
ABSTRACT
The need to perform early design studies that combine architectural
simulation with power estimation has become critical as power has
become a design constraint whose importance has moved to the
fore. To satisfy this demand several microarchitectural power simu-
lators have been developed around SimpleScalar, a widely used
microarchitectural performance simulator. They have proven to be
very useful at providing insights into power/performance trade-offs.
However, they are neither parameterized nor technology scalable.
In this paper, we propose more accurate parameterized power mod-
eling techniques reflecting the actual technology parameters as
well as input switching-events for memory and execution units.
Compared to HSPICE, the proposed techniques show 93% and
91% accuracies for those blocks, but with a much faster simulation
time. We also propose a more realistic power modeling technique
for external I/O. In general, our approach includes more detailed
microarchitectural and circuit modeling than has been the case in
earlier simulators, without incurring a significant simulation time
overhead—it can be as small as a few percent.

Categories and Subject Descriptors:
B.6.3 [Logic Design]: Design Aids—Simulation, Optimization;
B.7.2 [Integrated Circuits]: Design Aids—Simulation, Layout

General Terms: Design, Performance
Keywords: Power modeling, Deep sub-micron

1. Introduction
Power consumption has quickly become a key design con-

straint in microprocessor designs, from low-end embedded proces-
sors to high-end high-performance systems [1, 2]. The embedded
processors found in PDAs and cell phones must utilize energy effi-
cient designs, as their energy payload is limited by form factor and
weight constraints. With battery power density improving only at a
rate of about 5% per year, increase in battery lifetime comes about
through improvements in the energy efficiency of system compo-
nents. To create power-sensitive designs, accurate power estimation
combined with architectural or system level performance simula-
tion is a key design tool that permits rapid early design studies that
gauge trade-offs between performance and power.

Recently, several microarchitectural-level power estimation
tools have been introduced [3, 4, 5] in academia, and they have
been widely adopted for use in design studies that require power
modeling. In all of these tools, microprocessor power is estimated

by accruing power as estimated by the power models for each
access to microarchitectural functional blocks. In Wattch [3],
Brooks et al. extended CACTI, an access and cycle time model for
on-chip caches [6], to model the power dissipation of on-chip stor-
age blocks such as caches, register files, and branch target buffers.
The model used in Wattch resorts to a fast approximation that is
well suited for the high-end designs containing large and complex
memory, but the power consumption of datapath and execution
blocks is estimated by a single, per-access value, which is not scal-
able for the technology nor the different circuit style. Although their
approach is a good approximation for high-end application domain,
we believe that embedded designs require a more accurate model-
ing, based on the specific switching activity within each execution
block.

In SimplePower [4], Vijaykrishnan et al. incorporated register-
transfer level (RTL) power models based on look-up tables (LUT)
into a microarchitectural simulator. Each LUT contains a set of pre-
characterized power dissipations for a datapath component, and
each entry of the LUT, indexed by the hamming distance between
subsequent input vector pairs, returns the estimated power of the
component [7]. The objective of this tool is to provide a framework
for quickly evaluating a range of architectural and algorithmic
trade-offs during the early design stages. To this end, it targets a ref-
erence processor design for the pre-computation of the capacitance
tables. This reference design, while accurate enough for the purpose
of the trade-off analysis, is not easily modifiable to describe spe-
cific alternative designs that may have different datapath width,
smaller feature size, or different technology. On the other hand, an
evaluation of power dissipation in later design stages would obvi-
ously benefit from referencing the specific design under develop-
ment. These microarchitectural-level power modeling tools have
been invaluable in giving computer architects the insights necessary
to develop first-generation microarchitectural power optimizations.
However, a rapidly changing technology landscape combined with
increasingly complex microarchitectural features has brought about
an erosion in the fidelity of existing power models [8].

In this paper, we propose a parameterized and technology scal-
able microarchitectural-level power modeling technique that suits
the needs of accurate power estimations of microprocessor designs.
This technique combines simplified circuit-level capacitance
extraction and cycle-based logic simulation embedded into a
microarchitectural level simulator such as SimpleScalar [9], to
obtain execution time and circuit specific power dissipation data. In
addition, we introduce a more detailed microarchitectural event
modeling methodology to give a cycle-accurate power estimation
of long-latency multi-cycle operations such as external I/O access.

