFF and SFG.

Finding Consistent Variable Mappings
The algorithm described briefly below takes two decomposi-
tions and produces two pseudo-decompositions that have a
consistent variable mapping while retaining as much of the
original structures as possible. The consistent variable map-
ping algorithm traverses both DSD trees and identifies two
types of blocks: common blocks and exclusive blocks. This
phase of DecO has linear complexity on the size of the de-
composition tree. With reference to the example in Figure
3, common blocks are represented by hashed blocks.

Definition 3. A common block is a decomposition node
that occurs in both decompositions and whose parent node is
unique among all the nodes in the two decomposition trees.

With reference to Figure 3.a), by traversing the decomposi-
tion tree, one can identify that a⊕b, C, e are blocks common
to both decomposition. Notice, that a and b occur in both
decompositions but are not common blocks because their
parent node is common to both decompositions. The sec-
ond type of blocks are called exclusive blocks and are the
blocks that are shaded in the figure.



Definition 4. Given two decomposition trees F and G,
an exclusive block in G is a decomposition node whose
support is disjoint from the support of F and whose parent
node is not disjoint from F . Similarly, an exclusive block in
F is disjoint from G.

In Figure 3.a), variable h is in the decomposition of G and
it has disjoint support from F , hence h is an exclusive block
(for notational convenience, input variables to the decompo-
sition trees will be considered nodes in this algorithm). The
common and exclusive blocks identified in this manner con-
stitute the new actuals list components of the pseudo decom-
positions that we are going to build. Pseudo-decompositions
are then constructed simply by applying function composi-
tion operations to the symbolic kernels that are above the
selected actuals list. In Figure 3.b), the root nodes of the
pseudo-decomposition are indicated by SFF and SFG.

3.3 Manipulating Symbolic Functions
The second phase of the algorithm in Figure 2, BDD APPLY,

takes two BDDs and a Boolean operator, such as AND
or OR, and produces an intermediate result. The input
BDDs are the intermediate symbolic functions produced by
TRANSFORM CONSISTENT. The result is obtained by perform-
ing BDD operations as defined in [1]. The complexity of this
phase is quadratic with respect to the size of the BDDs.

Example 4. If we define the function J to be the result
of performing the AND of SFF and SFG from the example
in Figure 3, the output of BDD APPLY would be the BDD
representation for J = (b + cde)(be + e′c + eh) = bce′ +
be′h + be. 2

Notice that J treats c and b like variables despite the fact
that they symbolically map to larger functions. Thus, when
the pseudo-decompositions have many large disjoint com-
ponents, the BDD manipulation is done on corresponding
symbolic functions that are much smaller than the BDDs
that are represented by the pseudo-decompositions.

3.4 Decomposition
The third phase of Figure 2, DECOMPOSE, takes the inter-

mediate BDD result from BDD APPLY and decomposes that
BDD using the algorithm in [8]. The algorithm for decom-
position has complexity that is quadratic with respect to the
size of the intermediate BDD result. Figure 4.a) illustrates
the decomposition tree for the intermediate result J , that
was calculated in the previous section The symbolic kernel,
KJ , is also given.

Figure 4: a) The decomposition for the intermediate
function J. b) The resulting decomposition of F · G

after TRANSFORM COMPOSE.

As with the previous phase, the efficiency of DECOMPOSE is

improved when the pseudo-decompositions contain several
large disjoint components. If this occurs, the decomposi-
tion algorithm is performed on an intermediate BDD that is
much smaller than the BDD created without exploiting the
inherent decomposition structure.

3.5 Composing
The final phase of Figure 2, TRANSFORM COMPOSE, takes the

decomposition tree of J and the common actuals elements
generated by TRANSFORM CONSISTENT and produces the final
result, that is, the decomposition for F ·G. In order to obtain
a canonical decomposition, it is now sufficient to connect
together the decomposed function obtained from DECOMPOSE

with the actuals list elements that we generated in the first
phase. Each variable in the support of the DECOMPOSE output
has a mapping to a distinct function as found in TRANSFORM

CONSISTENT. The result, for example in Figure 3, is shown
in Figure 4.b).

Sometimes, the result of composing the actuals list mem-
bers into the decomposed function obtained from DECOMPOSE

is a non-maximal solution. This situation may arise when
TRANSFORM CONSISTENT breaks down associative operators.
However, the algorithm to regenerate maximally expanded
associative operator nodes is a simple algorithm whose com-
plexity is linearly related to the size of the decomposition
tree which is in turn linearly related to the number of sup-
port variables.