The remainder of this paper is organized as follows. First, we
present the basic power modeling technique in Section 2, which
including the capacitance extraction and switching-event estimation
methodologies. Second, we illustrate case studies for the memory,
datapath, I/O, and their calibration in Section 3, Section 4, and Sec-
tion 5, respectively. Finally, Section 6 summarizes our contribu-
tions.

Microarchitectural Power Modeling Techniques for
Deep Sub-Micron Microprocessors*

Nam Sung Kim†, Taeho Kgil, Valeria Bertacco, Todd Austin, Trevor Mudge
Microprocessor Research, Intel Labs, Hillsboro, OR 97124†

Advanced Computer Architecture Lab, University of Michigan, Ann Arbor, MI 48109
nam.sung.kim@intel.com†, {tkgil, vale, austin, tnm}@eecs.umich.edu

*This work is supported in part by DARPA PACC program,
Semiconductor Research Corp., and Intel Graduate Fellowship.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISLPED’04, August 9-11, 2004, Newport Beach, CA, U.S.A.
Copyright 2004 ACM 1-58113-XXX-X/03/00XX…$5.00.

2. Power Modeling
2.1 Modeling transistor capacitance components

For the accurate dynamic power estimation of a circuit, it is
important to understand the intrinsic capacitance components of a
transistor, because the dynamic power dissipation is estimated
based on those capacitances plus the switching activity of the tran-
sistor nodes. Figure 1 shows the intrinsic capacitance components
in the transistor (or MOSFET). In Figure 1-(a), G, B, S, D nodes
represent gate, body, source, and drain. CJ and CJSW in Figure 1-(b)
represent the junction bottom area and sidewall capacitance. L, W,
DL, and DW represent the channel length and width, and junction
length and width of the transistor. In deep sub-micron technology,
most of the dynamic power dissipation is due to the charging and
discharging of gate and source/drain capacitances during each tran-
sition. Therefore, we need an accurate, yet simple model to estimate
these capacitance components accurately for our power estimation
technique. The gate capacitance can be computed as follows [10]:

(1)

where , , and are gate oxide and gate overlap capac-
itance per unit area, and gate overlap length, respectively. More-
over, L is usually fixed to be the minimum channel length of the
technology for digital circuits, thus the only unknown in the expres-
sion is the channel width W. For the computation of source and
drain capacitances we use:

(2)

where AD = DL×DW is the drain area and PD = 2×(DL+DW) is the
drain perimeter. AD and PD can usually be extracted from the phys-
ical layout; alternatively it is possible to obtain a rough estimate
based on the design rule set of the target technology and the design
structure: DL and DW can be approximated as and for

small size devices. In addition, the rest of parameters such as Cox,
AD, and PD for a specific technology can be obtained from the
SPICE technology parameters [11].

2.2 Modeling switching events with an embedded
cycle-based logic simulator

Once node capacitances are estimated, the next step is to
gather node-switching information. We compute each switching on
the fly during microarchitectural simulation, because total dynamic
power dissipation is heavily dependent on the number of switching
at the internal nodes [12][13]. The two-input CMOS NAND gate —
the most basic logic component along with the inverter — consists
of four transistors. Figure 2 illustrates how we model a two-input
NAND logic gate using our proposed methodology using the corre-
sponding classes and methods: for each node of the netlist, an
instance of class Node stores logicValue and capacitance, which is
estimated using Equation 1 and/or 2, based on the node’s connec-
tions. Class LGate_2 is a base class for any type of 2-input gate; it
includes a constructor that takes into account the widths of the com-
ponent transistors, and a virtual method for a generic 2-input opera-
tion evaluation. The derived class Nand provides a specific
definition for the GateOp function that computes the new output
value and the power dissipated if a transition has occurred. It is easy
to observe how to define other 2-input gates as derived classes of
LGate_2 and how to create other types of generic gates. The last
portion of the pseudo-code shows how to create one nand gate, set
initial input values, and then perform the simulation.

At the netlist level, multiple gates are created and connected
together to simulate the entire logic block. We levelize each gate or
netlist primitive and simulate each gate one after the other, in a
sequence compatible with the partial ordering imposed by the level-
ization. This approach corresponds to the levelized cycle-based
simulation technique in logic simulation [14]. As a small example,
Figure 3 illustrates how to create a netlist for a combinational cir-
cuit and how to simulate the internal node activity. The example
shows a combinational circuit consisting of 2-input NOR and 2-
input NAND gates. We are able to evaluate the correct output logic
value by evaluating the gates in the order of increasing distance
from the primary inputs. For the regular logic structures such as
datapath, decoder, and memory, the SPICE netlists can be easilyL

Csb Cdb

Cgs Cgd

Cgb

S

CJ CJ

CJswCJsw

DL

DWW

D

G

B

∆L

Figure 1.The intrinsic capacitance components in a transistor
— lateral (a) and top (b) views.

(a)

(b)

Cg Cox L 2∆L–() Covlp 2∆L×+×() W×≅

Cox Covlp ∆L

CD AD() CJ× PD CJSW×+=

3 L× W

Figure 2.Power modeling of a 2-input Nand gate

/* derived Nand function */
Bit newY = !(A & B);
if (Y.logicValue ==0 && newY==1)
Y.logicValue = newY;
return 0.5*Y.capacitance*voltage*voltage;}

/* node capacitance extraction */
Y.capacitance += drain_cap(WP1+WP2+WN1+WN2);
A.capacitance += gate_cap(WP1+WN1);
B.capacitance += gate_cap(WP2+WN2);}

/* create the netlist */
nand = Nand(&A, &B, WP1, WN1, WP2, WN2);
/*assign inputs and eval logic and power */
A.logicValue = 0x1; B.logicValue = 0x0;
energy = nand.GateOp(voltage);

/* generic circuit node class */
class Node { public:

Bit logicValue; /* node logic value */
double capacitance;/* node capacitance */};

/* generic two input logic gate class */
class LGate_2 {

Node Y; /* output node */
Node A, B; /* input nodes */
LGate_2(I1, I2, WP1, WN1, WP2, WN2); /* constructor */
virtual double GateOp (double voltage);/* gate eval fn*};

/* Nand derived class */
class Nand: public LGate_2 {
double GateOp (double voltage) {

transistor widths

Figure 3.An example of modeling a set of gates.

/* create logic gate instances connect the nets */
Node A, B, C;
nor = Nor(&A, &B, WP1, WN1, WP2, WN2);
nand = Nand(nor.Y, &C, WP1, WN1, WP2, WN2));

/* levelized simulation */
energy += nor.GateOp(supply_voltage);
energy += nand.GateOp(supply_voltage);

translated to the embedded cycle-based logic simulator routines
with the switching capacitance extraction from the transistor sizes.

The levelized approach we use here usually provides better
performance over an event-driven simulation, since we trade hav-
ing to maintain an event queue at the expense of simulating every
gate in the netlist at each time step [15]. A downside of the level-
ized approach is that we lose information on arrival times of sig-
nals, thus we cannot evaluate power dissipation due to glitches and
temporary transitions. However, a well-designed combinational cir-
cuit should not generate many glitches, in which case our model is
still accurate.

3. Memory Power Models
In modern microprocessors, static random access memory

(SRAM) is extensively used for caches, TLBs, BTBs, branch pre-
dictors, register files, instruction queues, etc. For instance, 40% of
the total power in the Alpha 21264® and 60% of the total power of
the StrongARM® processor is devoted to cache and memory struc-
tures [16][17]. As the feature sizes have shrunk and supply voltages
have decreased, bit-line voltage swings during read operations have
been decreased to 100mV and combined with the word-line pulse
technique [18]. This has dramatically reduced the power consump-
tion by bit-lines. In contrast, the original CACTI model assumes
that the bit-line is fully discharged. The decoder model is also
affected by scaling to a lesser extent. We have revised the power
model of both the decoder and the bit-lines and their sense-amps to
accurately reflect in modern SRAM designs.