4. EXPERIMENTAL RESULTS
The purpose of this section is to demonstrate the effec-

tiveness and efficiency of DecO. In particular, we show that
DecO consistently achieves memory improvement over pre-
vious techniques that build DSDs from initial BDDs by uti-
lizing the inherent structure in Boolean functions. Further-
more, our results indicate that DecO has the potential to be
a compact alternative to BDDs, which is especially impor-
tant for memory-limited applications. In addition to achiev-
ing a low memory profile, we show that DecO is a much more
efficient solution in terms of run-time performance than pre-
vious solutions manipulating complete BDDs and then de-
composing the solution. Finally, our results illustrate that
DecO still has room for optimization and suggest opportu-
nities for future research.

We implemented DecO and ran experiments on a large set
of testbenches. For each experiment, we compute the DSD
representation for each output using the DecO algorithm.
The experiments were run on a 3.2GHz Pentium 4 proces-
sor with 1GB of memory. DecO uses the CUDD package
[23] to perform the BDD operations required in BDD APPLY.
Finally, DecO uses the algorithm defined in [9] to perform
the decomposition required in DECOMPOSE.

4.1 DecO Statistics
The circuits tested by DecO are given in Tables 1 and 2.

The testbenches are from ISCA-LogicSynthesis, IWLS, VIS
suites, and the Data Cache Unit from Sun Microsystems’
picoJava processor [24]. The VIS circuits were generated
by using vl2mv, a tool within VIS [25]. For the sequential
circuits, we considered only their combinational portions by
removing latches. The Data Cache Unit was produced by
synthesizing and flattening the netlist with DesignCompiler
by Synopsys.



Table 1 shows circuits that have limited inherent decom-
posability, while Table 2 gives results for circuits that are
very decomposable. DecO is implemented to achieve mem-
ory savings and run-time improvements for decomposable
circuits while not suffering degradations for circuits with
little decomposability. Both tables show various properties
of the circuits tested along with memory statistics and run-
time information for DecO.

The first five columns report circuit statistics: name of
the circuit, number of primary inputs and outputs. The
dec.out column represents the number of outputs in the cir-
cuit that are decomposable. An output is considered unde-
composable when the decomposition tree is one single block
and the actuals list consists of only primary inputs. The
next column, blocks, gives the number of nodes in the de-
composition trees of the circuit. In general, a circuit with
few blocks will be considered more decomposable than a
circuit with a smaller number of blocks. The next col-
umn, %dec.ops, shows the percentage of Boolean operations
TRANSFORM CONSISTENT does not completely flatten the de-
composition. Decomposable circuits tend to have higher
percentages in this column. Even for circuits with little
decomposability in Table 1, %dec.ops is still greater than
zero indicating that many of the intermediate operations re-
quired to build the circuit involve decomposable operands.
The circuits are ordered according to this percentage. The
next three columns represent the amount of memory used
by DecO for each circuit. The first two of these columns
give the memory required by DecO to represent the BDD
of the symbolic kernels and the decomposition tree respec-
tively. The third column gives the total memory required
by DecO. Notice that the amount of memory required to
represent the decomposition tree is considerably less than
that required to represent the symbolic kernels. The final
column gives the execution time for DecO in seconds. This
is the amount time needed to build the circuit using the
DecO algorithm. The result is a disjoint support canonical
representation for each output of the circuit.

The following two sections will give perspective to these
results by showing relative memory improvement compared
to Staccato [9] and CUDD and by showing speedup when
compared to a naive scheme for performing Boolean opera-
tions on DSDs.

4.2 Memory Performance
Figure 5 shows the relative memory savings achieved by

DecO when compared to Staccato, a package that generates
DSDs after first constructing the complete BDDs. The re-
sults illustrate that DecO always requires less or the same
amount of memory as Staccato. Since the decomposition
trees of both algorithms use the same amount of memory,
the difference in results is due to the compact representation
of symbolic kernels over BDDs. This demonstrates the ad-
vantages of utilizing inherent structure in Boolean functions
to reduce BDD memory requirements.

The difference between the memory requirements of DecO
and Staccato is indicative of the degree to which decompo-
sitions allow DecO to eliminate BDD storage. Thus, for the
more decomposable circuits, DecO tends to achieve substan-
tial memory savings requiring less than half the memory in
four circuits. When there is little decomposability, DecO
does not require more memory than Staccato. The poten-
tial of DecO can be further illustrated by comparing the
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Figure 5: Memory improvement of DecO compared
to Staccato.
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Figure 6: Memory improvement of the symbolic ker-
nel component of DecO compared to CUDD.

total memory required to represent all the symbolic kernels
in DecO to the BDD memory required in CUDD. For this
analysis we do not take into account the decomposition tree
memory since we showed in Table 1 and 2 that it is an in-
significant fraction of the overall memory.