While the bit-line power dissipation is independent from the
switching activity of the data due to the complementary structure of
bit-lines, the power dissipation of the decoder is heavily dependent
on the switching events of the decoder address inputs. Hence, we
need to build a switching event-sensitive power model for the
decoder. We present now an example of how to use the technique
just presented in Section 2 to model a 7×128 decoder power con-
sumption designed with the TSMC 0.18µm technology Artisan
standard cell library and the Synopsys® design compiler®. Figure
4 shows the 7×128 decoder logic and its corresponding description
for the power modeling. The decoder logic has a regular structure
consisting of a set of NANDs, NORs, and INVs. The cycle-based
logic simulator for the decoder was derived by instantiating and
connecting those gates in an iterative way, see the loops in Figure 4.
The switching capacitance of each node was automatically
extracted and inserted into the logic simulator using our own soft-
ware annotation procedures. Then, the resulting logic simulator
annotated with the extracted capacitance is embedded in the
microarchitectural simulator with an interface routine. This passes

the current address bus value to the logic simulator and returns the
estimated energy consumption to the microarchitectural simulator.
For the bit-line energy consumption, we used the following equa-
tion:

, (3)

where and are bit-line capacitance per memory
column and bit-line voltage swing. The bit-line capacitance per col-
umn includes the bit-line interconnect, the access transistor drain,
and the pre-charge circuit drain capacitance. The bit-line intercon-
nect capacitance was estimated based on the actual SRAM dimen-
sion and using available MOSIS parametric test results for the
TSMC 0.18µm technology fabrication run [11]. The access transis-
tor drain capacitance connected to the bit-line was estimated using
Equation 2.

/* dec 3×8 class */
class Dec3×8: {

Node A[3], Y[8]; Nand intNand3[8], Inv intInv[3];
Dec3×8(...); /*setup internal node connections */
double GateOp (double voltage) {

/* compute 3×8 decode logic values and energy*/
for(i = 0; i < 3; i++)energy += intInv[i].GateOp(volt)
for(i = 0; i < 8; i++)energy += intNand[i].GateOp(volt
return energy;}

};

/* create dec 7×128 netlist */
for(i = 1; i < 3; i++) {)

/* create and connect Dec3x8 (pre-decoder) instances *
Dec3×8[i] = Dec3×8(A[i*3], Dec3×8Y[i*8],...);}

for(i = 1; i < 8; i++) {)
for(j = 1; j < 8; j++) {)
/* create and connect Nor gate instances */
intNor3[i*8+j] = Nor(Dec3×8Y[j], Dec3×8Y[i], ...);}
...

}

Figure 4.An example of modeling an 7×128 decoder.

3×8 3×8

Abus
[0:2]

Abus
[n-2:n]

word-line driver

A[0] A[1] A[2]

3×8 3×8

Abus
[0:2]

Abus
[n-2:n]

word-line driver

A[0] A[1] A[2]

5

6

7

8

9

0 8 16 24

Vector sequence

E
ne

rg
y

C
on

su
m

pt
io

n
(p

J)

Estimation HSPICE

0

5000

10000

15000

20000

25000

30000

fft patracia bfish rc6 anagram AES tiffdither cjpeg

Benchmark

E
ne

rg
y

C
on

su
m

pt
io

n
(p

J)

L1 inst cache L1 data cache

Figure 5.SRAM energy consumption model calibration in (a) and L1 instruction and data cache energy consumption in (b).

(a) (b)

E Cbit-line V×
DD

∆Vswing×=

Cbit-line ∆Vswing

Figure 5-(a) shows the calibrated energy consumption of 4KB
SRAM power model against HSPICE measurement. In the figure,
each point represents the energy consumption for each applied vec-
tor. For the HSPICE experiment, we modeled and simulated the
whole 7×128 decoder and a dummy 128×256 bit memory array: we
modeled just one column of 128 cells multiplied by 256 to speed up
the simulation. As seen in Figure 5-(a), the estimated energy con-
sumption tracks with the actual measurement result closely for each
applied vector. On average, the proposed technique shows around
7% estimation error for 1K vectors compared to the HSPICE mea-
surement. However, comparing the simulation speed, the proposed
technique completed the estimation within a few seconds while the
HSPICE took 3.4 hours on UltraSparc80® 450MHz dual proces-
sors with a 4MB L2 cache.

Figure 5-(b) shows the total accumulated energy consumption
of the 4KB L1 instruction and data caches obtained by running 10
million instructions for a subset of embedded benchmark programs
from MiBench [19]. The proposed power models were embedded
in SimpleScalar/ARM performance simulator suite with the Stron-
gARM configuration for this experiment. During the energy estima-
tion the address stream extracted from the microarchitectural
simulator was applied to the SRAM power model on the fly.

The estimated energy consumption results show that total
energy consumption can be significantly different depending on the
benchmark programs although the same numbers of instructions are
executed. Usually, the instruction caches consume more energy
than the data caches although the average energy dissipation per
access of data caches are usually higher than that of instruction
caches. The primary reason for this energy consumption character-
istic is that the instruction caches are more frequently accessed than
the data caches while the address stream from the data caches are
more non-sequential, which means more switching events in the
address bus, than that from the instruction caches. These character-
istics imply that both the application-specific functional block input
switching and access activities must be modeled for accurate power
estimation of the embedded microprocessor. In terms of microar-
chitectural simulator execution time overhead, the proposed tech-
nique increases it by 3% for both the instruction and data caches.

4. Datapath and Execution Unit Power Models
We present next an example of how to use the proposed tech-

nique to implement a datapath component and generate a power
estimator that interfaces at run-time with the micro-architectural
simulator to gather the proper input stimulus. For this example, we
consider a 32-bit carry-select adder consisting of eight 8-bit ripple-
carry adders as modeled in Figure 6.; for each 8-bit addition, two 8-

bit ripple-carry adders are used to compute the results in parallel for
zero and one carry-ins, respectively. The first step is to construct the
basic block for a full adder by instantiating the necessary logic
gates: the definition of the class FullAdder creates all the internal
gates and it properly connects them in its constructor so that two
output nodes, S and CO, produce the correct functionality. At this
point, the main program can create and connect the full adder
blocks employing a loop shown in Figure 6. Note how the program
structure lends itself naturally to the parameterization of the bus
width. By instantiating eight 8-bit ripple-carry adders, we are able
to build a 32-bit carry adder. At this point, the power estimator
includes a complete description of the logic block under study. The
last two steps provide an interface to the microarchitectural simula-
tor by retrieving on-the-fly at each cycle the input vectors corre-
sponding to the two operands of the addition operation, and
proceeding with the power/logic simulation.

We calibrated our embedded power estimator by comparing
the results with the corresponding HSPICE circuit simulation. Fig-
ure 7-(a) shows a calibration using the carry-select adder of the pre-
vious case study. Each point in the graph represents dissipated
energy estimated or measured by applying each vector to the cir-
cuit. The diagram indicates that the technique proposed tracks the
actual power dissipation of adders very well; we found that the
average estimation error by applying 1K vectors is around 9%. The

class FullAdder: {
Node A, B, S, CI, CO;
Nand intNand1, intNand2...; Or intOr1, intOr2...;

FullAdder(...); /*setup internal node connections */
double GateOp (double voltage) {

/* compute sum and carry logic values and energy*/
double energy = intNand1.GateOp(voltage);
energy += ...
return energy;}

};

/* step 1: create netlist */
for(i = 1; i < WIDTH; i++) {

/* create and connect FullAdder instances */
FA[i] = FullAdder(A[i], B[i], FA[i-1].CI, CO[i],

SO[i]...);}

/* step 2: load input vectors */
A.apply(LOp); B.Apply(ROp);

/* step 3: logic and energy evaluation*/
for(i = 0; i < WIDTH; i++) {

energy += FA[i].GateOp(voltage);}

Figure 6.An example of modeling an 8-bit RCA.

0

1

2

3

0 8 16 24

Vector sequence

E
ne

rg
y

C
on

su
m

pt
io

n
(p

J)

Estimation HSPICE

0

5000

10000

15000

20000

25000

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rt

ex vp
r

A
V

G

Benchmarks

E
ne

rg
y

(p
J)

32-bit CSA

Figure 7.32-bit CSA energy consumption model calibration in (a) and total energy consumption in (b).