When comparing CUDD to the symbolic kernel compo-
nents of DecO, consistent memory savings are found as shown
in Figure 6. The notable exception is circuit i10, where there
is practically no overlap between the decompositions of each
output function, while the CUDD outputs find many shar-
ing opportunities. Note that, undecomposable circuits have
identical memory requirements to CUDD since the symbolic
kernel is equal to the complete BDD. DecO utilizes the de-
composable structure of Boolean functions through symbolic
kernels to provide a compact representation. The complete
BDDs do not take advantage of this structure present in
circuits. Because several applications that require BDDs of-
ten experience memory explosion, using DecO to represent
Boolean functions instead of BDDs could provide an effec-
tive compact alternative.

4.3 Runtime Performance
To analyze the efficiency of the DecO algorithm, we com-

pared our approach to a naive approach that simply takes
the input DSDs, generates a complete BDD, performs the



DecO(KB)Circuit in out dec.out blocks %dec.ops
S.Ker Dec.Tree Total

DecO(s)

mult12x12 24 24 4 29 16 9573 4 9577 534.90
mult8x8 16 16 4 21 26 145 3 148 1.29
C499 41 32 0 32 42 427 12 439 103.85
C1355 41 32 0 32 47 458 12 470 110.72

Table 1: Statistics for circuits with limited decomposability.

DecO(KB)Circuit in out dec.out blocks %dec.ops
S.Ker Dec.Tree Total

DecO(s)

C7552 207 108 107 518 52 151 23 174 0.87
C1908 33 25 7 94 57 93 7 100 8.87
s38417.1 1494 1571 1313 6153 61 5048 292 5340 197.30
C2670 233 140 119 453 62 57 7 64 0.91
C3540 50 22 14 56 63 444 6 450 8.85
dcu 700 265 231 3118 71 5976 46 6022 275.98
am2901 95 150 138 280 73 6077 49 6126 98.62
s38584 1464 1730 1611 11761 74 175 192 367 9.74
s9234.1 172 174 169 1275 77 17 18 35 0.15
s13207 700 790 783 2787 79 42 49 91 1.21
s15850 611 684 651 8877 83 101 76 177 11.26
i10 257 224 224 2241 87 1601 51 1652 19.80

Table 2: Statistics for highly decomposable circuits.
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Figure 7: The light colored-bar shows the speedup of
DecO over a naive approach that uses CUDD and
Staccato. The dark-colored bar shows the poten-
tial speedup of DecO by showing the speedup of a
theoretically optimal version of DecO, IdealDecO,
compared to the naive approach.

Boolean operation on the complete BDDs using CUDD,
and decomposes the result with Staccato. The light-colored
bar in Figure 7 illustrates the speedup DecO achieves com-
pared to this naive approach. As with the memory re-
sults, the greatest improvements occur for functions that are
decomposable. In these situations, the intermediate func-
tions are much smaller in DecO than in the naive approach.
Hence, BDD APPLY and DECOMPOSE execute more efficiently.
Also, DecO performs similarly to the naive approach for
undecomposable circuits, which illustrates that the over-

head involved with TRANSFORM CONSISTENT and TRANSFORM

COMPOSE is minimal.
On the other hand, Tables 1 and 2 illustrate that not

all operations performed are decomposable and thus do not
benefit from the DecO algorithm. To illustrate the full po-
tential of DecO, we compared the naive algorithm to a the-
oretical version of DecO, IdealDecO, shown in Figure 7 and
illustrated by the dark-colored bar. This ideal version only
uses DecO when the operation is decomposable as defined
in Section 4.1. Otherwise it just uses CUDD and does not
generate a DSD at those intermediate points. The result is
a much more efficient solver that performs much better on
undecomposable cases and also on decomposable cases while
maintaining approximately the same memory profile as the
original version of DecO.

Although IdealDecO was not implemented as a general
strategy as it is very difficult to always know whether an
operation will be decomposable ahead of time, IdealDecO
provides a useful realistic goal to reach. This could motivate
further research in developing heuristics in DecO that turn
off the DecO algorithm when the rate of undecomposable
operations reaches a certain threshold.

5. CONCLUSIONS
We presented a novel algorithm that supports Boolean op-

erations directly on Disjoint Support Decompositions (DSDs)
without necessarily requiring a transformation of DSDs back
to BDDs. The algorithm produces a representation for a
function that is more compact than previous DSD represen-
tations (like Staccato) and is often more compact than us-
ing BDDs for highly decomposable functions. Furthermore,
these operations can be performed relatively efficiently es-
pecially for decomposable functions. Moreover, our results
indicate that there is still room for more run-time improve-



ment in DecO by heuristically disabling the DecO algorithm
for operations that involve operands with no decomposabil-
ity. The algorithm developed provides a more descriptive
representation of the functions involved in the Boolean ma-
nipulation than maintaining complete BDDs and can there-
fore be useful for many application areas that benefit from
the decomposition properties of Boolean functions, such as
technology mapping and area optimizations in synthesis. In
addition, DecO could provide a compact alternative to tra-
ditional BDD manipulation in the verification domain where
memory is often the limiting factor.
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