(a) (b)

steady under-approximation error of the power estimator can be
explained by two sources of power dissipation that our model does
not take into account: glitches occurring because of the relative
delays among signal propagation times, and temporary short cir-
cuits due to both PMOS and NMOS transistors being turned on dur-
ing the transition.

To produce the graph in Figure 7-(b), we simulated the
SPEC2000 INT benchmark programs [20] while running the power
simulator on our 32-bit adder component. For each benchmark pro-
gram, we applied 32K vectors to the power model. The results show
the total energy that was dissipated in the adder. Note how the total
energy dissipation profiles present high variations over different
benchmark programs: for instance mcf consumes 480% more
energy than eon, which seems to indicate that the amount of data
activity plays an important role in the accurate estimation of the
power dissipation of a datapath component. Because of its accuracy
and flexibility, this technique could easily be applied in trade-off
studies of various solutions for datapath circuits, or for optimization
of power dissipation for the embedded processors where the datap-
ath constitutes a significant portion of the total power dissipation.

5. I/O Power Models
Generally, the I/O circuits (dis)charge a large amount of load-

ing capacitance as well as require higher supply voltage than the
microprocessor core (e.g., 3.3V). This makes the I/O circuits a
major contributor to the peak power dissipation of the microproces-
sor. Although the microprocessor may not frequently access the
external memory through the I/O in the presence of L1 and L2 on-
chip caches, a significant amount of power will be still consumed
by the I/O circuits; the Alpha 21264 I/O circuits consumes 5%
(~3.5W) of total power in average [16]. Furthermore, the fraction of
power dissipated by the I/O circuits will be significantly increased
in those embedded processors with not on-chip L2 or L1 cache.
However, the power consumed by I/O circuits has been ignored or
not modeled properly in most microarchitectural power estimation
frameworks. There are two sources of error: 1) the lack of detailed
information about the external loading capacitance connected to the
I/O circuit, and 2) the I/O bus transaction model used in microarchi-
tectural simulator.

Figure 8 shows both the memory I/O access modeling in the
microarchitectural simulator and the cycle-accurate I/O bus transac-
tion modeling. For example SimpleScalar — baseline simulator for
most microarchitectural power estimation frameworks — transfers
all the request data blocks at the call time of external memory
access function (e.g., mem_access in Figure 8) and returns just an
access latency. The typical microprocessor transfers the blocks one
by one over several I/O bus cycles with a more complex data trans-

fer protocol. As we have noted, the cycle-based microarchitectural
simulators derive their speed from abstracting out many of the
physical details. Hence, we have no idea about the details of the
memory transfer protocol including exact timing and bus switching
activity of address and data I/O buses. To correct this, we need a
mechanism or modification for tracing actual I/O address and data
during the I/O transactions in a cycle accurate way. To provide this
mechanism, it is necessary to augment the simulator to trace I/O
bus streams and feed them to the power model at the pertinent I/O
transaction cycle.

Figure 9-(a) shows an I/O bus power model accounting for the
actual I/O bus switching activity during memory I/O bus cycles. In
this model the number of “0” to “1” transitions of the I/O pin is
counted by comparing the blocks transferred in the previous and
current I/O bus cycles. At the initiation of the I/O bus transaction
cycle, the high-impedance bus state is assumed. To estimate the
power dissipation by the I/O bus at a particular I/O cycle, the count
of the number of I/O pin transitions of each block is transferred to
the I/O circuit power model. In general, the switching capacitance
of the I/O circuit consists of the intrinsic (or internal) capacitance of
the I/O circuit itself and the extrinsic (or external) capacitance of
the connected chipset and the PCB interconnect between the micro-
processor and chipset I/O pins. The amount of the extrinsic capaci-
tance driven by the I/O circuit is more significant than the intrinsic
capacitance. Therefore, it is important to estimate the extrinsic
capacitance in a realistic way.

In most computer systems, the microprocessor is not directly
connected to the memory module in the PC mother board, but it is
connected to the memory controllers through a front-side system
bus (or simple I/O bus), e.g., the Intel Pentium processors [21].
Hence, the I/O pin capacitance of the microprocessor and chipset
should be known as well as the PCB interconnect capacitance of the
front system bus. For illustration purposes the necessary intercon-
nect dimension and layer were obtained from the Intel® 875P
chipset for the Pentium 4® processor [21]. The PCB layout param-
eters and the interconnect capacitance was estimated using [22] for

Figure 8.The memory access I/O modeling in the micro-
architectural simulator.

mem_access call

Nth access addr transaction cycles(N-1)th access transaction cycles

data0 data1 data2 data3data bus data6 data7

latency = mem_access(addr = addr0, blk_size = 4, &data);

access latency

mem_access_dbus_if(blk_size = 4, &data, sim_cycle = M, la

Mth sim cycle

0.00

2.50

5.00

7.50

0 8 16 24 32 40

I/O transaction sequence

P
ow

er
 (

W
)

3" 6"

1 I/O bus
transaction

Figure 9.The I/O bus switching activity modeling in (a) and a snapshot of power dissipation by 64-bit processor I/O bus in (b).

blk0 blk1 blk2blk4 blk4

from Nth transactionfrom N-1th transaction

blk3

keep/high impedance
bus mode

blk0 blk1 blk2 blk4

from Nth transaction

pull-up/pull-down
bus mode

bus switching activity

bus stream buffer

0xffff/0x0000

bus switching activity

bus stream buffer

(a) (b)

the external I/O bus capacitance as well as the chip package pin
capacitances [23].

According to [23] the typical package pin capacitance of both
the microprocessor and chipset is 5pF per I/O pin. The interconnect
dimensions and layer information is usually found in the chipset or
microprocessor specification [21]; in the case that neither the
microprocessor nor the chip-set have been developed, the most
recent available information can be used. The estimated PCB inter-
connect capacitance per inch is around 2.15pF for the given specifi-
cation, and the minimum and maximum allowed front-side bus
interconnect lengths are 3” and 6”, respectively. Therefore, the PCB
interconnect capacitance of the front system bus is between 6.5pF
and 13pF depending on the interconnect length; in case of the 6”
front side system bus, the PCB interconnect capacitance is around
13pF, which results in total 23pF per pin including the package pin
capacitance of both the microprocessor and chipset.

With the I/O bus capacitance and the detailed bus protocol
modeling we were able to estimate the power dissipation of the 64-
bit microprocessor I/O bus with realistic parameters (see Figure 9-
(b) for a snapshot of I/O bus power dissipation when running eon).
The experiment shows that the power dissipation by the I/O bus is
substantial whether the front system bus interconnect length is 3” or
6”, and it has a great potential to contribute to the peak as well as
the average power dissipation of the microprocessor during the I/O
bus cycles. Furthermore, this experiment shows that counting
switching activity in a cycle accurate way is important, because the
power dissipation by I/O at a specific I/O cycle differs significantly
depending on the number of I/O pin switching.

6. Conclusion
In this study, we provided power modeling methodologies for

for deep sub-micron microprocessors. The following summarize
our contributions in this study. First, we introduced a simple switch-
ing capacitance extraction methodology and a cycle-based logic
simulation technique which can be easily embedded into a high-
level microarchitectural simulator — we used SimpleScalar. The
high-level microarchitectural simulator enables the user to explore
a much larger design space quickly. Combining this high-level sim-
ulator with the embedded low-level logic simulator gives us more
accurate power estimation results quickly for specific target func-
tional blocks. Second, we illustrate and calibrate our power model-
ing for caches, execution units, and I/O. Our experiments show the
power models track HSPICE closely for each applied vector as well
as producing accurate average energy dissipation. This is achieved
with a very small execution time overhead—it can be as small as a
few percent.

References

[1] T. Mudge. Power: A first class design constraint. Computer,
vol. 34, no. 4, April 2001, pp. 52-57.

[2] Nam Sung Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner,
J. Hu, M. Irwin, M. Kandemir, N. Vijaykrishnan. Leakage
Current: Moore's Law Meets Static Power. Computer, vol. 36,
no. 12, Dec. 2003, pp. 65-77.

[3] D. Brooks et al., “Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations,” Proc. 27th Int.
Symp. on Computer Architecture (ISCA27), May 2000.

[4] N. Vijaykrishnan, et al., “Energy-Driven Integrated Hardware-
Software Optimizations Using SimplePower,” Proc. 27th Int.
Symp. on Computer Architecture, May 2000.

[5] G. Cai et al., “Architectural Level Power/Performance
Optimization and Dynamic Power Estimation,” Cool Chips
Tutorial in conjunction with the 32nd Int. Symp. on
Microarchitecture, Nov 1999.

[6] S. Wilton et al., “An Enhanced Access and Cycle Time Model
for On-Chip Caches,” Western Research Laboratory Research
Report 93/5, July 1993.

[7] H. Mehta et al., “Energy Characterization based on
Clustering,” Proc. 33rd Design Automation Conf., June 1996.

[8] Omitted for a blind review.
[9] T. Austin et al., “SimpleScalar: An Infrastructure for

Computer System Modeling,” IEEE Computer, Vol. 35, pp.
59-67, Feb. 2002.

[10] B. Geuskens, et al., “Modeling Microprocessor Performance,”
Kluwer Academic Publishers, 1988.

[11] The MOSIS Service. http://www.mosis.com.

[12] P. E. Landman et al., “Activity-Sensitive Architectural Power
Analysis,” IEEE Transaction on CAD of Integrated Circuit
and Systems, Vol. 15, No. 6, June 1996

[13] P. E. Landman et al., “Architectural Power Analysis: The Dual
Bit Type Method,” IEEE Transaction on VLSI Systems, Vol. 3,
No. 2, June 1995.

[14] Z. Brazilai et al., “HSS: A High-Speed Simulator,” IEEE
Trans. on CAD/ICAS, July 1987.

[15] L. T. Wang et al., “SSIM: A Software Levelized Compiled-
Code Simulator,” Proc. 24th Design Automation Conf., June
1987.

[16] M. K. Gowan et al., “Power Considerations in the Design of
the Alpha 21264 Microprocessor,” Proc. of 35th Design
Automation Conf., June 1998.

[17] J. Montanaro, et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC
Microprocessor,” IEEE Journal of Solid-State Circuits, Vol 31,
Nov 1996.

[18] K. Roy and S. Prasad, “Low-Power CMOS VLSI Circuit
Design,” Wiley Interscience publication, 2000.

[19] M. R. Guthaus et al., “MiBench: A Free, Commercially
Representative Embedded Benchmark Suite,” Proc. IEEE 4th
Annual Workshop on Workload Characterization, Dec. 2001.

[20] Standard Performance Evaluation Corporation. http://
www.specbench.org.

[21] Intel 875 Chipset Datasheet — Platform Design Guide, ftp://
download.intel.com/design/chipsets/datashts/25252703.pdf.

[22] Microstrip Impedance Calculator, http://
www.emclab.umr.edu/pcbtlc2/microstrip.html

[23] Intel 875 Chipset Datasheet, ftp://download.intel.com/design/
chipsets/datashts/25252501.pdf.

[24] A. Bellaouar et al., “Low-Power Digital VLSI Design: Circuit
and Systems,” Kluwer Academic Publishers, 1996.

[25] K. Ghose and M. Kamble, “Reducing Power in Superscalar
Processor Caches using Subbanking, Multiple Line Buffers
and Bit-line Segmentation,” Proc. Int. Symp. on Lower Power
Electronics & Design, Aug. 1999.

[26] R. Preston et al, “Design of an 8-wide superscalar RISC
microprocessor with simultaneous multithreading”, ISSCC
Digest and Visuals Supplements, Feb. 2002.

[27] M. Hrishikesh, N. Jouppi, K. Farkas, D. Burger, S. Keckler,
and P. Shivakumar. The optimal logic depth per pipeline stage
is 6 to 8 FO4 inverter delays. Proc. the 29th Int’l Symp. on
Computer Architecture, May 2002.

[28] S. Manne et al., “An Industrial Perspective on Low Power
Processor Design,” Cool Chips Tutorial in conjunction with
the 32nd Int. Symp. on Microarchitecture, Nov 1999.

